Linear Stability Analysis of Double Diffusive Convection in a Horizontal Sparsely Packed Rotating Anisotropic Porous Layer in Presence of Soret Effect

S. N. Gaikwad\(^1\) and S. S. Kamble\(^2\)

\(^1\) Department of Mathematics, Gulbarga University, Jnana Ganga Campus, Gulbarga 585 106, India.
\(^2\) Department of Mathematics, Government First Grade College, Chittapur – 585 211, India.

†Corresponding Author Email: sngaikwad2009@yahoo.co.in

(Received March 31, 2013; accepted June 9, 2013)

ABSTRACT

In this paper, we have investigated theoretically the effect of Soret parameter on the onset of double diffusive rotating anisotropic convection in a horizontal sparsely packed porous layer using linear stability theory which is based on the usual normal mode technique. The Brinkman model that includes the Coriolis term is employed for the momentum equation. The effect of anisotropy parameters, Soret parameter, solute Rayleigh number, Taylor number, Lewis number, Darcy and Darcy Prandtl number on stationary and oscillatory convection is shown graphically.

Keywords: Soret parameter, Rotation, Anisotropy, Double diffusive convection.

NOMENCLATURE

\(a\) wave number
\(c\) specific heat of solid
\(c_f\) specific heat of fluid at constant pressure
\(d\) height of the porous layer
\(D_i\) anisotropic thermal diffusion tensor,
\(D_{ii} = D_{ij} + D_{kk}\)
\(D_s\) soret coefficient
\(D_e\) solute Diffusivity
\(D_a\) Modified Darcy number, \(\mu_c K_z / \mu_f d^2\)
\(g\) gravitational acceleration, \((0, 0, -g)\)
\(K\) inverse anisotropic permeability tensor,
\(K_{-1} K_{-1} + K_{+1} K_{+1} + K_{-1} K_{-1}\)
\(l, m\) horizontal wavenumbers
\(Le\) Lewis number, \(D_{1z}/D_2\)
\(p\) pressure
\(Pr_D\) Darcy-Prandtl number, \(\nu v D_{1z} / K_z\)
\(q\) velocity vector, \((u, v, w)\)
\(R_T\) thermal Rayleigh number,
\(\beta_T g N T D_k / \nu D_{1z}\)
\(R_S\) solute Rayleigh number,
\(\beta_S g N S D_k / \nu D_{1z}\)
\(\varepsilon\) porosity
\(\rho_0\) reference density
\(\eta\) thermal anisotropy parameter, \(D_{1x}/D_{1z}\)
\(\mu_f\) fluid viscosity
\(\mu_c\) effective viscosity
\(\nu\) kinematic viscosity
\(\Theta\) dimensionless amplitude of temperature perturbation
\(\sigma\) growth rate
\(\Omega\) angular velocity of rotation, \((0, 0, \Omega)\)
\(\xi\) mechanical anisotropy parameter, \(K_x/K_z\)
\(\lambda\) normalized porosity, \(\varepsilon / \gamma\)
\(\Phi\) dimensionless amplitude of concentration perturbation
\(\psi\) stream function

Other symbols

\(\beta\) growth rate
\(\phi\) stream function
\(\psi_h\) stream function

Subscripts

\(b\) basic state
1. INTRODUCTION

A double diffusive process is one that is driven by the presence of two different substances that diffuse at different rates. Double diffusion was first explored because of its application to oceanic phenomena. In the ocean, the density of water is governed primarily by temperature and salinity. The applications of the present study has recently increased in view of its potential occurrence in nature and wide range of applications such as high-quality crystal production, liquid gas storage, migration of moisture in fibrous insulation, transport of contaminants in saturated soil, solidification of molten alloys, and geothermally heated lakes and magmas. Underground disposal of nuclear waste, liquid re-injection, electroly-chemical and drying processes.

A comprehensive review of the literature concerning double diffusive natural convection in a fluid-saturated porous medium may be found in the book by Nield and Bejan (2006). Useful review articles on double diffusive convection in porous media include those by Trevisan and Bejan (1999), Mojtabi and Charrier-Mojtabi (2005) and Fan (2005). Bahloul et al. (2003) have carried out an analytical and numerical study of the double diffusive convection in a shallow horizontal porous layer under the influence of Soret effect. Hill (2005) performed linear and nonlinear stability analyses of double diffusive convection in a fluid saturated porous layer with a concentration based internal heat source using Darcy’s law. Double diffusive natural convection within a multilayer anisotropic porous medium is studied numerically and analytically by Bennacer et al. (2005). Mansour et al. (2006) have investigated the multiplicity of solutions induced by thermosolutal convection in a square porous cavity heated from below and subjected to horizontal concentration gradient in the presence of Soret effect.

The onset of double diffusive convection in a horizontal porous layer has been investigated by Rudraiah et al. (1982) using a weak non-linear theory. Finite amplitude double diffusive convection near the threshold of both stationary and oscillatory instabilities in a binary mixture was investigated by Brand and Steinberg (1983). The linear stability analysis of the thermosolutal convection in a sparsely packed porous layer was made by Poulikakos (1986) using the Darcy-Brinkman model. Small amplitude nonlinear solutions in the form of standing and traveling waves and the transition to finite amplitude convection, as predicted by bifurcation theory, were studied by Knobloch (1986). The double diffusive convection in porous media in the presence of Soret and Dufour coefficients has been analyzed by Rudraiah and Malashetty (1986).

Murray and Chen (1989) have extended the linear stability theory, taking into account effects of temperature-dependent viscosity and volumetric expansion coefficients and nonlinear basic salinity profile. Double diffusive fingering convection in a porous medium with horizontally periodic boundary conditions was studied by Chen and Chen (1993). Malashetty (1993) made a linear stability analysis to determine the effects of anisotropic thermal convective currents on the double diffusive convection in a sparsely packed porous medium.

Straughan and Hutter (1999) have investigated the double diffusive convection with Soret effect in a porous layer using Darcy-Brinkman model and derived a priori bounds. An analytical and numerical study of double diffusive convection with parallel flow in a horizontal sparsely packed porous layer under the influence of constant heat and mass flux was performed using a Brinkman model by Amahmid et al. (1999).

Greek symbols

\(\rho_f \) thermal expansion coefficient
\(\beta_s \) solute expansion coefficient
\(\gamma \) ratio of specific heat, \(\frac{\gamma_c m}{\gamma_p s} \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>solute concentration</td>
</tr>
<tr>
<td>(S_r)</td>
<td>Soret parameter, (D_{1f}\beta_f / D_{1s} \beta_f)</td>
</tr>
<tr>
<td>(t)</td>
<td>time</td>
</tr>
<tr>
<td>(T)</td>
<td>temperature</td>
</tr>
<tr>
<td>(Ta)</td>
<td>Taylor number, ((2\Omega K Z / \epsilon v)^2)</td>
</tr>
<tr>
<td>(\Delta S)</td>
<td>salinity difference between the walls</td>
</tr>
<tr>
<td>(\Delta T)</td>
<td>temperature difference between the walls</td>
</tr>
<tr>
<td>(x, y, z)</td>
<td>space coordinates</td>
</tr>
</tbody>
</table>

\(c \) critical
\(f \) fluid
\(h \) horizontal
\(s \) solid
\(m \) porous medium
\(0 \) reference value

Superscripts

\(* \) dimensionless quantity
\(' \) perturbed quantity
osc oscillatory state
\(st \) stationary state
non-linear double diffusive convection in a sparsely packed porous medium was studied by Rudraiah et al. (1986).

Anisotropy is generally a consequence of preferential orientation or asymmetric geometry of porous matrix or fibers and is in fact encountered in numerous systems in industry and nature. Anisotropy is particularly important in a geological context, since sedimentary rocks generally have a layered structure; the permeability in the vertical direction is often much less than in the horizontal direction. The review of research on convective flow through anisotropic porous media has been well documented by McKibbin (1992) and Storesletten (2004). Castinel and Combarnous (1974) have conducted an experimental and theoretical investigation on the Rayleigh-Bénard convection in an anisotropic porous medium. Ephere (1977) extended the stability analysis to a porous medium with anisotropy in thermal diffusivity also.

Recently many authors have studied the effect of anisotropy and/or rotation on the onset of convection in a horizontal porous layer (see e.g. Govender; 2007, Malashetty and Swamy; 2007). There appears to be only a couple of studies available on the double diffusive convection in an anisotropic porous medium with rotation (Patil et al., 1989) and without rotation (Tyvand; 1980).

Recently Gaikwad and Kamble (2012) have investigated the Soret effect on double diffusive convection in a horizontal sparsely packed porous layer. Rani and Reddy (2013) have studied the Soret and Dufour Effects on Transient Double Diffusive Free Convection of Couple-stress Fluid past a Vertical Cylinder. The effect of rotation on the onset of double diffusive convection in a sparsely packed anisotropic porous layer is studied by Malashetty and Begum (2011). A very little attention has been devoted to the study of double diffusive convection in rotating porous medium including the mechanical and thermal anisotropic effects in presence of Soret effect. Therefore, the objective of the present study is to investigate the combined effect of rotation and anisotropy in presence of Soret effect on the double diffusive convection in a horizontal sparsely packed porous layer using linear stability analyses.

2. GOVERNING EQUATIONS

Consider a horizontal sparsely packed anisotropic porous layer, saturated with Boussinesq fluid of infinite horizontal extent confined between parallel, stress-free planes \(z = 0 \) and \(z = d \) subject to rotation and maintained at constant temperatures \(T_0 + \Delta T \) and \(T_0 \) with solute concentration \(S_0 + \Delta S \) and \(S_0 \) respectively. A Cartesian frame of reference is chosen with \(x \)- and \(y \)-axes at the lower boundary plane and \(z \)-axis directed vertically upwards in the gravity field. The axis of rotation is assumed to coincide with the \(z \)-axis with a constant angular velocity \(\Omega = (0, 0, \Omega) \). The Darcy-Brinkman model that includes the Coriolis term is used for the momentum equation. The velocities are assumed to be small so that the advective and Forchheimer inertia effects are ignored. The Boussinesq approximation, which states that the variation in density is negligible every where in the conservations except in the buoyancy term, is assumed to hold. With these assumptions the basic governing equations are

\[
\nabla \mathbf{q} = 0
\]

\[
\rho_0 \left(\frac{1}{\varepsilon} \frac{\partial \mathbf{q}}{\partial t} + \frac{2}{\varepsilon} \boldsymbol{\Omega} \times \mathbf{q} \right) + \mu \mathbf{K} \cdot \mathbf{q} = -\nabla p + \rho_0 \mathbf{g} + \mu \nabla^2 \mathbf{q}
\]

\[
\gamma \frac{\partial T}{\partial t} + \left(\mathbf{q} \cdot \nabla \right) T = \nabla \cdot (D_{11} \nabla T)
\]

\[
\varepsilon \frac{\partial S}{\partial t} + \left(\mathbf{q} \cdot \nabla \right) S = D_2 \nabla^2 S + D_1 \nabla^2 T
\]

\[
\rho = \rho_0 (1 - \beta_T (T - T_0) + \beta_S (S - S_0))
\]

The basic state of the fluid is assumed to be quiescent. The quantities of the basic state are given by

\[
\mathbf{q}_b = (0, 0, 0), \quad p = p_b (z), \quad T = T_b (z), \quad S = S_b (z), \quad \rho = \rho_b (z)
\]

which satisfy the equations

\[
\frac{dp_b}{dz} = -\rho_b g, \quad \frac{d^2 T_b}{dz^2} = 0, \quad \frac{d^2 S_b}{dz^2} = 0,
\]

\[
\rho_b = \rho_0 (1 - \beta_T (T_0 - T_0) + \beta_S (S_0 - S_0))
\]

On the basic state we superpose small perturbations around the basic solutions in the form

\[
\mathbf{q} = \mathbf{q}_b + \mathbf{q}', \quad T = T_b + T', \quad S = S_b + S', \quad p = p_b + p', \quad \rho = \rho_b + \rho'
\]

where the primes indicate perturbations. Substituting Eq. (8) into Eqs. (1) to (5) and using the basic state Eqs. (7) and transformations

\[
(x', y', z') = \left(x^*, y^*, z^* \right) d, \quad \left(\mathbf{u}, \mathbf{v}, \mathbf{w} \right) = \left(\mathbf{u}^*, \mathbf{v}^*, \mathbf{w}^* \right),
\]

\[
T' = (\Delta T) T^*, \quad S' = (\Delta S) S^*
\]

to render the equations dimensionless we obtain (after dropping the asterisks for simplicity)

\[
\frac{1}{\Omega} \frac{\partial \mathbf{q}^*}{\partial \tau} + \frac{1}{\varepsilon} \frac{\partial^2 \mathbf{q}^*}{\partial \xi^2} = \frac{1}{\varepsilon} \nabla^2 \mathbf{q}^* + \frac{1}{\varepsilon} \nabla^2 \mathbf{q}^*
\]

\[
\frac{1}{\varepsilon} \frac{\partial T^*}{\partial \tau} + \frac{1}{\varepsilon} \frac{\partial^2 T^*}{\partial \xi^2} = \frac{1}{\varepsilon} \nabla^2 T^* + \frac{1}{\varepsilon} \nabla^2 T^*
\]

\[
\frac{1}{\varepsilon} \frac{\partial S^*}{\partial \tau} + \frac{1}{\varepsilon} \frac{\partial^2 S^*}{\partial \xi^2} = \frac{1}{\varepsilon} \nabla^2 S^* + \frac{1}{\varepsilon} \nabla^2 S^*
\]

(10)
We predict the thresholds of

\[\frac{\partial}{\partial t} \left(\eta V_n^2 + \frac{\partial^2}{\partial z^2} \right) + q \cdot V \right) T - w = 0 \quad (11) \]

\[\frac{\lambda}{\partial t} - \frac{1}{Le} \left(V_n^2 + q \cdot V \right) S - w = Sr \frac{T}{R_s} \frac{\partial^2 T}{\partial z^2} \]

Where \(Pr_T = \gamma e \nu^2 / K_z D_{1z} \), the Darcy-Prandtl number, \(Da = \mu K_z / \eta \nu^2 d^2 \), the modified Darcy number, \(Ta = (2 \mu K_z / \gamma e \nu)^2 \), the Taylor number, \(Sr = D_{1z} / K_z \), the Soret number, \(R_T = R_T g / \nu d T / K_z / \nu d_1 z \), the thermal Rayleigh number, \(R_S = R_T g^2 / \nu d_2 / d_1 z \), the solute Rayleigh number, \(Le = D_{1z} / D_2 \), the Lewis number, \(\xi = K_z / K_z \), the mechanical anisotropy parameter, \(\eta = D_1 / D_1 z \), the thermal anisotropy parameter, \(\lambda = \xi / \gamma \), normalized porosity. The boundary conditions in only the \(\hat{z} \)-direction are required to solving Eqs. (10) to (12) and are given by

\[w = \frac{\partial^2 w}{\partial \hat{z}^2} = T = S = 0 \quad \text{at} \quad z = 0 \quad (13) \]

3. LINEAR STABILITY ANALYSIS

In this section we predict the thresholds of both stationary and oscillatory convections using linear theory. The Eigen value problem defined by Eqs. (10) to (12) subject to the boundary conditions (13) is solved using the time-dependent periodic disturbances in a horizontal plane. Assuming that the amplitudes of the perturbations are very small, we write

\[\begin{bmatrix} w \\ T \\ S \\ (z) \end{bmatrix} = \begin{bmatrix} W(z) \\ \Theta(z) \\ \Phi(z) \end{bmatrix} \exp \left[i \left(l \hat{x} + m \hat{y} \right) + \sigma \tau \right] \quad (14) \]

where \(l, m \) are horizontal wavenumbers and \(\sigma \) is the growth rate. Infinitesimal perturbations of the rest state may either damp or grow depending on the value of the parameter \(\sigma \). Substituting Eq. (14) into the linearized version of Eqs. (10) to (12) we obtain

\[\begin{bmatrix} w \\ T \\ S \\ (z) \end{bmatrix} = \begin{bmatrix} \frac{\sigma}{Pr_T} \left(D^2 - a^2 \right) \\ \left(D^2 - a^2 \right) D_2 + \left(\frac{1}{4} - D^2 - a^2 \right) \] \]

\[\frac{\sigma}{Pr_T} D^2 + \frac{1}{\xi} \left(D^2 - a^2 \right) D_2 \]

\[\left(\frac{1}{Pr_T} \right) \left(\frac{1}{\xi} \right) \left(D^2 - a^2 \right) D_2 \]

\[\left(\frac{R_T a^2 \Phi - R_T a^2 \Theta}{a^2} \right) \]

\[\left[\sigma - \left(D^2 - a^2 \eta \right) \right] \Theta - W = 0 \quad (15) \]

\[\left[\alpha \lambda + \frac{1}{Le} \left(D^2 - a^2 \right) \right] \Phi - W = B \left(D^2 - a^2 \right) \Theta \quad (17) \]

\[B = Sr \frac{R_T}{R_s}, \quad D = d \partial z \quad \text{and} \quad a^2 = l^2 + m^2 \]

We assume the solutions of Eqs. (15) to (17) satisfying the boundary conditions (13) in the form

\[\begin{bmatrix} W(z) \\ \Theta(z) \\ \Phi(z) \end{bmatrix} = \begin{bmatrix} W_0 \\ \Theta_0 \\ \Phi_0 \end{bmatrix} \sin n \pi z, (n = 1, 2, 3, \ldots) \quad (18) \]

The most unstable mode corresponds to \(n = 1 \) (fundamental mode). Therefore substituting Eq. (18) with \(n = 1 \) into Eqs. (15) to (17), we obtain a matrix equation

\[\begin{bmatrix} A_{11} - a^2 R_T \\ -1 \sigma + \delta_2 \delta_2 \\ -1 B \delta_2^2 \alpha \lambda + \delta_2^2 Le^{-1} \end{bmatrix} \begin{bmatrix} W_0 \\ \Theta_0 \\ \Phi_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad (19) \]

For brevity \(A_{11}, \delta_2^2, \delta_2^2 \) and \(\delta_2^2 \) are not mentioned here. The condition of nontrivial solution of above system of homogeneous linear Eqs (19) yields the expression for thermal Rayleigh number in the form

\[R_T = \frac{\left(\left(\frac{\lambda \sigma + \delta_2^2 Le^{-1}}{\alpha \lambda + \left(Le^{-1} + Sr \right) \delta_2^2} \right) \right)}{\left(\frac{\sigma}{\alpha \lambda + \left(Le^{-1} + Sr \right) \delta_2^2} \right)} \quad (20) \]

3.1 Stationary State

If \(\sigma \) is real, then marginal stability occurs when \(\sigma = 0 \) (i.e. \(\alpha_0 = \omega_0 = 0 \)). Then the Rayleigh number \(R_T^{0} \) for the onset of stationary convection, in the form
\[R_T = \left(\frac{a^2 + \pi^2}{a^2 + \xi^2} \right) \left(\frac{a^2 + \pi^2 + \xi^2 + \Delta}{a^2 + \pi^2} \right) \]

In the absence of Soret effect i.e., \(S_T = 0 \), Eq. (21) gives

\[R_T = \left(\frac{a^2 + \pi^2}{a^2 + \pi^2} \right) R_s \eta. \]

The minimum value of the Rayleigh number \(R_T^{\min} \) occurs at the critical wavenumber \(a = a_c \). In the limit as \(Da \to 0 \) i.e., for a densely packed porous medium, Eq. (22) reduces to

\[R_T^{\min} = \left(\frac{a^2 + \pi^2}{a^2 + \pi^2} \right) + \left(\frac{a^2 + \pi^2}{a^2 + \pi^2} \right) R_s \eta. \]

This is exactly the one given by Malashatty and Heera (2008). When \(Da \to 0 \) and \(Ta = 0 \), i.e., for a sparsely packed porous layer in the absence of rotation, Eq. (23) reduces to

\[R_T^{\min} = \frac{1}{a^2 + \pi^2} \left(\frac{a^2 + \pi^2}{\xi^2} \right) \left(\frac{a^2 + \pi^2 + \xi^2 + \Delta}{a^2 + \pi^2} \right) \]

given by Malashatty and Swamy (2009). Further, for an isotropic porous media, that is when \(\xi = \eta = 1 \), Eq. (24) gives

\[R_T^{\min} = \frac{\pi^2 \left(1 + a^2 \right) M}{\alpha^2} + \frac{Ta}{M} + \frac{R_s}{\tau}. \]

Where

\[M = \frac{1}{\pi^2} \left(Da \pi^2 + \frac{1 + a^2}{\pi^2} \right)^{-1}, \quad \alpha^2 = \frac{a^2}{\pi^2}, \quad \tau = \frac{1}{Le}, \]

which is the one obtained by Rudraiah et al. (1986).

3.2 Oscillatory State

We now set \(\sigma = i \omega_i \) in Eq. (20) and clear the complex quantities from the denominator, to obtain

\[R_T = A_1 + i \omega_1 A_2 \]

Since \(R_T \) is a physical quantity, it must be real. Hence, from Eq. (26) it follows that either \(\omega_1 = 0 \) (steady onset) or \(A_2 = 0 \) (oscillatory onset).

For oscillatory onset \(A_2 = 0 \) (\(\omega_1 \neq 0 \)) and this gives a dispersion relation of the form (on dropping the subscript \(i \))

\[a_0 \left(\omega^2 \right)^2 + a_1 \left(\omega^2 \right) + a_2 = 0. \]

for simplicity the coefficients \(a_0, a_1 \) and \(a_2 \) are not mentioned here. Now Eq. (26) with \(A_2 = 0 \), gives

\[R_T^{\infty} = \left(a^2 \left(\delta^2 \omega^2 + \omega^2 \xi^2 \right) \right) \left(a_1 + a_1 \left(\omega^2 \right) \right). \]

4. RESULT AND DISCUSSION

The Soret effect on the onset of double-diffusive rotating anisotropic convection in a horizontal sparsely packed porous layer is investigated theoretically using the linear stability theory. The variation of stationary and oscillatory curves in the \(R_T - \eta \) plane for various parameter values are as shown in Figs. (1a to 4d). We fixed the values for the parameters except the varying parameter.

Figs (1a to 4d) and (3a to 3d) shows that the stationary and oscillatory curves respectively for different values of \(\xi, \eta, Ta \) and \(Da \) for fixed values of other parameters. We observed from these figures that the convection sets in as oscillatory mode prior to the stationary mode.

Fig. 1a. Variation of stationary curves for different values of η

Fig. 1b. Variation of stationary curves for different values of ζ

Fig. 1c. Variation of stationary curves for different values of Ta

Fig. 1d. Variation of stationary curves for different values of Da

Fig. 2a. Variation of stationary curves for different values of RaS

Fig. 2b. Variation of stationary curves for different values of Le
From Figs. 1a and 3a, it can be observed that the critical value of the Rayleigh number increases with
the increasing ξ for both oscillatory and stationary convection. Thus ξ has stabilizing effect on stationary and oscillatory convection. Figs. 1b and 3b indicates the effect of thermal anisotropy parameter η on both the stationary and oscillatory convection for the fixed values of other parameters. It is observed that critical value of the Rayleigh number for stationary and oscillatory mode increases with increasing η, indicating that the effect of η is to inhibit the onset of stationary and oscillatory convection. Figs. 1c and 3c depicts the effect of Taylor number Ta on the both the stationary and oscillatory modes. We find that the effect of increasing Ta is to increase the critical value of the Rayleigh number for stationary and oscillatory modes and the corresponding wavenumber. Thus the Taylor number Ta has a stabilizing effect on the double diffusive convection in a horizontal sparsely packed anisotropic porous medium.

Fig. 4a. Variation of oscillatory curves for different values of R_S

Figs. (2a to 2d) and (4a to 4d) depict the effect of R_S, Le, Pr_D and Sr on stationary and oscillatory modes respectively. We find from Figs. 2a and 4a that the effect of increasing R_S is to increase the critical value of the Rayleigh number for stationary and oscillatory modes and the corresponding wavenumber. Thus the solute Rayleigh number R_S has a stabilizing effect on the double diffusive convection in a horizontal sparsely packed anisotropic porous medium.

Fig. 4b. Variation of oscillatory curves for different values of Le

Fig. 4c. Variation of oscillatory curves for different values of Pr_D

Fig. 4d. Variation of oscillatory curves for different values of Sr
In Figs. 2b and 4b the marginal and oscillatory curves for different values of Lewis number Le are drawn. It is observed that with the increase of Le the critical values of Rayleigh number and the corresponding wavenumber for oscillatory mode decreases while those for stationary mode increases. Therefore, the effect of Le is to advance the onset of oscillatory convection while its effect is to inhibit the stationary convection. The marginal and oscillatory curves for different values of Darcy-Prandtl number Pr_D are presented in Figs. 2c and 4c, from these figures it is evident that for small and moderate values of Pr_D the critical value of oscillatory Rayleigh number decreases with the increase of Pr_D, however this trend is reversed for large values of Pr_D. Figures. 2d and 4d indicates the effect of Soret parameter Sr on the both the stationary and oscillatory modes. It is observed that as Sr increases positively, the critical values of Rayleigh number and the corresponding wavenumber for oscillatory mode increase while as Sr increases negatively, those decrease. Whereas the effect is reversed for the stationary mode. Thus Soret parameter has stabilizing effect on oscillatory convection and destabilizing effect on stationary convection.

The detailed behavior of stationary and oscillatory critical Rayleigh number with respect to the Taylor number is analyzed in the $R_c - T \tau$ plane through Figs. (5a to 5f) and (6a to 6f) respectively. We observe from these figures that the critical Rayleigh number increases with the increase of $T \tau$, indicating that the effect of rotation is to inhibit the onset of thermal convection and it is in agreement with the corresponding problem of isotropic and pure fluid layer.

Fig. 5b. Variation of stationary critical curves for different values of η

Fig. 5c. Variation of stationary critical curves for different values of Da

Fig. 5d. Variation of stationary critical curves for different values of Rs
and for large value of 1000, the critical Rayleigh number increases. Thus the effect of thermal anisotropy parameter η is to inhibit the onset of convection while destabilizing effect on oscillatory convection.

In Figs. 5a and 6a, we display the variation of stationary and oscillatory critical Rayleigh number R_{c} with Taylor number Ta for different values of mechanical anisotropy parameter ξ for the fixed values of other parameters. It is important to note that R_{c} decreases with the increase of ξ for small values of Ta, and for large value of Ta, the critical Rayleigh number increases. Thus the mechanical anisotropy parameter ξ has dual effect on oscillatory and stationary convection. Figures, 5b and 6b indicates the variation of R_{c} with Ta for different values of thermal anisotropy parameter η. It is observed that the critical Rayleigh number R_{c} increases with the increase of η indicating that the effect of thermal anisotropy parameter is to inhibit the onset of stationary and oscillatory convection.

Fig. 5a. Variation of stationary critical curves for different values of Le

Fig. 5b. Variation of stationary critical curves for different values of Sr

Fig. 5c. Variation of stationary critical curves for different values of Pr

Fig. 5d. Variation of stationary critical curves for different values of Da

Fig. 5e. Variation of stationary critical curves for different values of Le

Fig. 5f. Variation of stationary critical curves for different values of Sr

Fig. 6a. Variation of oscillatory critical curves for different values of ξ

Fig. 6b. Variation of oscillatory critical curves for different values of η

Fig. 6c. Variation of oscillatory critical curves for different values of Pr

Fig. 6d. Variation of oscillatory critical curves for different values of Da
The variation of R_{cr} with Ta for different values of Soret parameter is presented in the Figs. 5f and 6f. We find that as Sr increases positively, the critical values of Rayleigh number and the corresponding wavenumber decrease for stationary mode while as Sr increases negatively, those increase. And the effect of Sr is reversed for oscillatory mode. Thus positive Sr has destabilizing effect for stationary mode and stabilizing effect for oscillatory mode.

5. CONCLUSIONS

The effect of rotation on the onset of double-diffusive convection in a horizontal sparsely packed anisotropic porous layer, in the presence of Soret effect is investigated theoretically using the linear stability theory. The usual normal mode technique is used to solve the linear problem. The applications of the present study has recently increased in view of its potential occurrence in nature and wide range of applications such as high-quality crystal production, liquid gas storage, migration of moisture in fibrous insulation, transport of contaminants in saturated soil, solidification of molten alloys, and geothermally heated lakes and magmas, underground disposal of nuclear wastes, liquid re-injection, electro-chemical and drying processes.

Finally, from the results we conclude that the mechanical anisotropy parameter ξ has stabilizing effect on stationary and oscillatory. However the convection sets in as oscillatory mode prior to the stationary mode. The effect of thermal anisotropy parameter η is to inhibit the onset of stationary and oscillatory convection. The Taylor number Ta has a stabilizing effect on the double diffusive convection in sparsely packed anisotropic porous medium. The effect of Darcy number Da is to inhibit the on the onset of stationary convection while it has dual effect on oscillatory convection. The effect of solute Rayleigh number is to delay
both stationary and oscillatory convection. And the effect of Lewis number is to delay the onset of stationary convection while it advances the oscillatory convection. The Darcy Prandtl Pr_D has a dual effect on the oscillatory mode. The Soret parameter has stabilizing effect on oscillatory convection and destabilizing effect on stationary convection.

REFERENCES

