Lie Group Analysis for Boundary Layer Flow of Nanofluids near the Stagnation-Point over a Permeable Stretching Surface Embedded in a Porous Medium in the Presence of Radiation and Heat Generation/Absorption

P. Sreenivasulu† and N. Bhaskar Reddy

Department of Mathematics, Sri Venkateswara University, Tirupati-517502, India.

†Corresponding Author Email: psreddysvu11@gmail.com

(Received August 24, 2012; accepted July 21, 2014)

ABSTRACT

This study investigates the influence of thermal radiation and heat generation/absorption on a two dimensional steady boundary layer flow near the stagnation-point on a permeable stretching sheet in a porous medium saturated with nanofluids. The governing partial differential equations with the appropriate boundary conditions are reduced to a set of ordinary differential equations via Lie-group analysis. The resultant equations are then solved numerically using Runge-Kutta fourth order method along with shooting technique. Two types of nanofluids, namely, copper-water and alumina-water are considered. The velocity and temperature as well as the shear stress and heat transfer rates are computed. The influence of pertinent parameters such as radiation parameter \(N_r \), nanofluid volume fraction parameter \(\phi \), the ratio of free stream velocity and stretching velocity parameter \(a/c \), the permeability parameter \(K_1 \), suction/blowing parameter \(S \), and heat source/sink parameter \(\lambda \) on the flow and heat transfer characteristics is discussed. The present study helps to understand the efficiency of heat transfer transport in nanofluids which are likely to be the smart coolants of the next generation.

Keywords: Stagnation-point flow; Porous media; Nanofluid; Stretching sheet; Scaling transformations.

NOMENCLATURE

\(C_f \) dimensionless local Skin friction
\(K \) permeability of porous medium
\(K_1 \) permeability parameter of the porous medium
\(k_f \) thermal conductivity of base fluid
\(k_{nf} \) thermal conductivity
\(k^* \) mean absorption coefficient
\(N_r \) radiation parameter
\(Nu_x \) dimensionless local Nusselt number
\(Pr \) Prandtl number
\(Q_0 \) dimensional heat generation or absorption coefficient
\(q_r \) radiative heat flux
\(Re_x \) local Reynolds number
\(S \) mass flux parameter
\(T \) température du nanofluid far from the surface
\(T_{\infty} \) température de l'air
\(U(x) \) stagnation point velocity
\(u, v \) velocity components
\(x, y \) cartesian co-ordinates
\(\alpha_{nf} \) thermal diffusivity
\(\lambda \) heat source or sink parameter
\(\mu_{nf} \) dynamic viscosity
\(\nu_f \) kinematic viscosity of the base fluid
\(\rho_w \) wall mass flux
\(\rho_{nf} \) density
\((\rho C_p)_{nf} \) heat capacitance
\(\sigma^* \) Stefan-Boltzmann constant
\(\phi \) solid volume fraction of the nanoparticles
1. INTRODUCTION

Convectional heat transfer fluids, including oil, water, and ethylene glycol mixture are poor heat transfer fluids. But the thermal conductivity of these fluids play important role on the heat transfer coefficient between the heat transfer medium and the heat transfer surface (Mutthamisilevan et al. 2010). In view of the rising demands of modern technology, including chemical production, power station, and microelectronics, there is a need to develop new types of fluids that will be more effective in terms of heat exchange performance. Numerous methods have been tried to improve the thermal conductivity of these fluids by suspending nano/micro-sized particle materials in liquids. Recently several researchers including Tiwari and Das (2007), Ho et al. (2007, 2008), Abu-Nada (2008), Oztop and Abu-Nada (2008), Abu-Nada and Oztop (2009), Congedo et al. (2009), Aminossadati and Ghasemi (2009), Ghasemi and Aminossadati (2009, 2010), Ahmad and Pop (2010), etc. studied on the modeling of natural convection heat transfer in nanofluids.

Hamad (2011) obtained the analytical solutions for convective flow and heat transfer of a viscous incompressible nanofluid past a semi-infinite vertical stretching sheet in the presence of magnetic field. Hamad and Pop (2011) studied the scaling group of transformations for boundary layer flow near the stagnation-point on a heated permeable stretching surface in a porous medium saturated with a nanofluid and heat generation/absorption effects by employing implicit finite difference technique. Khan and Pop (2010) obtained similarity solutions depending on Prandtl number, Lewis number, Brownian motion number and thermophoresis number on the steady boundary layer flow, over a stretching surface by employing implicit finite difference method. Further, Abu-Nada and Chamkha (2010) presented the natural convection heat transfer characteristics in a differentially-heated enclosure filled with a CuO–EG–water nanofluid for different variable thermal conductivity and variable viscosity models.

Heat, mass and momentum transfer in the laminar boundary layer flow over a stretching sheet is an important type of flow due to its application such as polymer engineering, metallurgy etc. Wang (1989) analyzed the Free convection on a vertical stretching surface by employing Runge-Kutta Fehlberg algorithm. Elbashbeshy and Bazid (2004) considered the flow and heat transfer in a porous medium over a stretching surface with internal heat generation and suction or injection. Nazar et al. (2004) investigated the unsteady mixed convection boundary layer flow in the region of stagnation-point on a vertical surface in a fluid-saturated porous medium. Layek et al. (2007) has reported heat and mass transfer boundary layer stagnation-point flow of an incompressible viscous fluid towards a heated porous stretching sheet embedded in a porous medium subject to suction/blowing with internal heat generation or absorption by employing fourth order classical Runge-Kutta method. Cortell (2005) has analyzed the effects of various physical parameters on momentum and heat transfer characteristics of the flow and heat transfer past a stretching surface in a porous medium. Malvandi et al. (2014), presented an HAM analysis of stagnation-point flow of nanofluid over a porous stretching sheet with heat generation.

On the other hand, the effect of radiation on boundary layer flow and heat transfer processes is of major important in the design of many advanced energy conversion systems operating at high temperatures. In view of this, Elbashbeshy and Dimian (2002) and Hossain et al. (1999, 2001), studied the effect of thermal radiation of a gray fluid which emits and absorbs radiation in a non-scattering medium. Elbashbeshy (2000) investigated the radiation effect on heat transfer over a stretching surface. Mukhopadhyay (2009), analyzed the effects of radiation and variable fluid viscosity on flow and heat transfer along a symmetric wedge. Suneetha et al.(2011), studied the radiation and mass transfer effects on MHD free convective dissipative fluid in the presence of heat source/sink.

In the present paper, an attempt is made to find a similarity solution of two-dimensional stagnation point flow of an incompressible viscous radiating fluid past a porous stretching surface embedded in porous medium saturated by nanofluid, using scaling transformations.

2. MATHEMATICAL ANALYSIS

A steady laminar two-dimensional flow of an incompressible viscous radiating fluid near a stagnation-point at a porous stretching surface saturated by nanofluid is considered. The \bar{x} -axis is taken along the surface and \bar{y} -axis normal to it. The physical model and co-ordinate system is shown in Fig.1. Two equal and opposite forces are introduced along the \bar{x} direction so that the wall is stretched keeping the origin fixed (Layek et al. 2007). It is assumed that the temperature at the stretching surface takes the constant values T_s, while the temperature of the ambient nanofluid, attained as \bar{y} tends to infinity, takes the constant T_a.
values T_∞. It is also assumed that the base fluid and the nanoparticles are in thermal equilibrium and no slip occurs between them. Under these assumptions and following the nanofluid model proposed by Tiwari and Das (2007), the boundary layer equations governing the flow and temperature field in the presence of radiation and heat source/sink are:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$ \hspace{1cm} (1)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{dU(X)}{dX} + \frac{\mu_\eta}{\rho_\eta} \frac{\partial^2 u}{\partial y^2} + \frac{\mu_\eta}{\rho_\eta} \left(\frac{\rho}{\rho_\eta} \right) \left(\frac{\theta}{\theta_\infty} \right)$$ \hspace{1cm} (2)

The boundary conditions for the velocity and temperature fields are:

$$\bar{u} = \bar{u}_w(X) = \bar{c}_u, \bar{v} = \bar{c}_v, T = T_w \text{ at } \bar{y} = 0$$ \hspace{1cm} (4)

$$\bar{u} \to \bar{U}(X) = \bar{c}_u, T \to T_w \text{ as } \bar{y} \to \infty$$

where, x and y are the coordinates along and perpendicular to the surface of the sheet, \bar{u}, \bar{v} are the velocity components in the x and y directions, respectively, T is the local temperature of the nanofluid, $\bar{U}(X)$ stands for the stagnation-point velocity in the inviscid free stream, K is the permeability of the porous medium, q_r is the radiative heat flux, Q_0 is the dimensional heat generation or absorption coefficient, a and c are positive constants, and \bar{V}_w is the wall mass flux with $\bar{V}_w < 0$ for suction and $\bar{V}_w > 0$ for injection, respectively. Further, ρ_η is the effective density, μ_η is the effective dynamic viscosity, $(\rho C_p)_\eta$ is the heat capacitance and α_η is the effective thermal diffusivity, which are defined as (Oztop and Abu-Nada 2008; Aminossadati and Ghasemi 2009):

$$\rho_\eta = (1 - \phi)\rho_f + \phi \rho_p, \quad \mu_\eta = \frac{\mu_f}{(1 - \phi)^{2.5}}$$ \hspace{1cm} (3)

$$\alpha_\eta = \frac{k_\eta}{(\rho C_p)_\eta}, \quad k_\eta = (k_f + 2k_p) - 2\phi(k_f - k_p)$$ \hspace{1cm} (4)

where ϕ is the solid volume fraction of the nanoparticles, k_η is the effective thermal conductivity of the nanofluid, k_f and k_p are the thermal conductivities of the base fluid and nanoparticle, respectively. The thermo-physical properties of the solid particles and nanofluid volume fraction are given in Table 1 (Oztop and Abu-Nada 2008).

Table 1 Thermo physical properties of fluid and nanoparticles (Oztop and Abu-Nada 2008).

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Fluid phase (water)</th>
<th>Cu</th>
<th>Al, ρ_f</th>
<th>Ti, ρ_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>4179</td>
<td>385</td>
<td>765</td>
<td>686.2</td>
</tr>
<tr>
<td>ρ (kg/m3)</td>
<td>997.1</td>
<td>8933</td>
<td>3970</td>
<td>4250</td>
</tr>
<tr>
<td>k (W/mK)</td>
<td>0.613</td>
<td>400</td>
<td>40</td>
<td>8.9538</td>
</tr>
</tbody>
</table>

By using the Rosseland approximation, the radiative heat flux is given by:

$$q_r = -\frac{4 \sigma^*}{3 k^*} \frac{\partial T^4}{\partial y}$$ \hspace{1cm} (6)

where σ^* is the Stefan-Boltzmann constant and k^* is the mean absorption coefficient. It should be noted that by using the Rosseland approximation, the present analysis is limited to optically thick fluids. If the temperature differences within the flow are sufficiently small, then equation (6) can be linearized by expanding T^4 into the Taylor series about T_w, which after neglecting higher-order terms takes the form

$$T^4 = 4T_w^4 T - 3T_w^4$$ \hspace{1cm} (7)

In view of Eqs. (6) and (7), Eq. (3) becomes:

$$\bar{u} \frac{\partial T}{\partial x} + \bar{v} \frac{\partial T}{\partial y} = \alpha_f (1 + \frac{N_r}{\nu_j}) \frac{\partial^2 T}{\partial y^2} + \frac{Q_0}{(\rho C_p)_\eta} (T - T_w)$$ \hspace{1cm} (8)

where $N_r = 16\sigma^* T_w^3 / 3k_\eta k^*$ is the radiation parameter.

By introducing the following non-dimensional variables:

$$x = \frac{\bar{x}}{\nu_j / c}, \quad y = \frac{\bar{y}}{\nu_j / c}, \quad u = \frac{\bar{u}}{\sqrt{\nu_j}}, \quad v = \frac{\bar{v}}{\sqrt{\nu_j}}$$ \hspace{1cm} (9)

$$\bar{z} = \frac{\bar{U}}{\sqrt{\nu_j}}, \quad \theta = \frac{T - T_w}{T_\infty - T_w}$$

where ν_j is the kinematic viscosity of the base fluid, Eqs. (1), (2) and (8) take the following dimensionless form:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$ \hspace{1cm} (10)

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{dU}{dx} + \frac{\mu_f}{(1 - \phi)^{2.5}} \left(\frac{\rho}{\rho_\eta} \right) \left(\frac{\theta}{\theta_\infty} \right)$$ \hspace{1cm} (11)

$$+ \frac{1}{(1 - \phi)^{2.5} \left(\frac{\rho}{\rho_\eta} \right)} \left[\frac{\partial^2 u}{\partial y^2} + K_\eta (U - u) \right]$$

551
\[
\begin{align*}
\frac{\partial \psi}{\partial y} + \frac{\partial \theta}{\partial x} &= \frac{1}{Pr} \left[1 - \phi + \phi (pC_P) \right] \left(\frac{k_y}{k_x} \right) \frac{\partial^2 \psi}{\partial y^2} \\
&+ \frac{1}{Pr} \left[1 - \phi + \phi (pC_P) \right] \frac{\lambda}{\left(1 + N_r\right)} \frac{\partial^2 \theta}{\partial x^2} \\
(12)
\end{align*}
\]

The corresponding boundary conditions are:

\[
\begin{align*}
u &= x, \quad v = -S, \quad \theta = 1 \quad \text{at} \quad y = 0 \\
u \rightarrow U(x) = \frac{a}{c}, \quad \theta \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty \\
(13)
\end{align*}
\]

where \(Pr = \nu / \alpha_f \) is the Prandtl number, \(\lambda = Q_f / (pC_P) \), \(c \) is the heat source \((\lambda > 0) \) or sink \((\lambda < 0) \) parameter, \(K_y = \nu / (cK) \) is the permeability parameter of the porous medium and \(S = -\nu / (\sqrt{c}v_f) \) is the mass flux parameter \((S > 0)\) corresponds to suction and \(S < 0 \) corresponds to blowing.

By introducing the stream function \(\psi \), which is defined by \(u = \partial \psi / \partial y \) and \(v = -\partial \psi / \partial x \), then the system of Eqs. (10) - (12) become:

\[
\begin{align*}
\frac{\partial \psi}{\partial y} \frac{\partial \psi}{\partial y} + \frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial x} - \frac{1}{U} &\frac{\partial U}{\partial y} \\
+ \frac{1}{(1 - \phi)^2} \frac{\partial \psi}{\partial y} \left(\frac{\partial \psi}{\partial y} + K_y \left(U - \frac{\partial \psi}{\partial y} \right) \right) \end{align*}
\]

\[
(14)
\]

\[
\frac{\partial \psi}{\partial y} \frac{\partial \psi}{\partial y} - \frac{\partial \theta}{\partial x} \frac{\partial \psi}{\partial y} = \frac{1}{(1 + N_r)} \left(\frac{k_y}{k_x} \right) \frac{\partial^2 \theta}{\partial x^2} \\
+ \frac{1}{Pr} \left[1 - \phi + \phi (pC_P) \right] \frac{\lambda}{\left(1 + N_r\right)} \frac{\partial^2 \theta}{\partial x^2} \\
(15)
\]

with the boundary conditions:

\[
\begin{align*}
\frac{\partial \psi}{\partial y} &= x, \quad \frac{\partial \psi}{\partial x} = -S, \quad \theta = 1 \quad \text{at} \quad y = 0 \\
\frac{\partial \psi}{\partial y} \rightarrow U = \frac{a}{c}, \quad \theta \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty \\
(16)
\end{align*}
\]

\section{3. Scaling Transformations}

We now introduce the simplified form of Lie-group transformations namely, the scaling group \(\Gamma \) of transformations (Ibrahim et al. 2005; Mukhopadhyay et al. 2005; Kandasamy and Muthamoim 2010; Muthamisilvan et al. 2010)

\[
\begin{align*}
\Gamma: \quad x^* &= xe^{a_2}, \quad y^* = ye^{a_2}, \\
\psi^* &= \psi e^{a_2}, \quad \theta^* = \theta e^{a_2} \\
(17)
\end{align*}
\]

The one-parameter group of transformations (17) transforms the coordinates \((x, y, \psi, \theta)\) to \((x^*, y^*, \psi^*, \theta^*)\).

Substituting (17) in (14) and (15) we get,

\[
\begin{align*}
e^{e^{a_2}+e^{a_2}-\eta} \left(\frac{\partial \psi^*}{\partial y^*} \frac{\partial \psi^*}{\partial y^*} - \frac{\partial \psi^*}{\partial x^*} \frac{\partial \psi^*}{\partial y^*} \right) &= \frac{a^2}{c^2} e^{-a_2} x^* + \frac{1}{(1 - \phi)^2} \left[1 - \phi + \phi (pC_P) \right] \\
(18)
\end{align*}
\]

while, Eq. 15 remains invariant under the group of transformation \(\Gamma \), if the following relations hold:

\[
\begin{align*}
\alpha_2 &= \alpha_3, \quad \alpha_6 = 0 \\
\alpha_4 &= 0 \\
(20)
\end{align*}
\]

Similarly, by substituting (17) into (15) and the boundary conditions (13), using (16), and from the condition that Eqs. (15) and (16) should remain invariant under the group \(\Gamma \) of transformations, we then obtain

\[
\begin{align*}
\alpha_4 &= 0 \quad (21)
\end{align*}
\]

The set of transformations of the \(\Gamma \) group reduces to

\[
\begin{align*}
\Gamma: \quad x^* &= xe^{a_2}, \quad y^* = y, \quad \psi^* = \psi e^{a_2}, \quad \theta^* = \theta \\
(22)
\end{align*}
\]

Expanding (22) in power of \(\epsilon \) by Taylor’s method and keeping terms up to the order of \(\epsilon \), we get

\[
\begin{align*}
x^* - x = e^{a_2}, \quad y^* - y = 0, \\
\psi^* - \psi = \psi e^{a_2}, \quad \theta^* - \theta = 0 \\
(23)
\end{align*}
\]

The characteristic equations are:

\[
\begin{align*}
\frac{dx}{dx} &= \frac{dy}{y} = \frac{d\psi}{\psi a_1} = \frac{d\theta}{\theta a_1} = \frac{0}{0} \\
(24)
\end{align*}
\]

from which, we obtain the following similarity variables

\[
\begin{align*}
\eta &= y, \quad \psi = x^f (\eta), \quad \theta = \theta (\eta) \\
(25)
\end{align*}
\]

With the help of these relations, Eqs. (14), (15) become:

\[
\begin{align*}
J^* + K \left(\frac{a}{c} - f^* \right) + (1 - \phi)^{1/2} \left[1 - \phi + \phi (pC_P) \right] \left[\theta^* - \theta \right] = 0 \\
(26)
\end{align*}
\]

and the corresponding boundary conditions (17) become:

\[
\begin{align*}
f^* &= 1, \quad f = S, \quad \theta = 1 \quad \text{at} \quad \eta = 0 \\
f^* \rightarrow a / c, \quad \theta \rightarrow 0 \quad \text{as} \quad \eta \rightarrow \infty \\
(28)
\end{align*}
\]
where primes denotes the differentiation with respect to η. It should be observed that for a regular fluid ($\phi = 0$) and non porous medium ($K = 0$), non permeable surface ($S = 0$), absence of heat generation/absorption ($\lambda = 0$) and absence of radiation ($Nr = 0$), Eqs. (26) and (27) reduces to Eqs. (12) and (20) from the paper by Mahapatra and Gupth (2002).

The quantities of practical interest in this study are the skin friction or the shear stress coefficient C_f and the local Nusselt number Nu_x, which are defined as:

$$C_f = \frac{2 \mu_0}{\rho u_0^2} \left(\frac{\partial \bar{u}}{\partial \eta} \right)_{\eta = 0}, \quad Nu_x = \frac{\nu}{k} \left(\frac{\partial T}{\partial \eta} \right)_{\eta = 0}$$

Using Eqs. (9), (25) and (29), the skin friction coefficient and local Nusselt number can be expressed as

$$Re_{\infty}^{1/2} C_f = \frac{2}{(1-\phi)^2} f'(0), \quad Re_{\infty}^{1/2} Nu_x = \frac{k_x L}{k} \theta(0)$$

Table 2 Comparison results for $-\theta'(0)$ when $\lambda = \phi = S = a/c = K = Nr = 0$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.0656</td>
<td>0.0663</td>
<td>0.0656</td>
<td>0.06576</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1691</td>
<td>0.1691</td>
<td>0.1690</td>
<td>0.16952</td>
</tr>
<tr>
<td>0.7</td>
<td>0.4539</td>
<td>0.4539</td>
<td>0.4539</td>
<td>0.45392</td>
</tr>
<tr>
<td>2</td>
<td>0.9114</td>
<td>0.9113</td>
<td>0.9113</td>
<td>0.91136</td>
</tr>
<tr>
<td>7</td>
<td>1.8954</td>
<td>1.8954</td>
<td>1.8954</td>
<td>1.89540</td>
</tr>
<tr>
<td>20</td>
<td>3.3539</td>
<td>3.3539</td>
<td>3.39350</td>
<td>3.3590</td>
</tr>
<tr>
<td>70</td>
<td>6.46221</td>
<td>6.4621</td>
<td>6.46220</td>
<td>6.46220</td>
</tr>
</tbody>
</table>

Table 3 Comparison results for $f'(0)$ when $\lambda = \phi = S = Nr = 0, Pr = 0.05$

<table>
<thead>
<tr>
<th>K</th>
<th>$a/c = 2$</th>
<th>$a/c = 3$</th>
<th>Present results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.9991</td>
<td>1.9907</td>
<td>1.99817</td>
</tr>
<tr>
<td>0.1</td>
<td>2.0101</td>
<td>2.01021</td>
<td>2.01212</td>
</tr>
<tr>
<td>0.5</td>
<td>2.1102</td>
<td>2.11021</td>
<td>2.11302</td>
</tr>
<tr>
<td>1.0</td>
<td>2.3905</td>
<td>2.39018</td>
<td>2.39018</td>
</tr>
<tr>
<td>1.5</td>
<td>2.7201</td>
<td>2.72011</td>
<td>2.72012</td>
</tr>
<tr>
<td>2.0</td>
<td>3.1511</td>
<td>3.15120</td>
<td>3.15112</td>
</tr>
</tbody>
</table>

where $Re_{\infty} = \bar{u}_0(\bar{x}) \bar{x} / \nu$ is the local Reynolds number based on the stretching velocity $\bar{u}_0(\bar{x})$. The quantities $Re_{\infty}^{1/2} C_f$ and $Re_{\infty}^{1/2} Nu_x$ are referred as the reduced skin friction coefficient and reduced local Nusselt number as in Khan and Pop (2010).

4. RESULTS AND DISCUSSION

The non linear ordinary differential equations (26) and (27) subject to the boundary conditions (28) have been solved numerically by using the Runge-Kutta fourth order method along with shooting technique. In order to validate the present results obtained by using the shooting technique, the present results are compared with that of Layek et al. (2007), Wang (1989), Khan and Pop (2010) and Hamad and Pop (2011) which are based on fourth order classical Runge-Kutta method, Runge-Kutta Fehlberg algorithm and Implicit Finite Difference method for appropriate reduced cases, and found that there is an excellent agreement (Tables 2, 3 and 4).
Table 4 Comparison results for \(\varphi'(0) \) when \(\lambda = \phi = S = Nr = 0 \)

<table>
<thead>
<tr>
<th>(a/c)</th>
<th>(\text{Pr} = 1.0)</th>
<th>(\text{Pr} = 1.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.603</td>
<td>0.6072</td>
</tr>
<tr>
<td>0.2</td>
<td>0.625</td>
<td>0.6216</td>
</tr>
<tr>
<td>0.5</td>
<td>0.692</td>
<td>0.6937</td>
</tr>
<tr>
<td>1.0</td>
<td>0.796</td>
<td>0.8001</td>
</tr>
<tr>
<td>2.0</td>
<td>0.974</td>
<td>0.9788</td>
</tr>
<tr>
<td>3.0</td>
<td>1.124</td>
<td>1.1221</td>
</tr>
</tbody>
</table>

In order to bring out the salient features of the flow and the heat transfer characteristics, the numerical values for different values of the governing parameters \(\phi, S, \text{Pr}, Nr, \lambda, a/c \) and \(K_1 \) are plotted in Figs. 2 - 13. It is interesting to note that, no boundary layer is formed when \(a/c = 1 \).

Figures 2(a) and (b) represents the velocity \(f'(\eta) \) for some values of the Cu-nanoparticle volume fraction parameter and for the values of \(a/c \) (= 0.1 and 2) when \(K_j = 0.1, S = 0.1, \lambda = 0.1, \) and \(\text{Pr} = 6.8 \) (water). It is found that the momentum boundary layer thickness decreases with an increase in \(\phi \), when \(a/c > 1 \), which implies an increase in straining motion near the stagnation-point region. Due to this reason the acceleration of the external stream is increased and this leads to thinning of the momentum boundary layer. Therefore, the existence of a nanofluid leads to a more thinning of the boundary layer. On the other hand, the flow has an inverted boundary layer structure for \(a/c < 1 \).

Figures 3(a) and (b) depict the effect of the suction/injection parameter \(S \) (< 0 for injection and > 0 for suction) for Cu-water on the velocity for two different values of \(a/c \) (= 2 and 0.1), when \(K_1 = 0.1 \) and \(\lambda = 0.1 \). It is seen that for \(a/c = 0.1 \), the effect of suction is to decrease the velocity, whereas the effect of injection is to increase the velocity. It is clear that the presence of the nanoparticles reduces the value of the velocity in both the cases of suction and injection. For \(a/c = 2 \), an opposite behavior is noticed.

Fig. 2. Velocity profiles for different values of \(\phi \) (a) when \(a/c = 0.1 \); (b) when \(a/c = 2 \)

Fig. 3. Velocity profiles for different values of \(S \) (a) when \(a/c = 0.1 \); (b) when \(a/c = 2 \)

The effect of Prandtl number on the velocity for both copper-water nanofluid (\(\text{Pr} = 2.37 \)) and alumina-water nanofluid (\(\text{Pr} = 6.38 \)) is shown in Fig. 4. It is noticed that the velocity decreases as the Prandtl number increases, which shows that the velocity is higher for copper-water nanofluid than that of alumina-water nanofluid. The graphical representations of the temperature \(\theta(\eta) \) for different values of the Cu-nanoparticle volume fraction parameter and for the values of \(a/c \) (= 0.1 and 2)
when $K_T = 0.1$, $S = 0.1$, $\lambda = 0.1$, and $Pr = 6.8$ (water) is shown in Fig. 5.

Figure 5 shows the effect of the heat generation/absorption parameter λ (< 0 for absorption and > 0 for generation) for Cu-water on the temperature for two different values of $a/c = 2$ and $a/c = 0.1$, when $K_T = 0.1$, $S = 0.1$, and $\lambda = 0.1$. It is clear that the thermal boundary layer thickness for the generation case is greater than for absorption and it is much higher for Cu-water than for pure water (regular fluid, $\phi = 0$). The effect of Prandtl number on the temperature for both copper-water nanofluid ($Pr = 2.37$) and alumina-water nanofluid ($Pr = 6.38$) is shown in Fig. 9. It is noticed that the temperature decreases as the Prandtl number increases, which shows that the temperature is higher for copper-water nanofluid than that of alumina-water nanofluid.

Figures 6 - 13 show the variation of the skin friction (shear stress) and the local Nusselt number (heat transfer rate) versus the permeability parameter K_T. It is seen from Fig. 10 that the skin friction increases with the increase of ϕ for both the cases $a/c < 1$ and $a/c > 1$. One can also see that the skin friction coefficient increases with the increase of K_T. However, it is noted from Fig. 11 that the local Nusselt number (or heat transfer rate) increases with the increase of ϕ in both the cases $a/c < 1$ and $a/c > 1$. It is found that the heat transfer rate for $a/c > 1$ is greater than that of for $a/c < 1$. Further, it is clear from Figs. 12 and 13 that both the skin friction coefficient and the local Nusselt number are greater in the case of suction than in the case of blowing. For fixed values of S and K_T, the values of the skin friction and Nusselt number for Cu-water are greater than for pure water ($\phi = 0$).

Also, it is observed that the skin friction increases while the Nusselt number decreases with the...
increase of K_1, in both Cu-water and pure water ($\phi = 0$) cases.

Fig. 8. Temperature profiles for different values of λ

Fig. 9. Temperature profiles of copper water and alumina water nanofluid

Fig. 10. Variation of the skin friction coefficient with K_1 for various ϕ

Fig. 11. Variation of local Nusselt number with K_1 for various ϕ

5. CONCLUSIONS

The problem of two-dimensional laminar-forced convection flow over a permeable stretching surface in a porous medium saturated by a nanofluid in the presence of thermal radiation, has been studied theoretically. The model used for the nanofluid is that proposed by Tiwari and Das (2007) and very successfully used recently by several researchers. The present model finds applications in industrial cooling that could result in great energy savings and resulting emissions reductions. A set of similarity solutions is presented using Lie-group analysis. Generally in a similarity transformation, the assumed similarity variables are considered, but by using Lie-group analysis, the similarity variables can be derived directly based on the boundary conditions of the problem. The effects of the nanoparticle volume fraction parameter ϕ, permeability parameter K_1, suction/injection parameter S, heat generation/absorption parameter λ, radiation parameter N_r and the parameter a/c on the velocity and temperature, as well as the skin friction coefficient and the local Nusselt number (surface heat flux) are computed numerically for the case of pure water ($Pr = 6.8$). It is noticed that suction tends to stabilize the boundary layer flow and blowing can reduce the friction drag. Also it is observed that the inclusions of nanoparticles into the base fluid of this problem is capable to change the flow pattern and produces the high thermal conductivity. As it has been mentioned by Muthamiliselvan et al. (2010), the study of nanofluid is still at its developing stage so that it seems difficult to have a precise idea on the way the use of nanoparticles to understand the flow and heat.
transfer characteristics of nanofluids and identify new and unique applications for these fluids.

REFERENCES

