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ABSTRACT 

Thermoconvective instability in multi-component fluids has wide range of applications in heat and mass 
transfer. This paper deals with the theoretical investigation on a horizontal fluid layer of micropolar 
ferromagnetic fluid heated from below and salted from above saturating a porous medium subjected to a 
transverse uniform magnetic field using Brinkman model. The salt is a ferromagnetic salt which modifies the 
magnetic field established. The effect of salinity has been included in the magnetization and density of the 
ferromagnetic fluid. A theory of linear stability analysis and normal mode technique have been carried out to 
analyze the onset of convection for a fluid layer contained between two free boundaries for which exact 
solution is obtained and the stationary and oscillatory instabilities have been carried out for various physical 
quantities. The results are depicted graphically and the stabilizing and destabilizing behaviors are studied. 
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NOMENCLATURE 

a particle radius (m) 
B magnetic induction (T) 
Cv,H effective heat capacity at constant volume 

and magnetic field (kJ/m3K) 
Cs specific heat of solid (porous matrix) 
 material 
d thickness of the fluid layer (m)   
D/Dt convective derivative 

( / / . )D Dt t q    
  (s1) 

g gravitational acceleration (0, 0, -g) (ms-2)   
H magnetic field (amp/m)    
k permeability of the porous medium (m2) 
K1 thermal diffusivity (W/mK)        
Ks concentration diffusivity (W/mkg)

k0 Resultant wave number 2 2
0 x yk k k   

 
m-1

kx, ky Wave number in the x and y direction (m-1) 

K pyromagnetic coefficient 
0 0,( ( M/ ) )H TT    

(amp/mK)       
K1 thermal conductivity (W/mK) 

K2 salinity magnetic coefficient  0 0,( M / )H TS  

(amp/m kg)        
M magnetization (Ampm-1)
M0 mean value of the magnetization at H = H0  
 and T = T0. 
P hydrodynamic pressure (N/m2) 
q velocity of the ferrofluid (u, v, w) (ms-1) 
S solute concentration (kg) 
Ta average temperature of the lower and upper 

surfaces of fluid layer (K) 

Sa average salinity of the lower and upper 
surfaces of fluid layer (kg) 

T temperature (K) 

t  coefficient of thermal expansion (K-1) 

s  analogous solvent coefficient of 

expansion (K-1) 

t  uniform temperature gradient (Km-1) 

s  uniform concentration gradient (kgm-1) 

  shear kinematic viscosity coefficient 

  coupling viscosity coefficient or vortex 
 viscosity 

'  bulk spin viscosity coefficient 
'  shear spin viscosity coefficient 

  micropolar heat conduction coefficient 
I moment of inertia 

0  magnetic permeability of vacuum 

  dynamic viscosity (kgm-1s-2)  

 kinematic viscosity of a fluid (m2/s)
 perturbation in temperature (K)

0  mean density of the clean fluid (kgm-3)

  density of the fluid (kgm-3)
  growth rate (s-1)
 magnetic scalar potential (Amp)
  viscous dissipation factor containing

second order terms in velocity
  magnetic susceptibility

0 0,( ( M / ) )H TH  
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t time (s) 
 
 
 

  vector differential operator    
ω  microrotation 

 

1. INTRODUCTION  

One of the most important features of colloidal 
suspension of magnetic nanoparticles, known as 
ferrofluids, is the relative change of their viscosity 
with changing magnetic field. Magnetic fluid has 
been used in a wide variety of applications for 
many years by NASA in 1960s for controlling 
liquids in space, damping system, ball bearings, 
avionics and lubrications. Such types of fluids have 
several applications like mechanical engineering, 
analytical instrumentation, heat transfer, electronic 
devices, aerospace, etc and are widely used in 
rotating X-ray tubes and sealing of computer hard 
disk drives. These are used as lubricants in bearing 
and dumpers. In biomedicine field, there is an idea 
to use ferrofluids for cancer treatment by heating 
the tumor soaked in ferrofluids by means of an 
alternating magnetic field. 
 
Micropolar fluids are fluids with internal structures 
in which coupling between the spin of each particle 
and the macroscopic velocity field. Physically, they 
represent fluids consisting of randomly oriented 
particles suspended in a viscous medium, and they 
are important to engineers and scientists working 
with hydrodynamic fluid problems and phenomena. 
A general theory of micropolar fluids has been 
presented by Eringen (1964, 1980). Eringen (1966) 
introduced the theory of Micropolar fluid in order to 
describe some physical systems which do not 
satisfy the Navier–Stokes equations. The equations 
governing the micropolar fluid involve a spin vector 
and microinertia tensor in addition to the velocity 
vector. This theory is used to explain the flow of 
colloidal fluids, animal bloods and so on. Kazakia 
and Ariman (1971) and Eringen (1972) have 
developed the generalization of the theory of 
micropolar fluid including thermal effects. 
  
The study of fluid flow through a porous medium is 
of considerable interest due to its natural occurrence 
and importance in many problems of engineering 
and technology like porous bearing, porous layer 
insulation consisting of solid and pores, porous 
rollers, etc. Additionally, these fluid flows are 
applicable to bio-mathematics particularly in the 
study of blood flow in lungs, arteries, cartilage, etc. 
The stability flow of a fluid through a porous 
medium taking into account the Darcy resistance 
was considered by Lapwood (1948) and Wooding 
(1960).  
 
The study about a fluid heated from below in a 
porous medium is motivated both theoretically and 
also in engineering applications. An authoritative 
introduction to excellent reviews of convection of 
ferrofluid has been discussed in monograph by 
Rosensweig (1985) and the study of the effect of 
magnetization yields interesting information. 
Usually, this magnetization is a function of 
magnetic field, temperature and density of the fluid. 

This in presence of a gradient of magnetic field 
gives convection in ferromagnetic fluids which is 
known as ferroconvection and is similar to Bénard 
convection in ordinary fluids (Chandrasekhar 
(1961)). Convective instability of a ferromagnetic 
fluid for a fluid layer heated from below in the 
presence of uniform vertical magnetic field has 
been considered by Finlayson (1970). Further, 
Vaidyanathan et al. (1991) gave the convective 
instability of ferrofluid through a porous medium of 
large permeability and mentioned that stationary 
convection can occur and oscillatory convection 
cannot occur by use of Brinkman number. This 
work has been extended to an anisotropic porous 
medium by Sekar et al. (1996) and Vaidyanathan et 
al. (2002) modified the above work with use of 
Darcy model.  
 
The interesting situation arises from both a 
geophysical and a mathematical point of view when 
the layer is simultaneously heated from below and 
salted from above. The buoyancy force can arise 
not only from density difference due to variations in 
temperature but also those due to variations in 
solute concentration. Double diffusive convection 
in fluid in a porous media is also of interest in 
geophysical system, electrochemistry, chemical 
technology, ground water hydrology, biomechanics, 
soil science and astrophysics. The thermohaline 
convection (double diffusive convection) in a layer 
of fluid heated from below and subjected to a stable 
salinity gradient has been investigated by Veronis 
(1965). The survey of double diffusive convection 
in a porous medium given in third edition of Nield 
and Bejan (2006) and the double diffusive 
instability that occurs when a solution of a slowly 
diffusing protein in layered over a denser solution 
of more rapidly diffusing sucrose has been 
explained by Brakke (1955). Vaidyanathan et al. 
(1995, 1997) illustrated ferro thermohaline 
convection in the presence and absence of a porous 
medium of sparse distribution of a two component 
ferroconvective system.   
 
Micropolar ferromagnetic fluid saturating a porous 
medium subjected to a transverse uniform magnetic 
field has been analysed by Sunil and Pavan Kumar 
Bharti (2006). The thermosolutal convection of 
micropolar fluids in Hydromagnetics in a porous 
medium has been studied by V. Sharma and S. 
Sharma (2000) and they found that Rayleigh 
number increases with magnetic field and solute 
parameter. Sunil et al. (2004, 2005) have studied 
thermosolutal convection in a ferromagnetic fluid in 
the presence and absence of porous medium and 
double diffusive convection in a micropolar 
ferromagnetic fluid in a porous and non-porous 
medium have been analyzed by Sunil et al. (2007, 
2007a). Here, they investigated that the stabilizing 
effect of stable solute gradient. Ryskin et al. (2003) 
attempted to study Soret-driven convection in 
ferrofluids using nonlinear analysis. Vaidyanathan 
et al. (2005) and Sekar et al. (2013) attempted to 
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study the Soret effect due to thermoconvective 
instability in a ferrofluid by use of Brinkman and 
Darcy models and Sekar et al. (2006) further 
studied the analysis to the condition of a porous 
medium of ferroconvective instability of multi-
component fluid heated from below and salted from 
above using Brinkman model. Very more recently, 
the presence and absence of magnetic field 
dependent viscosity and rotation on Soret-driven 
ferrothermohaline convection in an anisotropic 
porous medium have studied by Sekar and Raju 
(2013) and Sekar et al. (2013a). The effect of 
rotation on Soret driven ferro thermoconvective 
instability in the presence of an anisotropic porous 
medium with uniform magnetic field has analyzed 
by Sekar et al. (2013b) and temperature dependent 
viscosity is studied on ferrothermohaline 
convection with Soret effect in a porous medium by 
Sekar and Raju (2014). Sekar and Raju (2014a) 
analyzed the effect of magnetic field dependent 
viscosity on Soret driven ferrothermohaline 
convection in an anisotropic porous medium. 
     
Keeping in mind the importance of ferromagnetic 
fluids in different field of applications and in view 
of the above analyses, we intend to extend our 
investigation to the problem of thermohaline 
convection in Eringen’s micropolar fluid saturating 
a Brinkman porous medium with uniform magnetic 
field. The linear stability analysis is carried out to 
study the onset of ferroconvection both by 
stationary as well as oscillatory instabilities. It is 
attempted to study the effect of salinity gradient on 
micropolar ferromagnetic fluid heated from below 
and salted from above in the presence of a porous 
medium of large permeability. The understanding 
of these micropolar ferromagnetic fluid stability 
problems plays an important role in microgravity 
environmental applications. 

2. MATHEMATICAL FORMULATION OF 

PROBLEM  

An infinite horizontal layer of thickness ‘d’ of an 
electrically non-conducting incompressible thin 
micropolar ferromagnetic fluid heated from below 
and salted from above saturating a porous podium is 
considered. The temperature and salinity at the 

bottom and top surfaces / 2z d are 0 ( ) / 2T T   

and 0 ( ) / 2,S S  respectively and a uniform 

temperature gradient ( | / |)t dT dz   and a uniform 

salinity gradient ( | / |)s dS dz   are maintained (see 
Fig.1). The temperature gradient thus maintained is 
qualified as adverse since, on the account of 
thermal expansion, the fluid at the bottom will be 
lighter than the fluid at the top and this is a top-
heavy arrangement, which is potentially unstable. 
On the other hand, the heavier salt at the upper part 
of the layer has exactly the opposite effect and this 
acts to prevent motion through convection 
overturning. Thus, these two physical effects are 
competing against each other. Here both the 
boundaries are taken to be free and perfect 
conductors of heat and salt. The gravity field g = (0, 
0, -g) and uniform vertical magnetic field intensity 

H = (0, 0, H0) pervade the system. The fluid layer is 
assumed to be flowing through an isotropic and 
homogeneous porous medium of porosity   and 
medium permeability k. The angular velocity field 
of rotation of particles is introduced. 
Correspondingly, only one (vector) equation is 
added-it represents the conservation of the angular 
momentum. 
 

 
Fig. 1. Geometrical configuration. 

 
2.1 Basic Equations  

The continuity equation for an incompressible fluid 
is  

. 0 q                                                                 (1) 
The momentum and internal angular momentum 
equations for a Brinkman model are  

 

       

0

2

1
.

1 1
. 2

p
t

k

 
 

    


        

        

q q g

HB q ω q  

                                                                               

(2) 

   

   

0

2

0
1 1

. 2 2

' ' . '

I
t

  
 

  

                 
      

q ω q ω M H

ω ω   

                                                                               

(3) 

The temperature equation for an incompressible 
micropolar ferromagnetic fluid is 

 

0 ,
,

0
,

2
1

.

(1 ) .

.

v H o
v H

s s
v H

DT
C

T Dt

T D
C T

t T Dt

K T T

 

  

 

         


                
      


M
H

M H

ω

            (4) 

The mass flux equation is given by  

  2
0 / . St S K S      q                                        (5) 

The partial derivatives of M are material properties 
which can be evaluated once the magnetic equation 
of state, such as (9), is known. There are many 
situations of practical occurrence in which the basic 
equations can be simplified considerably. These 
situations occur when variability in the density and 
in the various coefficients is due to variations in the 
temperature not exceeding 10o (say), the variation 
of the small amount can be ignored. But there is an 
important exception that the variability of   in the 
gravitational body force term in the equation of the 
motion cannot be ignored, so we may treat   as a 
constant in all terms in the equation of motion 



R. Sekar and K. Raju / JAFM, Vol. 8, No. 4, pp. 899-910, 2015.  
 

902 

except the one in the external force. Thus, in 
writing Eq. (2), we use the Boussinesq 
approximation by allowing the density to change 
only in the gravitation body force term. 
 
 A porous medium of large permeability allows us 
to use the Brinkman model. For a medium of very 
small stable particle suspension, the permeability 
tends to be more justifying the use of Brinkman 
model. This is because the viscous drag force is 
necessarily important.  
 
Also, the Darcy’s law governs the flow of 
ferromagnetic fluid through an isotropic and 
homogeneous porous medium. However, to be 
mathematically compatible and physically 
consistent with Navier – Stokes equations, 
Brinkman (1947) heuristically proposed the 
introduction of the term 2( / )   q  (now known as 
the Brinkman term) in addition to the Darcian term 
( / ) .k q  So that, we considered a term 2( / )   q   
in Eq. (2) and also the additional term pertinent to a 
ferromagnetic fluid is the magnetic stress, which 
was derived by Landau and Lifshitz (1960) and 
Cowley and Rosensweig (1967). 
 
When the permeability of the porous medium is 
large, then the internal force becomes relatively 
significance as compared with the viscous drag 
when flow is considered. Therefore, Brinkman 
model is proposed heuristically to govern the flow 
of this micropolar ferromagnetic fluid saturating a 
porous medium. Furthermore, Eq. (5) is considered 
for the system is getting salt from the above. 
 
Maxwell’s equations, simplified for a non-
conducting fluid with no displacement currents, 
become 

. 0, B  0  H                            (6a, b) 

Further B and H are related by  

 0 B M H                                  (7) 

Using Maxwell’s equation for non-conducting 
fluids (Sekar et al. (2013a, 2013b)), one can assume 
that the magnetization is aligned with the magnetic 
field and depends on the magnitude of the magnetic 
field, temperature and salinity, so that  

= ( , , ).M H T S
H

H
M                   (8) 

The magnetic equation of state is linearized about 
the magnetic field 0H , the average temperature Ta  
and the average salinity Sa  to become   

0 0 00 2(H ) ( ) ( )M M H K T T K S S            (9) 

The density equation of state for a two-component 
fluid is  

0[1 ( ) ( )]a aSt T T S S                         (10) 
 

2.2 Basic State 

The basic state is assumed to be quiescent state. The 
basic state quantities are obtained by substituting 
velocity of quiescent state in Eqs. (2)-(5).  The 
basic state quantities obtained are 

0 0

0

2
0

2
0 0 0 0

 (0, 0, 0), (0, 0, 0),

, ,

( ) [1 ], ( ),

( ) ,
1 1

( ) ,
1 1

b b

b b S

S S b

S
b

extS
b

T T z S S z

z z z p p z

K z K z
z H

K z K z
z M M H H

t

t t

t

t

 
     

 
 

 
 

   

   

   

 
     
 

       

q q ω ω

H k

M k

                                                                             (11) 
 
2.3   Perturbed State and Equations 

A small thermal perturbation has been imparted on 
all the dynamical variables. Let the components of 
perturbed magnetization and magnetic field can 

taken as 1 2 0 3[ , , ( ) ]' ' 'M M M z M  and 

1 2 0 3[ , , ( ) ],' ' 'H H H z H
 respectively. The perturbed 

physical quantities are  

', ', ',

( ) ', (z) , (z) ,

( ) ', ( ) '

'
b b b

b b b

b b

p p z p T T S S S

z z

  


    


      
    

q = q + q ω ω ω

H H H M M M

  (12) 

where 1 2 3( , , ), ' ( , , ), ', ', ',u v w p   q' ω H M   

and 'S  are perturbations in velocity q, spin 
(microrotation) ,ω  magnetic field intensity H, 
magnetization M, pressure p, temperature T and 
salinity S. The change in density ',  caused mainly 

by the perturbations   and 'S in temperature and 
salinity, respectively, is given by  

0' ( ')t sS                                     (13) 

Therefore using linear theory and assuming 

0(1 )K d Ht    and 2 0(1 )SK d H   , one 

gets          
 

0 0

3 3 3 2

1 ( / ) ( 1, 2)

(1 )

' ' '

' ' '

H M M H H i

H M H K S K

i i i

 

      

     

 
                                                                             (14) 
If B denotes the components 1 2 3( , , ),B B B  then sing 

Eqs. (7) and (13) become 

 
0 0 0

3 0 0 0 0 3 0 2 0

1 ( / ) , ( 1, 2)

( ) (1 )

' '

' '

B M H H i

B M H H K S K

i i

     

     

      

                                                              (15) 
Using Eq. (6b), one get ' ' H , where '  is a 
magnetic scalar potential and H' has the 

components 1 2 3( , , ).' ' 'H H H  Further investigation has 

been carried out using the analyses similar to Sekar 
et al. (2013a, 2013b) and Vaidyanathan et al. 
(2005). The linearized perturbation equation of the 
magnetized ferrofluid become     
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R. Sekar and K. Raju / JAFM, Vol. 8, No. 4, pp. 899-910, 2015.  
 

903 

   

2

2
2

0
0 0 0( )

1 1
2

'v p H
M H

t y z

v v
k






    


          


       
'

             (17)

  

   

3
3

2
20

2 3

2
2 2

2
3

0
0 0 0 0

0
0

0 0
0 0

( )

1 1

1 1

1 1
2

' '

'
'

'
'

S

s S

Hw p
M H K H

t z z

KK SK
K H

KK K S
g g S

w w
k

t

tt

t t


  



   
 

 

    
    

 

    


      
  



    


   
 

       

'

 

                                                 (18) 

0
u v w

x y z

  
  

  
                                              (19) 

'
2 ' 2 '3

0 3 3

1
2 2 'I w

t
  


               

             (20) 

2
1 0 0 1 3

2 2
0 0 0 2 0

2 1 1

t

t S
t

C K T K
t t z

K T K K T
C w

     

   
 

 

             
                    

'

  

                                                                             (21) 

2 's S

S
w K S

t


  


                               (22) 

where 
2 2 2 2 2 2 2 2 2
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2 0 , 0 2 0.v HC C K H     

3. NORMAL MODE ANALYSIS METHOD  

Analyzing the disturbance into normal modes, we 
assume that the perturbation quantities are of the 
form  

( , , , ) ( , ) exp[ ]x yf x y z t f z t i k x i k y                (23) 

where ( , )f z t  represents ( , ), ( , ), ( , )w z t z t z t   and 
( , ).S z t  

The vertical component of the momentum equation 
can be written as  
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From Eq. (3) after doing mathematical 
manipulation, we get  
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The modified Fourier heat conduction equation is  
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                                                                  (26)  
The Salinity equation is  

2
2
02

'S S
S

w K k S
t z


              

                           (27) 

Using the analysis similar to Sekar et al. [29], one 
gets 
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Following the analyses Sekar et al. (2013a, 2013b) 
and Vaidyanathan et al. (2005), the equations in 
non-dimensional form can be written using  
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Then the Eqs. (24)–(28) become 
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where the non-dimensional parameters used are  
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                                             (35) 

4. LINEAR STABILITY THEORY 

In this section we predict the thresholds of both 
stationary and oscillatory convections using linear 
theory. The boundary conditions on velocity, 
temperature, salinity and angular momentum are   
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The exact solutions satisfying above Eq. (36) are  
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where A, B, C, E, and F are constants. Using Eq. 
(36) in Eqs. (30)–(34), we get 
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The determinant of the co-efficient of A, B, C, E 
and F in Eqs. (38)–(42) must vanish for the 
existence of non-trivial Eigen functions. The 
techniques and analyses of Finlayson (1970) and 
Vaidyanathan et al. (1991), Eqs. (38)–(42) have 
been adopted to obtain  
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4.1 Stationary State 

For the validity of principle of exchange of 
stabilities (i.e. steady case), we have 0    at the 
margin of stability. Then Eq. (43) helps one to 
obtain Eigen value Rsc for which solution exists. 
Therefore the critical magnetic Rayleigh number Rsc 
have been calculated  
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Here a is a critical wave number denoted as ac. The 
classical results in respect of ferromagnetic fluids 
can be obtained as the limiting case of present 
study. 

Setting '
1 31, 0, 1N N     and 5 0N '  in Eq. 

(45), we get 
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(46) 
which is the expression for the critical thermal 
Rayleigh number of ferrothermohaline convection 
in a porous medium  for multi-component fluid 
(Vaidyanathan et al. (1995)).  
Further in the case of single component system, 
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This has exactly given by Vaidyanathan et al. 
(1991). Further when 1/k = 0, ie., in the absence of 
porous medium, Eq. (47) gives the Finlayson 
(1970). 
 
4.2 Oscillatory State 

The conditions for the onset of oscillatory stabilities 
are obtained as follows. We put 1 1( 0)i     
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In the next section we perform the results and 
discussion and many physical parameters have been 
studied. 

5. RESULTS AND DISCUSSION  

Brinkman model is made on the effect of linearity 
on thermoconvective instability in a micropolar 
ferromagnetic fluid with uniform angular velocity 
heated from below and salted from above has been 
analyzed. A linear stability analysis is carried out as 
perturbations are small and normal mode technique 
is applied. The conditions for both stationary and 
oscillatory modes have been calculated and a 
discussion of the results depicted by figures.  
 
Before we investigate the effect of different 
parameters, we first make some physical comments 
on various parameters like buoyancy magnetization 
parameter M1 is taken to be 1000 (Sekar et al. 
2013a) and the value of M2 is assumed to be zero 
(Finlayson 1970) for these types of fluids. The non-
buoyancy magnetization parameter M3 is allowed to 
vary from 5 to 25, because this parameter cannot 
take a value less than one (Vaidyanathan et al. 
2005). The range of permeability of the porous 
medium k is varied from 0.1 to 0.9 (Sekar et al. 
2013a). The ratio of mass transport to the heat 
transport  is taken as 0.05 (0.02) 0.11 and the 
Prandtl number Pr is assumed to be 0.01 (Sekar et 
al. 2013a). The salinity Rayleigh number Rs is taken 
values from  -500 to 500 and magnetization 
parameters M4  and M6 are assumed to be 0.1 and 
M5 = 0.5. Further, the coupling parameter N1 
(coupling between vorticity and spin effects), spin 
diffusion parameter 3 'N  and micropolar heat 

conduction parameter 5 'N (coupling between spin 

and heat flux) are arising some comments due to the 
suspended particles. Assuming the Clausius-Duhem 
inequality, Eringen (1964) presented certain 
thermodynamic restrictions which lead to non- 
negativeness of of N1, 3 'N  and 5 '.N  It is obvious 

the couple stress comes into play at small values of 

3 '.N  This supports the condition that (Sunil et al. 

2007) and that 3 'N  is small positive real number 

(Sunil et al. 2007a) and the micropolar heat 
conduction parameter 5 'N

 
has to be finite because 

the increasing of concentration has to practically 
stop somewhere and hence it has to be a positive 
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finite number. This typical order of magnitudes on 
N1, 3 'N  and 5 'N

 
mentioned above applies to fluid 

system encountered in material processing under 
microgravity in space.   
 

Fig. 2 (a) represents the plot of critical thermal 
magnetic Rayleigh number Nsc versus the medium 
permeability k for various values of non-buoyancy 
magnetization parameter M3 in the presence and 
absence of a coupling parameter N1. This shows 
that the non-buoyancy magnetization and medium 
permeability have a destabilizing behavior. In order 
to investigate our results, we must review the 
results and its physical explanation. When the fluid 
layer is assumed to be flowing through 
homogeneous and an isotropic porous medium, then 
the medium permeability has a destabilizing 
behavior. This is because, as medium permeability 
increases, the void space increases and as result of 
this, the flow quantities perpendicular to the planes 
will clearly be increased. Thus, increase in heat 
transfer is responsible for early onset of convection. 
 

Fig. 2 (b) gives the critical thermal magnetic 
Rayleigh number Nsc variation with respect to the 
ratio of mass transport to heat transport ,  indicate 
the system destabilizes as the non-buoyancy 
magnetization parameter M3 increases. This is 
indicated by a decrease in Nsc. This is because 
variation in magnetization releases extra energy 
which adds up to thermal energy to destabilize the 
system. 
 

In Fig. 2 (c), the variation of critical thermal 
magnetic Rayleigh number Nsc versus the salinity 
Rayleigh number RS for different values of k and 
presence and absence of coupling parameter N1 is 
analyzed. It is obvious from the Fig. 2 (c) that 
salinity Rayleigh number RS has a destabilizing 
effect on the system. This is indicated by a decrease 
in Nsc. In the presence of coupling parameter N1 (= 
0.2), system gets heavy energy but in the absence of 
coupling parameter N1    (= 0), system gets low 
energy. However, the critical magnetic thermal 
Rayleigh number Nsc converges to zero when the 
value of RS is 500. In other words, the system has a 
null effect. 
 

Figs. 3 (a) – (c) show the variations of critical 
magnetic thermal Rayleigh number Nsc with respect 

to the micropolar heat conduction parameter 5N'  for 

different values of porous medium k with non-
buoyancy magnetization parameter M3, salinity 
Rayleigh number RS and the ratio of mass transport 
to heat transport , respectively. 

It is observed from the Fig. 3 (a) that when 5N'
 
is 

increases, the heat induced into the fluid due to 
microelements is also increased, thus inducing the 
heat transfer from the bottom to the top. The 
decrease in heat transfer is responsible for delaying 
the onset of convection. Thus increasing of 5 'N  

leads to increase in Nsc. Therefore, 5N '
 

have a 

stabilizing flow. An increase in micropolar heat 

conduction parameter 5N'
 
is found to cause large 

stabilization. This can be observed from Fig. 3 (b) 

in which the increase in 5N'  and Nsc. As RS 

increases from -500 to 500, Nsc values tend to 
increase leading to stabilization uniformly in Fig. 3 
(c). This is because adding magnetic salt from 
above it makes the system heavier at the above, 
thereby delays the onset of convection. 
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Figs. 4 (a) – (c) give the variation of critical 
magnetic thermal Rayleigh number Nsc with respect 

to the spin diffusion parameter 3N '  for various 

values of M3, k, RS and .  In these figures, it is 

clear that the spin diffusion parameter 3N '  has a 

destabilizing effect on the system. It shows that the 

spin diffusion parameter 3N ' increases with 

increasing of medium permeability k, non-buoyancy 
magnetization parameter M3, salinity Rayleigh 
number RS and the ratio of mass transport to heat 
transport ,  Nsc decreases. Moreover, we observe 

that as 3N '  increases, the couple stress of the fluid 

increases, which causes the microrotation to 
decrease; rending the system prone to instability. 
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Figs. 5 (a) – (c) represent the plots of critical 
magnetic thermal Rayleigh number Nsc versus 
coupling parameter N1 for various values of 
medium permeability k, salinity Rayleigh number 
RS and the ratio of mass transport to heat transport 
 and increasing value of non-buoyancy 
magnetization parameter M3 from 5 to 25. These 
figures indicate that the coupling parameter N1 has a 
stabilizing behavior.  
 
It is observed from Fig. 5 (a) that Nsc increases with 
increasing value of N1 for the fixed value of non-
buoyancy magnetization parameter M3 = 5. When 
N1 is increases, the concentration of microelements 
also increases, and as a result of this a greater part 
of the energy of the system is consumed by these 
elements in developing twist velocities in the fluid 
and onset of convection is delayed. 
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Moreover, Fig. 5 (b) analyzed for the non-buoyancy 
magnetization parameter M3 = 15 and the 
convective system have a same stabilization effect. 
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and M3 = 15. 
 
Likewise, Fig. 5 (c) investigated for M3 = 25 and the 

system have a same stabilizing effect. However, 
nature of an increasing of non-buoyancy 
magnetization parameter M3 is destabilizing effect 
has been investigated by many authors, 
Vaidyanathan et al. (1995, 1997), Sekar et al. 
(2013a, 2013b). But an introducing of coupling 
parameter N1 on the convective system, the system 
has a stabilizing behavior. 
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From Fig. 6, the cell shape and critical wave 
number ac variation with respect to coupling 
parameter N1 for various ,  indicate that the system 
stabilizes as coupling parameter N1 increases. This 
is indicated by an increase in ac. This trend is seen 
for various values of the ratio of mass transport to 
heat transport .  
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6. CONCLUSION 

The linear stability analysis of thermohaline 
convection in a micropolar ferromagnetic fluid 
layer heated from below and salted from above 
saturating a porous medium subject to transversed 
uniform magnetic field has been considered. In this 
investigation, the simplest boundary condition is 
chosen, namely free-free. Also, the case of two free 
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boundaries is mathematically important because 
one can derive exact solution, whose properties 
guide our analysis. Here we have investigated the 
different parameters like permeability of the porous 
medium k, buoyancy magnetization parameter M1, 
non-buoyancy magnetization parameter M3, thermal 
Rayleigh number RC, Salinity Rayleigh number RS, 
coupling parameter (coupling between voritcity and 
spin effects) N1, spin diffusion 3 ',N  micropolar 

heat conduction parameter 5 ',N  ratio of mass 

transport to heat transport   and magnetic numbers 
M4, M5 and M6 on the onset of convection. 
 
The critical magnetic thermal Rayleigh number for 
the onset of instability is depicted graphically for 
sufficient large values of buoyancy magnetization 
parameter M1. Further the principle of exchange of 
instability is applied to find out mode of attaining 
instability. 
 
We see in conclusion that convection can encourage 
in a micropolar ferromagnetic fluid by means of 
spatial variation in magnetization, which is induced 
when the magnetization of the fluid depends on 
temperature and salinity, and a uniform temperature 
and salinity gradients are established across the 
layer. This problem represents thermal-salinity-
microrotational-mechanical interaction in a porous 
medium arising through the stress tensor, salinity 
and microrotation. 
 
The destabilizing effect of non-buoyancy 
magnetization, medium permeability and spin 
diffusion parameter and stabilizing effect of 
coupling parameter and micropolar heat conduction 
parameter are discussed in different physical 
situations. We conclude that the magnetization 
parameters, micropolar parameters and salinity 
gradient have a profound influence on the onset of 
convection in a porous medium and coupling 
parameter and micropolar heat conduction 
parameter dominant the system. Because, the non-
buoyancy magnetization parameter has a 
destabilizing effect in some of analyses Sekar et al. 
(2006, 2013, 2013a, 2013b) and Vaidyanathan et al. 
(2005), but an introducing of coupling and 
micropolar heat conduction effects on the 
convective system, the system leads stabilizing 
behavior. 
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