Electrothermal Instability in a Porous Medium Layer Saturated by a Dielectric Nanofluid

D. Yadav, J. Lee and H. H. Cho†

School of Mechanical Engineering, Yonsei University, Seoul 120 749, South Korea

†Corresponding Author Email: hhcho@yonsei.ac.kr

(Received June 4, 2015; accepted November 8, 2015)

ABSTRACT

The onset of convection in a porous medium saturated by a dielectric nanofluid with vertical AC electric field is investigated. The flux of volume fraction of a nanoparticle with the effect of thermophoresis is taken to be zero on the boundaries and the eigenvalue problem is solved using the Galerkin method. The model used for nanofluid incorporates the combined effect of Brownian diffusion, thermophoresis and electrophoresis, while for porous medium Darcy model is employed. The results show that increase in the AC electric Rayleigh-Darcy number, the Lewis number, the modified diffusivity ratio and the concentration Rayleigh-Darcy number are to hasten the onset of convection. The size of convection cells does not depend on nanofluid parameters, but decreases with increasing the AC electric Rayleigh-Darcy number. The non-existence of oscillatory convection is also obtained.

Keywords: Porous medium; Nanofluids; Electrohydrodynamic instability; Brownian motion and thermophoresis.

NOMENCLATURE

\(a \) dimensionless wave number
\(a_c \) critical wave number
\(c \) specific heat
\(d \) diameter of nanoparticles
\(D_B \) Brownian diffusion coefficient
\(D_T \) thermophoretic diffusion coefficient
\(\bar{E} \) root mean square value of the electric field
\(f_e \) force of electrical origin
\(g \) acceleration due to gravity
\(K \) permeability of the porous medium
\(k_m \) effective thermal conductivity
\(L_e \) Lewis number
\(N_A \) modified diffusivity ratio
\(N_B \) modified specific heat increment
\(p \) pressure
\(\bar{v} \) Darcy velocity
\(R_{D_B} \) thermal Rayleigh-Darcy number
\(R_{D_T} \) critical thermal Rayleigh-Darcy number
\(R_e \) AC electric Rayleigh-Darcy number
\(t \) time
\(T \) temperature
\((x,y,z) \) space co-ordinates
\(\beta \) coefficient of thermal expansion
\(\mu \) viscosity
\(\rho \) density of the nanofluid
\(\rho_0 \) reference density of nanofluid
\(\rho_c \) charge density
\(\rho_p \) density of nanoparticles
\((\alpha) \) heat capacity
\((\alpha)_m \) effective heat capacity
\(\phi \) porosity of the porous medium
\(\varepsilon \) dielectric constant
\(\phi_0 \) reference scale for the nanoparticle fraction
\(\psi \) root mean square value of the electric potential
\(\gamma \) thermal expansion coefficient of dielectric constant
\(\nabla^2_p \) horizontal Laplacian operator
\(\nabla^2 \) Laplacian operator

Superscripts

\('\) perturbed quantities

Subscripts

p particle
b basic state
0 lower boundary
1 upper boundary

1. INTRODUCTION

The term ‘nanofluid’ first coined by Choi (1995) refers to liquid dispersions of submicron solid particles or nanoparticles, whose characteristic dimension is of order of tens or hundreds of nanometers. Nanoparticles used in nanofluid are typically made of oxide ceramics (Al₂O₃, CuO), metal carbides (SiC) or metals (Al, Cu) and base fluids are water, oil, bio-fluids, polymer solutions, other common fluids. The presence of the nanoparticles in the fluid increased the effective thermal conductivity of the fluid and consequently enhanced the heat transfer characteristics. The enhanced thermal properties of nanofluids make them potentially useful in many energetical systems where improved heat transfer or efficient heat dissipation is required such as cooling of micro-electronic components, cooling of nuclear systems, radiators and automatic transmissions etc. There are some review papers that show applications and detail characteristic feature of nanofluids (Wang, 2007; Wong and Leon, 2010; Saidur, 2011). A nanofluid modelling was made by Buongiorno (2006) by considering the effects of Brownian diffusion and thermophoresis. This model was applied to study the onset of convection in a nanofluid layer by Tzou (2006a,b) Nield and Kuznetsov (2009, 2013, 2014), Umavathi et al. (2015), Shivakumara et al. (2011), Rana and Agrawal (2015), Yadav et al. (2013a,b, 2014a, 2015a,b, 2016a,b,c,d,e) and Sheikholeslami et al. (2013, 2015a,b).

Electroconvection in a dielectric fluid saturated porous medium in the presence of an electric field is of particular importance in view of its possibility of reduction of fluid viscosity in enhancing petroleum production and a control possibility of reduction of fluid viscosity in field is of particular importance in view of its porous medium in the presence of an electric field on the criterion for the onset of convection in a nanofluid saturated horizontal layer of porous medium.

2. PROBLEM FORMULATION

We consider an infinite horizontal layer of incompressible dielectric nanofluid-saturated porous layer of thickness \(d\), heated from below. A Cartesian co-ordinate system \((x,y,z)\) is chosen in which \(z\) axis is taken at right angle to the boundaries. The nanofluid is confined between two parallel plates \(z = 0\) and \(z = d\), where the temperatures at the lower and upper boundaries are taken to be \(T_0\) and \(T_1\), respectively, \(T_1\) being greater than \(T_0\). Nanofluid layer is subjected to a uniform vertical AC electric field applied across the layer; lower surface is grounded and upper surface is kept at an alternating potential whose root mean square is \(\psi_1\). For simplicity, Darcy’s law is assumed to hold and the Oberbeck--Boussinesq approximation is employed. Homogeneity and local thermal equilibrium in the porous medium is assumed. According to the works of Nield and Kuznetsov (2009) and Shivakumara et al. (2011), the governing equations under this model are:

\[
V \cdot \vec{v} = 0 ,
\]

\[
0 = -\nabla p - \frac{\mu}{K} \vec{v} + \left[\phi \rho_p + \rho_0 (1 - \phi) \right] \nabla f + \vec{f} ,
\]

\[
\left[\left(\rho \sigma \right)_w \frac{\partial}{\partial t} \left(\rho \vec{v} \right) \right] T = \frac{D_v \nabla^2 \vec{v}}{} + \phi \sigma_v \left(\frac{\partial}{\partial t} \vec{v} \right) \phi ,
\]

\[
\frac{\partial}{\partial t} \left[D_v \nabla \phi \cdot \nabla \vec{v} \phi + \frac{D_v \nabla^2 \vec{v}}{} \right] \phi = D_v \nabla^2 \vec{v} \phi + \frac{D_v \nabla^2 \vec{v}}{} ,
\]

where \(\vec{v} = (u,v,w)\) is the Darcy velocity, \(t\) is the time, \(\phi\) is the porosity of the porous medium,
\(K \) is the permeability of the porous medium, \(\phi \) is the nanoparticles volume fraction, \(p \) is the pressure, \(T \) is the temperature, \(D_B \) is the Brownian diffusion coefficient, \(D_T \) is the thermophoresis diffusion coefficient, \(g \) is the gravitational acceleration, \(\rho_s \) is the density of the particle \((\rho_s) \) is the heat capacity of nanofluid, \((\rho_s)_m \) is the effective heat capacity, \(k_m \) is the effective thermal conductivity, \(\rho_p \) is the density of nanoparticles, \(\rho_0, \mu \) and \(\beta \) are the density, viscosity and thermal volumetric expansion coefficient of nanofluid, respectively and \(\Phi_\ell \) is the force of electrical origin which can be expressed by Landau and Lifshitz (1960) for incompressible nanofluid as

\[
\Phi_\ell = \rho_e \mathbf{E} - \frac{1}{2} (\mathbf{E} \cdot \mathbf{E}) \mathbf{V} = 0. \tag{5}
\]

Here \(\mathbf{E} \) is the root mean square value of the electric field, \(\rho_e \) is the charge density and \(\mathbf{V} \) is the dielectric constant. The first term on the right hand side is the Coulomb force due to a free charge and the second term depends on the gradient of \(\mathbf{V} \). If an AC electric field is applied at a frequency much higher than the reciprocal of the electrical relaxation time, the free charge does not have time to accumulate. Moreover, the electrical relaxation times of most dielectric liquids appear to be sufficiently long to prevent the buildup of free charge at standard power line frequencies. At the same time, dielectric loss at these frequencies is so low that it makes no significant contribution to the temperature field. Under the circumstances, only the force induced by non-uniformity of the dielectric constant is considered. Furthermore, since the second term in the above equation depends on \(\langle \mathbf{E} \cdot \mathbf{E} \rangle \) rather than \(\mathbf{E} \) and the variation of \(\mathbf{E} \) is very rapid, the root mean square value of \(\mathbf{E} \) can be assumed as the effective value. In other words, we can treat the AC electric field as the DC electric field whose strength is equal to the root mean square value of the AC electric field. Assuming the free charge density is negligibly small, the relevant Maxwell equations are (Roberts, 1969):

\[
\nabla \times \mathbf{E} = 0, \tag{6}
\]

\[
\nabla \cdot (\rho_e \mathbf{E}) = 0. \tag{7}
\]

In view of Eq. (6), \(\mathbf{E} \) can be expressed as

\[
\mathbf{E} = -\nabla \psi, \tag{8}
\]

where \(\psi \) is the root mean square value of the electric potential.

The dielectric constant is assumed to be a linear function of temperature in the form

\[
e = e_0 \left[1 - \gamma (T - T_1) \right] = 0. \tag{9}
\]

where \(\gamma \) is the thermal expansion coefficient of dielectric constant and is assumed to be small.

In previous studies of convective instability problems for nanofluids, the volumetric fraction of nanoparticles was prescribed at the boundaries. But it is observed that this type of boundary condition on volume fraction of nanoparticles is physically not realistic because in practice controlling the nanoparticle volume fraction on the boundaries may be difficult. Thus it is advisable to replace the boundary conditions by a set that are more realistic physically. In this paper, we assume that the temperature is constant and nanoparticles flux including the effect of thermophoresis to the nanoparticle flux. In this respect this model is more realistic physically than previous. Thus the boundary conditions are:

\[
at \ z = 0, \ w = 0, T = T_0, D_B \frac{d\phi}{dz} + \frac{D_T \ dT}{T_1} dz = 0 \tag{10a}
\]

\[
at \ z = d, \ w = 0, T = T_1, D_B \frac{d\phi}{dz} + \frac{D_T \ dT}{T_1} dz = 0 \tag{10b}
\]

3. Basic State

The basic state is given as:

\[
\psi = 0, T = T_b (z), \ p = p_b (z), \ \phi = \phi_b (z), \ E = E_b (z). \tag{11}
\]

The solution of the basic state is

\[
T_b = T_0 + \frac{\Delta T}{d} \ z, \ \phi_b = \phi_0 + \left(\frac{D_T \ \Delta T}{D_B \ T_1 d} \right) z, \tag{10b}
\]

\[
E_b = \frac{E_0}{1 + \gamma \Delta T / d} \ k, \tag{10b}
\]

\[
\psi_b (z) = \frac{E_0 d}{\gamma \Delta T} \log \left(1 + \frac{\gamma \Delta T}{d} \right) k, \tag{10b}
\]

\[
e_b = e_0 \left(1 + \frac{\gamma \Delta T}{d} \right) k, \tag{10b}
\]

where subscript \(b \) denote the steady state, \(\Delta T = (T_0 - T_1) \) and \(E_0 = -\frac{\gamma \Delta T}{d} \log (1 + \gamma \Delta T) \) is the root mean square value of the electric field at \(z = 0 \).

4. Perturbation Equations

Let the initial basic state as described by equation be slightly perturbed so that the perturbed state is
given by:
\[\mathbf{v} = v', \mathbf{p} = p_b(z) + p', T = T_b(z) + T', \]
\[\phi = \phi_b(z) + \phi', \mathbf{E} = \mathbf{E}_b + \mathbf{E}', \]
\[\psi = \psi_b + \psi', \]
where the prime denote the perturbed quantities.

On substituting the Eq. (12) into the Eqs. (1)–(10), linearizing by neglecting the products of primed quantities, eliminating the pressure term from the momentum equation by operating curl twice and retaining the vertical component and converting the resulting equations to non-dimensional form by introducing the following dimensionless variables:
\[(x^*, y^*, z^*) = (x, y, z) / d, \]
\[(u^*, v^*, w^*) = (u, v, w) / \sigma_m, \]
\[t^* = (T - T_b) / \Delta T, \]
\[\phi = (\phi - \phi_b) / \phi_0, \]
\[\psi' = (\psi / \eta) \left[(\beta / \alpha_m) \Delta T d \right], \]
where \(\phi_0 \) is a reference scale for the nanoparticle fraction and \(\alpha_m = k_m / (\rho \beta) \), we obtain the linear stability equations (dropping the dashes (') for simplicity) in non-dimensional form as:
\[\nabla^2 W = R_D \nabla^2 T - R_b \nabla^2 \phi + R_e \nabla^2 \left(\nabla \cdot \nabla \psi' \right), \]
\[\frac{\partial T}{\partial t} - W = \nabla^2 T - \frac{\alpha_m}{L_e} \left(\nabla T \cdot \nabla \psi' \right), \]
\[\frac{1}{\alpha} \frac{\partial \phi}{\partial t} + \frac{N_A}{\alpha} \nabla^2 \phi = \frac{1}{L_e} \nabla^2 \phi + \frac{N_A}{\alpha} \nabla^2 \psi', \]
\[\nabla^2 \psi' = \frac{T}{\partial z}. \]

In the above equations the following non-dimensional parameters are given as:

- \(L_e = \frac{\alpha_m}{D_B} \) is the Lewis number,
- \(R_D = \frac{\rho_0 \beta \Delta T k d}{\mu \alpha_m} \) is the thermal Rayleigh-Darcy number,
- \(R_a = \frac{(\rho - \rho_0) \beta \phi_0 K d}{\mu \alpha_m} \) is the nanoparticle Rayleigh-Darcy number,
- \(R_e = \frac{\rho_e \beta \phi_0^2 (\Delta T)^2 K}{\mu \alpha_m} \) is the AC electric Rayleigh-Darcy number,
- \(N_A = \frac{D_T \Delta T}{D_g \phi_0^2} \) is the modified diffusivity ratio,
- \(N_B = \frac{\phi_0^2 \phi_b}{\phi} \) is the modified particle-density increment.

In non-dimensional form, the boundary conditions become:
\[w = \frac{\partial \psi}{\partial z} = 0, \]
\[N_A \frac{\partial \psi}{\partial z} + N_B \frac{\partial \psi}{\partial z} = 0 \] at \(z = 0 \) and \(z = 1 \).

5. NORMAL MODES ANALYSIS

Analyzing the disturbances into the normal modes and assuming that the perturbed quantities are of the form:
\[[w, T, \phi, \psi] = [W(z), \Theta(z), \Phi(z), \Psi(z)] \times \exp \left(i k_x x + i k_y y + n t \right), \]
where \(k_x \) and \(k_y \) are wave numbers in \(x \) and \(y \) directions, respectively, while \(n \) is the growth rate of disturbances.

On using Eq. (18), into Eqs. (13)-(16), we have:
\[\left(D^2 - a^2 \right) W + R_D a^2 \Theta - R_a a^2 \Phi + R_e a^2 \left(\Theta - \frac{\partial \psi}{\partial z} \right) = 0, \]
\[W + \left[D^2 - a^2 - n \frac{N_A}{L_e} \frac{\partial \psi}{\partial z} \right] \Theta - \frac{N_B}{L_e} D \Phi = 0, \]
\[\left(D^2 - a^2 \right) \Psi - D \Theta = 0, \]
\[\left(D^2 - a^2 \right) \Psi = D \Theta = 0. \]

where \(D = \frac{d}{dz} \) and \(a = \sqrt{k_x^2 + k_y^2} \) is the resultant dimensionless wave number. The boundary conditions in view of normal mode analysis are:
\[W = \Theta = D \Psi = 0, D \Phi + N_A D \Theta = 0 \] at \(z = 0, 1 \).

The growth rate \(n \) is in general a complex quantity such that \(n = \omega_r + i \omega_i \), the system with \(\omega_i < 0 \) is always stable, while for \(\omega_i > 0 \) it will become unstable. For neutral stability, the real part of \(\omega \) is zero. Hence, we now write \(n = \omega_r + i \omega_i \), where \(\omega_r \) is real and \(\omega_i \) is a dimensionless frequency.

The Galerkin weighted residuals method is used to obtain an analytical solution to the system of Eqs. (19)-(22). Accordingly, the base functions. \(w, \Theta, \Phi, \) and \(\Psi \) are taken in the following way:
\[W = \sum_{p=1}^{N} A_p W_p, \]
\[\Theta = \sum_{p=1}^{N} B_p \Theta_p, \]
\[\Phi = \sum_{p=1}^{N} C_p \Phi_p, \]
\[\Psi = \sum_{p=1}^{N} D_p \Psi_p. \]
where \(W_p = \Phi_p = \sin p\pi \), \(\Phi_p = -N_A \sin p\pi \), \(\Psi_p = \cos p\pi \), (satisfying the boundary conditions), \(A_p \), \(B_p \), \(C_p \) and \(D_p \) are unknown coefficients, and \(p = 1,2,3,...,N \). On using above expression for \(W \), \(\Theta \), \(\Phi \) and \(\Psi \) into Eqs. (19)-(22) and multiplying the resulting first equation by \(W_p \) second equation by \(\Theta_p \), third equations by \(\Phi_p \) and fourth equation by \(\Psi_p \) and integrating in the limits from zero to unity, we obtained a system of \(4N \) linear algebraic equations in the \(4N \) unknowns \(A_p \), \(B_p \), \(C_p \) and \(D_p \), \(p = 1,2,3,...,N \). For the existence of non trivial solution, the determinant of coefficients matrix must vanish, which gives the characteristic equation. For a first approximation, we take \(N = 1 \); this produces the result

\[
\left| \begin{array}{cccc}
\frac{-J}{2} & \frac{a^2(R_D+R_e)}{2} & \frac{\bar{\alpha}NAR_n}{2} & \frac{\bar{\alpha}^2R_e}{2} \\
\frac{1}{2} & \frac{(-J-i\sigma)}{2} & 0 & 0 \\
\frac{N^2}{2p} & \frac{N^2J}{2L_e} & \frac{N^2}{2L_e} & 0 \\
0 & -\frac{\pi}{2} & 0 & -\frac{J}{2}
\end{array} \right| = 0. \tag{25}
\]

Here \(J = \left(a^2 + \pi^2\right)^{1/2} \). Generally when we employ a single-term Galerkin approximation in this situation we get a value overestimate by about 3%. But in this case, the single-term Galerkin approximation gives the exact result. We note that the parameter \(N_B \) does not appear to first order of approximation because of an orthogonal property of the first-order trial functions and their first derivatives. This approximation is valid because the terms containing \(N_B \) involves as a function of \(N_B/L_e \) and the value of \(N_B/L_e \) is too small of order \(10^{-2} \sim 10^{-3} \), pointing to the zero contribution of the nanoparticle flux in the thermal energy conversation.

6. RESULTS AND DISCUSSION

6.1 Stationary Convection

First, consider the case of stationary convection, i.e. \(\omega_i = 0 \). Then, Eq. (25) gives the following expression for the thermal Rayleigh- Darcy number \(R_D \):

\[
R_D = \frac{\left(a^2 + \pi^2\right)^2}{a^2} - \frac{a^2R_e}{\left(a^2 + \pi^2\right)} - N_AR_n\left(1 + \frac{L_e}{\varphi}\right) \tag{26}
\]

It is clear from Eq. (26) that the thermal Rayleigh-Darcy number \(R_D \) decreases with increasing the AC electric Rayleigh-Darcy number and nanofluid parameters while increases with porosity parameter \(\varphi \).

To find the critical value of \(R_D \), Eq. (26) is differentiated with respect to \(a^2 \) and equated to zero a polynomial in \(\alpha_c^2 \), whose coefficients are functions of the physical parameters influencing the instability is obtained in the form

\[
\left(\alpha_c^2\right)^4 + 2\pi^2\left(\alpha_c^2\right)^3 - \pi^2 R_e\left(\alpha_c^2\right)^2 - 2\pi^6\left(\alpha_c^2\right) - \pi^8 = 0 \tag{27}
\]

The above equation is solved numerically for various values of \(R_e \) and the minimum value of \(\alpha_c^2 \) is obtained each time, hence the critical wave number is obtained. Using this in Eq. (26), the critical thermal Rayleigh-Darcy number \(R_{D_C} \) above which the convection sets in is determined.

It is interesting to check Eqs. (26) and (27) for existing results in the literature under some limiting cases. In the absence of nanoparticle (i.e., \(R_e = 0 \)), the Eq. (26) reduces to

\[
R_D = \frac{\left(a^2 + \pi^2\right)^2}{a^2} - \frac{a^2R_e}{\left(a^2 + \pi^2\right)} \tag{28}
\]

and coincides with Roberts (1969). In the absence of electrical field \((R_e = 0) \), Eqs. (26) and (27) reduce to:

\[
R_D = \frac{\left(a^2 + \pi^2\right)^2}{a^2} - N_AR_n\left(1 + \frac{1}{L_e}\right) \tag{29}
\]

and

\[
\alpha_c = \pi. \tag{30}
\]

Equations (29) and (30) coincide with that of Yadav and Lee (2015b) for a thermal equilibrium case with \(\alpha_a = T_D = 0 \).

6.2 Oscillatory Convection

With oscillatory onset \(\omega_i \neq 0 \), the real and imaginary parts of Eq. (25) yield:

\[
-a^2L_eN_AR_n\sigma + \varphi\left(J^3\sigma + a^2\pi^2R_e\sigma - J\left\{L_e\sigma\right\}^2 + a^2\left(R_{D_h,C} + R_e + N_AR_n\left(\sigma\right)^2\right)\right) = 0, \tag{31}
\]

Table 1 Critical thermal Rayleigh-Darcy number $R_{D,c}$ and critical wave number a_c for different values of R_c and $S = N_nR_N(1+L_c/\varphi)$

<table>
<thead>
<tr>
<th>R_c</th>
<th>S</th>
<th>$R_{D,c}$</th>
<th>a_c</th>
<th>R_c</th>
<th>S</th>
<th>$R_{D,c}$</th>
<th>a_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>19.4784</td>
<td>3.14</td>
<td>60</td>
<td>0</td>
<td>4.3756</td>
<td>4.33</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>19.4784</td>
<td>3.14</td>
<td>10</td>
<td>4.3756</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>19.4784</td>
<td>3.14</td>
<td>20</td>
<td>4.3756</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>19.4784</td>
<td>3.14</td>
<td>30</td>
<td>4.3756</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>19.4784</td>
<td>3.14</td>
<td>40</td>
<td>4.3756</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>19.4784</td>
<td>3.14</td>
<td>50</td>
<td>4.3756</td>
<td>4.33</td>
<td></td>
</tr>
</tbody>
</table>

$$-\alpha^2 N_n R_n \sigma + \varphi |\alpha^2 L_c \sigma^2 R_n - \alpha^2 R_n (R_{D,0} + R_n)$$

$$\alpha^2 \left(L_c + \sigma \right) = 0$$

Equations (31) and (32) give the following expressions for the thermal Rayleigh-Darcy number $R_{D,0c}$ and the frequency of oscillation ω_1:

$$R_{D,0c} = \left[\frac{a^2 + \pi^2}{a^2} \frac{a^2 R_n}{L_c \varphi} \right] N_n R_n \sigma \left[\frac{a^2 + \pi^2}{a^2} \frac{\sigma}{L_c} \right]$$

$$\omega_1^2 = -\left[\frac{a^2 N_n R_n (L_c + \varphi) - \varphi \sigma}{L_c \varphi} \right] \left[\frac{a^2 + \pi^2}{a^2} \frac{\sigma}{L_c} \right]$$

From Eq. (34), it is interesting to note that the vertical AC electric field does not influence the existence of oscillatory convection. Following Buongiorno (2006), Nield and Kuznetsov (2013) and Yadav et al. (2014b), the Lewis number L_c is on the order of $10^3 - 10^4$, N_n is on the order of $1-10$, the nanoparticle Rayleigh-Darcy number R_n and σ are on the order of $1-10$, and Hence from Eq. (34), the value of ω_1^2 will be always negative. Since ω_1 is real for oscillatory convection, therefore oscillatory convection cannot occur and the principle of the exchange of stability is valid for the case of nanofluid. The stationary convection curves in $(R_{D,c}, R_c)$ plane for various parameter values are shown in Figs. 1-5. The values of the parameters $N_n = 2$, $L_c = 10$, $\varphi = 0.7$ and $R_n = 0.5$ are fixed except the varying parameters. The range of parameters fall in these figures is taken from the available literature (Buongiorno, 2006; Nield and Kuznetsov, 2013; Yadav et al., 2011, 2012, 2014b, c, d, 2015c, d, e). From these figures, it is clear that the linear stability criterion is expressed in terms of critical thermal Rayleigh-Darcy number $R_{D,c}$, below which the system is stable and unstable above.

To validate the numerical procedure used to find the critical stability parameters, first the test computations are obtained under the limiting case of nanoparticle and electric field i.e. $R_c = R_n = 0$ and tabulated in Table 1. From the Table 1, we recognize that in the absence of nanoparticles and electric field we recover the exactly well-known result that the critical Rayleigh-Darcy number $R_{D,c}$ is equal to $4\pi^2$ and the corresponding wave number a_c is π. This verifies the accuracy of the numerical method used.

The critical thermal Rayleigh-Darcy number $R_{D,c}$ and the corresponding wave number a_c, as a function of AC electric Rayleigh-Darcy number R_c are obtained for different values of nanoparticles Rayleigh-Darcy number R_n are shown in Figs. 1 and 2, respectively. From Fig. 1, it is found that the critical thermal Rayleigh-Darcy number $R_{D,c}$ decreases with an increase
in the value of the AC electric Rayleigh-Darcy number R_e. That is, higher the electric field strength the less stable the system due to an increase in the destabilizing electrostatic energy to the system. From Fig. 1, it is also observed that the critical thermal Rayleigh-Darcy number decreases as nanoparticles Rayleigh-Darcy number R_n increases.

This is because as an increase in volumetric fraction of nanoparticles, increases the Brownian motion of the nanoparticles which cause destabilizing effect on the stability of the system. The corresponding critical wave number a^c has been plotted in Fig. 2 and it indicated that increase in the values of AC electric Rayleigh-Darcy number R_e tends to increase a^c and thus its effect is to decrease the size of convection cells. The critical wave number a^c has no change for the different value of nanoparticles Rayleigh-Darcy number R_n. This is because nanoparticles diffuse in the base fluid so they are not proficient to change the size of convections cell. Therefore, nanoparticle parameters (such as nanoparticle Rayleigh-Darcy R_n, Lewis number L_e and modified diffusivity ratio N_A) have no significant effect on the critical wave number observed.

Figs. 3-5 show the effect of Lewis number L_e, the modified diffusivity ratio N_A and porosity parameter φ on the stability of the system. From Figs. 3-5, we found that the Lewis number L_e and the modified diffusivity ratio N_A accelerate the onset of convection, while porosity parameter φ delays the convection in a nanofluid layer. It may be happened because the thermophoresis at a higher value of thermophoretic diffusivity is more supportable...
to the disturbance in nanofluids, while both thermophoresis and Brownian motion are driving forces in favour of the motion of nanoparticles.

Based on the Eq. (26), we can also conclude that the critical thermal Rayleigh-Darcy number \(R_{D_c} \) depends on \(R_e \) and \(S = N_A R_e (1 + L_e \phi) \).

Therefore, for simplification of our results, Tables 1 is also made which show the effect of these parameters on the stability characteristic.

\[
R_{D,c} = \frac{1}{\epsilon R} + \frac{1}{AN eL} \phi^2.
\]

For simplification of our results, Tables 1 is also made which show the effect of these parameters on the stability characteristic.

\[
R_{D,c} = \frac{1}{\epsilon R} + \frac{1}{AN eL} \phi^2.
\]

**Fig. 5. Effect of AC electric Rayleigh-Darcy number \(R_e \) on the critical thermal Rayleigh-Darcy number \(R_{D,c} \) for different values of porosity \(\phi \) with \(N_A = 2 \), \(L_e = 10 \), \(\phi = 0.5 \).

7. CONCLUSIONS

The effect of vertical AC electric field on the onset of convection in a nanofluid-saturated porous layer is studied. The flux of volume fraction of nanoparticles with the effect of thermophoresis is taken to be zero on the isothermal boundaries and the eigenvalue problem is solved theoretically using the Galerkin method. It is observed that the instability of the fluid is reinforced with an increase in the value of AC electric Rayleigh-Darcy number \(R_e \), the Lewis number \(L_e \), the modified diffusivity ratio \(N_A \) and the concentration Rayleigh-Darcy number \(\phi \). The size of convection cells depends only on AC electric Rayleigh-Darcy number \(R_e \) and decreases with increasing the AC electric Rayleigh-Darcy number \(R_e \). It is also found that the vertical AC electric field does not influence the existence of oscillatory convection and the principle of exchange of stability is valid for nanofluid.

ACKNOWLEDGEMENT

This work was supported by human resources development program (No. 20144030200560) of the Korean Institute of Energy Technology Evaluation and Planning (KETEP) under a grant funded by the Korean government Ministry of Trade, Industry and Energy.

REFERENCES

Yadav, D., D. Nam and J. Lee (2016c). The onset of transient Soret-driven MHD convection confined within a Hele-Shaw cell with nanoparticiles suspension. Journal of the Taiwan Institute of Chemical Engineers 58, 235-244.

