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ABSTRACT 

In this paper, to study the incompressible fully developed flow of a non-Newtonian fourth grade fluid in a flat 
channel under an externally applied magnetic field, an appropriate analysis has been performed considering 
the slip condition on the walls. The governing equations, Ohm’s law, continuity and momentum for this 
problem are reduced to a nonlinear ordinary form. The nonlinear equation with robin mixed boundary 
condition is solved with collocation (CM) and least square (LSM) methods. The effects of parameters such as 
non-Newtonian, magnetic field and slip parameters on dimensionless velocity profiles will be discussed. In 
the end, the results could bring us to this conclusion that collocation and least square methods can be used for 
solving nonlinear differential equations with robin mixed condition. 

Keywords: Collocation method; Channel; Fourth grade fluid; Least Square Method. 

NOMENCLATURE 

A  pressure gradient 

nA  Rivlin-Erickson tensors 

B total magnetic field 

0B external magnetic field 

b induced magnetic field 

ic constant of trial function 

d half distant of parallel plates 
E  electric field 
I  identity tensor 
Ha  Hartmann number 

fN  non-Newtonian parameter 

P  pressure 
( )p x  a function 
( )R x  Residual function 

t time     

u velocity 
u approximate function of u 
V velocity field 

iW weighted function 

1 2,   material constants 

1 2 3, ,    material constants 

1 8...   material constants 

 delta function
 dimensionless parameter of channel 

width 
 slip parameter
 viscosity 
 density 

 electric conduction 
 stress tensor

1. INTRODUCTION

In recent years, the study on non-Newtonian fluids 
has gained importance and achieved great 
significance in the industry and technical operations 
(Siddiqui et al., 2009; Choudhury and Kumar Das, 
2014). The classical Navier–Stokes equations not 
able to describe and explain features of complex 
rheological fluids such as: food stuffs, shampoo, 
blood, synovial, paints, micro fluidics and polymer 

solutions. This kind of fluids is usually known non-
Newtonian fluids, which unlike Newtonian fluids, 
the ratio of shear stress to shear rate is not linear. 
Many empirical and semi-empirical non-Newtonian 
models or constitutive equations have been 
proposed (Islam et al., 2011). Among these, the 
fluids of differential type (Dunn and Rajagopal, 
1995; Truesdell and Noll, 2004) have received 
considerable attention. 

 Because of their simplicity and originality, parallel 
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plates are often used to simulate the actual flow 
domain conditions in some materials processing 
applications such as continuous casting, plastic 
forming and extrusion. Some research have been 
carried out to analyze the flow of different classes 
of materials in ducts and channels using various 
constitutive equations such as inelastic and 
linear/nonlinear viscoelastic models (Mokarizadeh 
et al., 2013; Ali et al., 2010; Hayat et al. 2006, 
Siddiqui et al., 2006; Keimanesh et al., 2011; 
Mohyuddin, 2005; Ramesh and Devakar, 2015). 

Since get exact analytical solution for a nonlinear 
problem is not easy, we tend to semi-analytical 
solutions (Ganji and Languri, 2010; Hashemi  
Kachapi and Ganji, 2011; Nayfeh, 1985: Abbasi et 
al.,2014). There are some simple and accurate 
approximation techniques for solving differential 
equations called the Weighted Residuals Methods 
(WRMs). Collocation (CM), Galerkin (GM) and 
Least Square (LSM) are examples of the WRMs. 

Actually, LSM and CM are two of the most 
effective and convenient solutions for both linear 
and nonlinear equations and don’t require 
linearization or small perturbation. Motivated by 
these facts, we used LSM and CM to obtain the 
solutions of the fully developed steady flow of a 
fourth grade fluid between two stationary parallel 
plates with slip conditions at walls. 

This paper by this powerful methods deal to solve 
nonlinear equation with Robin mixed condition. 
What is more, the results were evaluated and 
compared, and the numerical analysis validated and 
properly documented. 

2. GENERAL GUIDELINES 

Let us consider the fully developed laminar flow of 
an electrically conducting fourth grade fluid in a 
channel as shown in Fig.1. The slip boundary 
conditions are exerted on walls. The uniform 
magnetic field, 0B , is imposed along the  y -axis. 

The governing equations, continuity, momentum 
and Ohm’s law for the problem can be written as 
follows: 

. 0,V   (1) 

div
DV

Dt
p J B       (2) 

( )J E V B    (3) 

Where V is the velocity vector, ρ the constant 
density,  the Nabla operator, p the pressure, τ the 
stress tensor, and D/Dt denotes the material 
derivative. The   and J denote electrical 
conductivity and current density respectively and 

0B B b    (b   being the induced magnetic field 

and 0B  an external magnetic field), is the total 

magnetic field and E  is the electric field. It is 
assumed that the magnetic Reynolds Number is 
small and the induced magnetic field,b , due to the 
motion of the electrically conducting fluid is 

negligible. It is also assumed that the electrical 
conductivity of fluid, is constant and the external 
electric field is zero.  

For the present model we take the velocity field of 
the form:  

( ( ), 0, 0).V u y    (4) 

Under these assumptions the last term in Eq. (2), 
The Lorentz force per unit volume is given by: 

2
0 ,J B B us´ = -   (5) 

As discussed in (Siddiqui et al., 2009; Islam et al. 
2011), the stress tensor τ defining a fourth-grade 
fluid is given by 

4
1

,ii
S       (6) 

where 

 
Fig. 1. Schematic diagram of the physical system. 

 

2
0 1 1 2 1 2 2 1, , ,S pI S A S A A        

3 1 3 2 1 2 2 1 3 1 1( ) ( ( )) ,S A A A A A tr A A       

2
4 1 4 2 3 1 1 3 3 2

2 2 2
4 2 1 1 2 5 2 2 6 2 1

7 3 8 2 1 1

( )

( ) ( ) ( )

( ( ) ( )) ,

S A A A A A A

A A A A trA A trA A

trA A A A

  

  
 

   

   

 

  

    (7) 

where I is the identity tensor, 

1 2 1 2 3, , , , , ,       1 2 3 4 5 6 7, , , , , , ,        

and 8  are material constants. The Rivlin-

Ericksen tensors An (Siddiqui et al., 2009; 
Mohyuddin, 2005) are defined by 

   
0

1
1 1, 1,

tn
n n n

A I

DA
A A V V A n

Dt


 



     
 (8) 

which t is the transpose symbol. 

The continuity (Eq. (1)) is satisfied by Eq. (6) and 
Eq. (2) can be written in component form as: 
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     

   

22 2

2 32 2

2 2

0

d d d
6( )

d d d

,

u y u y u y
y y y

u y B p x y
x

  

 

 


 



    
    

    
 
 
 

  
(9) 

Y-component: 

       

 

2

32 2

62 2
d

2
d

,

d d d8
dd d

u y
y

p x y
y

u y u y u y
yy y

 
                      

 
  
 




  

(10) 

Because the flow is fully developed, the left side of 
Eq. (9) is only a function of y. If we differentiating 
both side of Eq. (10) with respect to x and then 
integrating with respect to y, we can see that the 
right side of Eq. (9) is only function of x. Thus, Eq. 
(9) is valid if it’s both side equal to a constant. So, 

     

 

22 2

2 32 2

2 2
0

d d d6( )
dd d

u y u y u y
yy y

dpu y B A
dx

  

 


    
            

 

  

(11) 

where 2 3    and A is a constant. Therefore, 

the problem reduces to solve the second-order 
nonlinear ordinary differential. Due to symmetry 
and slip conditions at either of the two plates, there 
are the following boundary conditions: 

( )

0

0,
y y d

d
u u

u
y y


 

  
 

  
(12) 

By introducing the following non-dimensional 
parameters: 

2 2

02 3

( )
, ( ) , ,f

y u y A d
U N Ha B d

d Ad
   

 
   

(13) 

Substituting these functions into Eq. (11) and Eq. 
(12), rewriting these equations, we finally obtain 
the following system of nonlinear equations: 

22 2
2

2 2
6 1 0,f

d dU d
N Ha U

dd d

U U

 

 
    

                (14) 

0 1

0 , . (1)
dU dU

U
d d 


  

                        (15) 

  

2.1 Collocation Method (CM) 

Suppose we have a differential operator D  is acted 
on a function u  to produce a function p (Hatami 

et al. 2013): 

( ( )) ( )D u x p x   (16) 

We wish to approximate u  by a function u , 
which is a linear combination of basic functions 
chosen from a linearly independent set. That is: 

1

n

i i
i

u u C


 
 

 (17) 

Now, by substituting Eq. (17) into the differential 
operator D , the result of the operations is not ( )p x  

in general. Hence an error or residual will exist: 

( ) ( ) ( ( )) ( ) 0E x R x D u x p x     (18) 

The notion in the collocation is to force the residual 
to zero in some average sense over the domain. 
That is: 

( ) ( ) 0 1, 2,...,i

x

R x W x i n   
(19) 

Where the number of weight functions 
iW  are 

identically equal the number of unknown constants 

iC  in u . The result is a set of n  algebraic 

equations for the unknown constants 
iC . For 

collocation method, the weighting functions are 
taken from the family of Dirac   functions in the 

domain. That is, ( ) ( )i iW x x x  . The Dirac   

function has the property that: 

1
( )

0
i

i

if x x
x x

Otherwise



 





 (20) 

And residual function must force to be zero at 
specific points. 

2.2 Application of CM on Problem 

Consider the trial function as: 

  2 3 4

0 1 2

5

3 0 1

2 3

1 1 1

2 3 4

1 1 1
1 1

5 2 3

1 1
1 1

4 5

u c c c

c c c

c c

   

  

 

  

      

     

   
   
   

   
   
   

 
(21) 

The trial function satisfies the boundary condition 
in Eq. (15) and setting into Eq. (14), residual 
function,  

0 1 2 3( , , , , )R c c c c  , is found as: 

2 3 3 2 3 4 2

0 1 0 2 2

3 4 2 3 8 2 2 3 6

0 1 0 3 1 2

2 3 7 3 7 2 3 9 2

1 3 1 2 1 3

2 3 9 3 10 2 3 3 5

2 3 2 3 1

3 3 2 3 3 11 2

0 3 1

( ) 1 24 30

30 54 42

48 48 60

60 66 12

6 24 0.333

f f

f f f

f f f

f f f

f f

R N c c N c c Ha c

N c c N c c N c c

N c c N c c N c c

N c c N c c N c

N c N c Ha c

    

     

     

     

    

   

 

  

 

   3

3 6 2 5 2 2

0 1 3 3 0 1

2 3 7 2 4

3 0 2 3 2

3 5 2 2

0 1 2 0 0 1

2 2 2 2

1 3 2 0

2 3 5 2 3 3 8

0 3 2 2

3 8

1 2

84 0.2

96 0.25

72 0.5 0.33

2 0.2 3 0.5

36 0.25 18

108

f

f

f f

f

N c c c Ha c Ha c Ha c

Ha c N c c c Ha c

Nfc c c c Ha c Ha c

c Ha c c Ha c

N c c Ha c N c

N c c c

  

  

    

   

    

 

   

  

  

   

  

 3 6 2 3

3 0 2 342 4 0fN c c c    

  

(22)  
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Table 1 Determined values of unknown constants iC at various fN and Ha  for   

Method Constant 
0.1Nf   1Nf   

0.1Ha   0.1   2Ha   0.9   

CM 

0C  9.15886202100 0.0976611706200 

1C  0.02124813622 0.0002592917211 

2C  1.66559390900 0.0592753897500 

3C  0.631027785400 0.0114375519000 

LSM 

0C  9.1553332060 0.098136953020 

1C  0.04151502341 0.003092236272 

2C  1.59265116100 0.066764011040 

3C  0.57810309220 0.006746087832 
  

 

On the other hands, the residual function must be 
close to zero. For reaching this importance, for 
specific points in the domain [0,1]   should be 

chosen. These points are selected as: 

       1 2 3 4
0, 0, 0, 0

5 5 5 5
R R R R     (23) 

For example the first equation is written as: 

2 3 3 2
1 0 2 3

3 3 2 2 3 2
1 1 0 1 2

2 3 2 3 3 2
0 2 0 3 0 1

3 2 3 2 2 3
0 2 0 3 1 2

12 18 3124
1 λ λ λ

25 390625 15625
12 124 24

λ λ
3125 375 125
6 36 6

125 3125 125
42 54 42

λ λ λ
15625 390625 15625

48

78125

f

f f

f f f

f f f

a Ha c N c Ha c

N c Ha c N c c Ha c

N c c N c c N c c

N c c N c c N c c



  

    

   

  

  

 2 3 3 2 2
1 3 1 2 2

3 2 2 3 2 3 3
1 3 2 3 1 0

3 3 3
0 1 2 0 2 3 0 1 3

3 2
1 2 3 3 1 2 3

48 156
λ λ

78125 625
12 12 6

λ λ λ
390625 390625 25
72 96 84

λ λ λ
3125 78125 15625

108 4 2 3
λ λ λ

390625 125 5 25
66

97656

f f

f f f

f f f

f

N c c N c c Ha c

N c c N c c Ha c N c

N c c c N c c c N c c c

N c c c c c c Ha c





 

   

  

    

 3 2 3 3 2
2 3 3 0 0

24
λ λ λ 0

25 48828125f fN c c N c Ha c c   

(24) 

The rest of equations are written similarity. Finally 
by substitutions the , fN  and Ha  into the residual 

function, 
0 1 2 3( , , , , )R c c c c  , a set of four equations 

and four unknown coefficients are obtained. After 
solving these equations for unknown 
parameters

0 1 2 3( , , , )c c c c , the velocity distribution 

equation will be determined that shows in table 1.  

3.1. Principles of Least Square Method 

If the continuous summation of all the squared 
residuals is minimized, the rationale behind the 
name can be seen. In other words: 

2( ) ( ) ( )
X X

S R x R x dx R x dx    (25) 

In order to achieve a minimum of this scalar 
function, the derivatives of S with respect to all the 
unknown parameters must be zero. That is, 

2 ( ) 0
Xi i

S R
R x dx

c c

 
 

    (26) 

Comparing with Eq. (19), the weight functions are 
seen to be 

i

i

R
W

c





   (27) 

However, the ‘‘2’’ coefficient dropped, since it 
cancels out in the equation. Therefore the weight 
functions for the least squares method are just the 
derivatives of the residual with respect to the 
unknown constants 

3.2. Application 

Consider the trial function and corresponding 
residual as Eq. (21) and Eq. (22) and using Eq. (27), 
the first weight function is obtained as, 

4 2 3 8 2

1 0 1 3

0

4 2 6 2

0 2 2

5 2 2 5

0 3 0 1 2

6 7

1 3 2 3

6.561 10.4976 11.8098

13.122 4.1625 1.0125 9.1854

15.7464 3.9366 15.7464

18.3708 20.9952

R
c c c c

c

c c c

c c c c c

c c c c

  

  

  

 


  



   

  

 

  (28) 

3. RESULT 

In this study, we employed CM and LSM to find 
the velocity field for fully developed steady flow of 
a fourth grade fluid between two stationary parallel 
plates under transverse magnetic filed. The 
solutions are shown graphically, because they were 
too long to be mentioned here. 

The comparison of results between the applied 
methods, CM and LSM and Numerical Methods, 
for different values of active parameters is shown in 
Figure. 2. The numerical solution is performed 
using the algebra package Maple 16.0, to solve the 
present case. The package uses a fourth order 
Runge–Kutta procedure for solving nonlinear 
boundary value (B-V) problem (Hatami et al. 2013; 
Hatami and Ganji 2014).  Validity of LSM is shown 
in Table 2. In these tables, the Error is defined as: 
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( ) ( )NUM AnalyticalError U U        
(29) 

The results show that the solution methods are 
precise and this investigation is completed by 
depicting the effects of some important parameters 
by Least Square Method to evaluate how these 
parameters influence on this fluid. 

 

 
Fig. 2. The comparison between the Numerical, 

CM and LSM solution for U . 

 

 
Fig. 3. Dimensionless velocities predicted by 

LSM in different Ha  number when 
 0.5, 0.1fN   

As shown, an increase in the magnetic parameter 
leads to decrease in the velocity components at 
given point as can be seen from Fig. 3. This is due 

to the fact that applied transverse magnetic field 
produces a drag in the form of Lorentz force 
thereby decreasing the magnitude of velocity. In 
addition, Fig. 4 shows the effect of non-Newtonian 
parameter Nf on the velocity components for 

0.5, 1Ha   . It is noticed that an increase in 

dimensionless parameters Nf tends to decrease the 
velocity profile U(η). It is worth mention that, the 
same effect is observed for the slip parameter which 
is depicted by the Fig. 5. This is due to the fact that, 
with the increasing of slip parameter some part of 
fluid molecules strike solid surface and reflected 
diffusely increases then velocity decreases 

 
Table 2 The results of CM, LSM and Numerical 
methods for ( )U   for . ,0 4 1Ha    and 1fN   

  LSM NUM 
Error of 

LSM 

0.00 -0.756148161 -0.756099597 4.85644E-05 

0.10 -0.754928597 -0.754893640 3.49565E-05 

0.20 -0.751266500 -0.751259302 7.19730E-06 

0.30 -0.745151678 -0.745171879 2.02009E-05 

0.35 -0.741169625 -0.741200541 3.09159E-05 

0.40 -0.736567863 -0.736606669 3.88052E-05 

0.50 -0.725493618 -0.725538967 4.53494E-05 

0.55 -0.719014744 -0.719058962 4.42180E-05 

0.60 -0.711903466 -0.711944071 4.06051E-05 

0.65 -0.704156173 -0.704191206 3.50333E-05 

0.70 -0.695769164 -0.695797279 2.81145E-05 

0.75 -0.686738689 -0.686759201 2.05125E-05 

0.80 -0.677060964 -0.677073886 1.29221E-05 

0.85 -0.666732216 -0.666738245 6.02900E-06 

0.90 -0.655748735 -0.655749190 4.54900E-07 

0.95 -0.644106858 -0.644103634 3.22370E-06 

1.00 -0.631802927 -0.631798488 4.43805E-06 

4. CONCLUSION 

In this study, a fully developed steady flow of a 
fourth grade fluid between two stationary parallel 
plates was analyzed using Least Square Method 
(LSM) and Collocation Method (CM). LSM and 
CM does not require small parameters in the 
equation so that the limitations of the traditional 
perturbation methods can be eliminated and thereby 
the calculations are straightforward. Effects of 
different physical parameters such as Slip number, 
the Non-Newtonian number and the magnetic field 
parameter on the velocity profiles of the problem 
have been investigated. As an important outcome 
from the present study, it can be observed that the 
results of LSM are more accurate than CM and they 
are in excellent agreement with numerical ones, so 
LSM can be used for finding analytical solutions of 
non-Newtonian problems easily. Also it can be 
concluded that increasing the magnetic parameter 
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leads to decrease in velocity values in whole 
domain. In addition, increasing in slip parameter 
caused a decrease in velocity components to. It was 
shown that proposed methods provide simple, 
accurate and appropriate techniques for solving 
nonlinear differential equations with Robin mixed. 

 

 
Fig. 4. Dimensionless velocities predicted by 

LSM in different fN  number when 0.5, 1Ha   . 

 

 
Fig. 5. Dimensionless velocities predicted by 

LSM in different   number when  
0.5, 1.5fN Ha  . 
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