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ABSTRACT 

The present paper deals with the linear thermal instability analysis of viscoelastic nanofluid saturated porous 
layer. We consider a set of new boundary conditions for the nanoparticle fraction, which is physically more 
realistic. The new boundary condition is based on the assumption that the nanoparticle fraction adjusts itself so 
that the nanoparticle flux is zero on the boundaries. We use Oldroyd-B type viscoelastic fluid that incorporates 
the effects of Brownian motion and thermophoresis. Expressions for stationary and oscillatory modes of 
convection have been obtained in terms of the Rayleigh number, which are found to be functions of various 
parameters. The numerical results have been presented through graphs. 
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NOMENCLATURE 

a Wave number 

BD  Brownian diffusion coefficient  

TD  thermophoretic diffusion coefficient 

d depth of the fluid layer  
g gravitational acceleration  
g gravitational acceleration vector 
K permeability of the porous media 

eL  Lewis number, defined by Eq. (14)  

AN  modified thermophoresis to Brownian-

motion diffusivity ratio, defined by Eq. 
(18)  

BN  modified particle-density increment, 

defined by Eq. (19)  
P reduced pressure 
Pr Prandtl number 
Ra thermal Rayleigh-darcy number, defined 

by Eq. (15)  
Rm basic-density Rayleigh number defined 

by Eq. (16)  
Rn concentration Rayleigh number, defined 

by Eq. (17)  
T temperature 
Tc temperature at the upper wall  
Th temperature at the lower wall  
t time 
(x,y,z) Cartesian coordinates 
 
αm  thermal diffusivity of the porous 

medium 
β volumetric thermal expansion 

coefficient 

1λ  relaxation time 

2λ  retardation time 

κm  effective thermal conductivity of the 

porous  medium  
µ viscosity of the fluid 
ε porosity 
ρ f  fluid density  

ρ p  nanoparticle mass density  

(ρ ) fc  effective heat capacity of the porous 

medium 
  nanoparticle volume fraction  

0  reference value for nanoparticle 

volume fraction 
ω frequency of oscillation 

Other symbols 

2
1  

2 2

2 2x y

 


 
 

2  
2

2
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Subscripts 
b basic state 
c critical 
0 reference value 

Superscripts 
′ perturbed quantity  ∗ dimensionless quantity  
Osc oscillatory 
S stationary 
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1. INTRODUCTION 

The pioneering work of Choi (1995) introduces the 
term “nanofluids” during his research in Argonne 
National Laboratory. Nanofluids are colloidal 
mixture of nanoparticles and a base liquid, its 
marvelous heat transfer enhancement property now 
became central part of research and attracts many 
scientists. The continuous growth in technology 
demands high class energy efficient devices and 
power enhancement which requires rapid heat 
exchangers, where the conventional fluids are not 
sufficient to improve the rapid heat transfer, 
therefore we seek a relatively new class of fluid 
which enhances the heat exchange. It is 
experimentally verified that nanofluid enhances the 
heat transfer over the conventional fluid (Eastman et 
al. (2001), Robert et al. (2013)). Nanofluid find its 
application in coolants for advanced nuclear 
systems, chemical engineering, electronic devices, 
medical science, storage devices and in solar 
collectors. Studies related to nanofluid are mainly 
focused to thermal conductivity, however a 
satisfactory explanation for the abnormal 
enhancement in thermal conductivity and viscosity 
in nanofluid is yet to be found. The attempt of 
Buongiorno (2006) is found suitable for stability 
analysis of nanofluid convection which includes the 
effect of Brownian diffusion and thermophoresis for 
non-turbulent flow. Rayleigh-Be´nard convection in 
porous media commonly known as Horton-Rogers-
Lapwood convection includes many applications of 
nanofluid which occur in the porous medium such as 
electronic cooling system, including food and 
chemical processes, nuclear reactors, petroleum 
industry, biomechanics, and geophysical problems. 
Documented work in this area are well collected and 
reviewed by Nield and Bejan (2013). 

As a growing research in nanofluid convection, 
several attempts have been made; Nield and 
Kuznetsov (2009) studied onset of convection in 
nanofluid saturated porous media, Kuznetsov and 
Nield (2010a) investigated thermal instability of 
nanofluid saturated porous layer using Brinkman 
model, Kuznetsov and Nield (2010b) performed 
stability analysis for local thermal non-equilibrium 
convection in porous media saturated with nanofluid, 
Nield and Kuznetsov (2011) studied the thermal 
instability of nanofluid convection in porous media 
considering the effect of vertical throughflow. 
Recently Hayat et al. (2015) studied the mixed 
convection flow of non-Newtonian nanofluid over a 
stretching surface including the effect of thermal 
radiation, heat source/sink and first order chemical 
reaction by taking Casson fluid model. Author’s 
group, Bhadauria and Agarwal (2011a, b, c), 
Agarwal and Bhadauria (2011, 2014, 2014a,b,c) and 
Agarwal et al. (2011, 2012) studied thermal stability 
of nanofluid, considering various physical models 
and boundary conditions. 

Most of the above studies dealt only with 
Newtonian fluid, however, waxy crude at shallow 
depth, enhanced oil recovery, paper and textile 
coating, paint industries are few examples which 
admit the applications of viscoelastic fluids, 

therefore the study of viscoelastic fluid is also very 
important. There are some works related to thermal 
stability in viscoelastic fluid saturated porous 
media; Rudraiah et al. (1989) studied the stability of 
a viscoelastic fluid in a densely packed saturated 
porous layer considering an Oldroyd model. Yoon 
et al.(2003, 2004) made a linear stability analysis to 
study convection in a viscoelastic fluid saturated 
porous layer, and obtain the expression of Darcy 
Rayleigh number for oscillatory case to describe the 
onset of convection. Bertola and Cafaro (2006) 
studied theoretically the stability of viscoelastic 
fluid heated from below. Sheu et al. (2008) analysed 
chaotic convection for viscoelastic fluids, using 
truncated Galerkin expansion. Choudhury and Das 
(2014) studied the viscoelastic free convective 
transient MHD flow over a vertical porous plate 
through porous media in the presence of radiation 
and chemical reaction by applying transverse 
variable suction velocity on the porous plate. Kumar 
and Bhadauria (2011a) studied thermal instability in 
a rotating viscoelastic fluid saturated porous layer, 
and calculate the heat transfer. Also Kumar and 
Bhadauria (2011b) studied linear and nonlinear 
double diffusive convection in a viscoelastic fluid 
saturated porous layer. Further, they (2011c) 
studied double diffusive convection in a rotating 
porous layer saturated by a viscoelastic fluid and 
calculated heat and mass transfer across the fluid 
layer. However, very few studies are available on 
convection in a viscoelastic nanofluid saturated 
porous medium. To the best of authors knowledge 
only Sheu (2011) have studied thermal instabilty in 
a porous layer, saturated with viscoelastic 
nanofluid, using Oldroyd-B type constitutive 
equation by considering the boundary conditions in 
which temperature and nanoparticle concentration 
can be controlled at the boundaries, he suggested 
that oscillatory instability is possible in both 
bottom- and top-heavy nanoparticle distributions. It 
was considered in old boundary conditions that one 
could control the nanoparticle concentration at the 
boundaries like in the case of temperature, but in 
real problem, this is however difficult to control the 
nanoparticle concentration at the boundaries, 
further more with the set of new boundary 
conditions, the concentration Rayleigh number is 
always positive. 

Recently, physically a more realistic model was 
studied for thermal instability by Nield and Kuznetsov 
(2014), considering new set of boundary conditions 
that the normal component of the nanoparticle flux on 
boundaries is zero. Further, Agarwal (2014) also 
studied the thermal instability of nanofluid convection 
in a rotating porous layer considering the new model 
of Nield and Kuznetsov (2014). Therefore, in this 
paper, we have made an attempt to study onset of 
thermal instability in a viscoelastic nanofluid 
saturated porous medium with the assumption that 
there is no nanoparticle flux at the boundaries, which 
is physically a more realistic condition. 

2. GOVERNING EQUATIONS 

We consider an infinitely extended horizontal porous 
layer saturated by viscoelastic nanofluid, confined 



A. Srivastava and B. S. Bhadauria / JAFM, Vol. 9, No. 6, pp. 3117-3125, 2016.  
 

3119 

between the planes z = 0 and z = d. We choose 
Cartesian frame of reference as origin in the lower 
boundary and the z-axis in vertically upward direction. 
The gravitational force is acting in vertically 
downward direction. It is assumed that the fluid and 
solid phases are in local thermal equilibrium. hT  and 

cT  are the lower and upper plate temperature 

respectively with the condition that h cT T , cT is 

taken as reference temperature. Oldroyd-B model is 
used to describe the rheological behaviour of the 
viscoelastic nanofluid. Further, the density variation is 
considered under Boussinesq approximation. Also for 
linear theory, it is assumed that the change in 
temperature in the viscoelastic nanofluid is small as 
compared to cT . Then using the approximated 

buoyancy term, the governing equations under the 
above considerations are as follows: 
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We write ( , , )D u v wq . We assume that the 

boundaries are held at constant temperature and the 
nanoparticle flux is zero on the boundaries. Thus the 
boundary conditions are taken as follows 
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We introduce dimensionless variable by using the 
following transformations: 
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Where
κ (ρ )

α ,    .
(ρ ) (ρ )

m m
m

f f

c

c c
   

The nondimensionlized equations (after dropping the 
asterisks for simplicity) are: 
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The nondimensional parameters, which appeared in 
the above equations are defined as follows: 

αm

B
Le

D
                                                                          (14) 

is the Lewis number, 

ρ β ( )
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h c
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g Kd T T
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is the thermal Darcy Rayleigh number, 
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is the basic density Rayleigh number , 
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is the concentration Rayleigh number, 
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is the modified diffusivity ratio, 
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is the modified particle density increment, 

11 2

α
λ λm

d
                                                                        (20) 

is the stress relaxation parameter 

22 2

α
λ λm

d
                                                                      (21) 

is the strain retardation parameter. 

2.1   Basic Solution 

The basic state of the nanofluid is assumed to be 
quiescent thus, temperature field and nanoparticle 
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volume fraction vary in the z-direction only. This 
gives the solution of the form 

0,    ( ),    ( ),b bu v w T T z z                         (22) 

which satisfy the following equations 

22

2
0,

                                

b b b bB A Bd T d dT dTN N N

Le dz dz Le dzdz
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Using the boundary conditions (12–13), Eq. (24) 
may be integrated to give 

0.b b
A

d dT
N

dz dz


                                                           (25) 

Using Eq. (25) in Eq. (23), we get 

2

2
0.bd T

dz
                                                                         (26) 

The solution of the Eq. (26), subject to the boundary 
conditions (12–13), is given by 

1 ,bT z                                                                          (27) 

also the Eq. (24) has been solved subjected to the 
boundary conditions (12–13) using (27), we get 

0 .b AN z                                                                   (28) 

2.2   Perturbation State 

We apply perturbation to the basic state of the system 
as 

, , , .b b bq q p p p T T T                        (29) 

Substituting the above Eq. (29) in Eqs. (8–13) and 
neglecting the product of primes to linearize the 
equations, we get the following set of equations: 
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Taking curl twice of the Eq. (31), we get 
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3. LINEAR STABILITY ANALYSIS 

We use normal mode technique for linear stability 
analysis to solve the eigenvalue problem defined by 
Eqs. (32, 33, 34) subject to the boundary conditions 
given by Eq. (35). Using time periodic disturbance in 
horizontal plane, we take normal mode form as: 
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where l, m are horizontal wave number in x and y 
directions respectively, and ω ω ωr ii  is growth 

rate, which is, in general, a complex quantity. 
Substitution of the above Eq. (36) in Eqs. (32, 33, 34) 
gives the following set of equations 
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where d
D

dz
 and 2 2 2.a l m   The approximate 

solution of the above Eqs. (37–39) is obtained by 
using a Galerkin type weighted residuals method. As 
trial function (satisfying the boundary conditions), 
we choose 
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satisfying the boundary conditions (40). Substitution 
of above Eqs. (41–42) into Eqs. (37–39) yields a set 
of 3N linear algebraic equations in the unknowns

, , ; 1,2,..., .p p pA B C p N  The orthogonality of the 

trial function, and vanishing of the determinant of 
coefficients gives the expression for thermal 
Rayleigh number as a function of nondimensional 
parameters. We take trial functions only upto first 
order i.e corresponding to the value N = 1. We get 
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the expression of thermal Rayleigh number as: 
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where 2 2 2δ .a   

For neutral stability state ω 0,r  whereas for 

ω 0r  system is always stable and for ω 0r 
system is always unstable. 

3.1 Stationary State 

The expression of thermal Rayleigh number for the 
onset of stationary convection at the marginally 
stable steady state, for which the ex-change of 

stabilities are valid correspond to theω 0   

(i.e. ω 0r  and ω 0i  ) becomes 
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3.2   Oscillatory State 

To obtain the expression of thermal Rayleigh number 
for oscillatory convection at the marginal state, we 
substitute ω ωii  (since the real part of ω for 

marginal oscillatory state is zero i.e ω 0r  ) in Eq. 

(43) and clear the complex quantity from 
denominator. After simplification, we get 
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For oscillatory onset of convection, we have 2 0   

(since Ra is a physical quantity, therefore it must be 
real, also ω 0i   for oscillatory convection). This 

gives a biquadratic equation in ω i  
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The possibility of oscillatory convection depends 
upon the condition that, ω i must be positive, 

therefore we seek the set of appropriate values of 
nondimensional parameters for which oscillatory 
convection is possible. 

4. RESULTS AND DISCUSSION 

The rescaled concentration Rayleigh number is 
defined in terms of particle fraction, so it cannot be 
negative as considered in the earlier results, therefore 
we take only positive values of concentration 
Rayleigh number for our numerical calculations. The 
expression of thermal Rayleigh number given by Eq. 
(43) is independent of the modified particle-density 
increment parameter BN , this happens due to the 

orthogonality of the trial functions of first order. 

Eq. (44) can be rewritten as 
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The minimum value of right hand side with respect 
to a can be obtained at a = π, hence the critical value 
of the right hand side of the Eq. (53) can be given by 
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In the absence of nanoparticle, we recover the 
classical result of Horton-Rogers-Lapwood 
convection. 

In contrast to Newtonian fluid, viscoelastic fluid 
possesses overstability due to which we get the 
oscillatory convection. We consider the values of 
parameters appeared in the expression of thermal 
Rayleigh number as Rn = 0.1, Le = 200, 50,Pr   

1 21, λ 1, λ 0.5, 2, ε=0.9AN      or otherwise 

mentioned. 

 

 
Fig. 1. Neutral stability curves for the different 

values of 1λ . 

 
Figs. (1-11) shows the neutral stability curve for 
different values of parameters. In Fig. (1), we 
consider the effect of the stress relaxation 
parameter on the onset of convection, and observe 
that an increase in the stress relaxation parameter 
destabilizes the onset of oscillatory convection, as 
the convection takes place at lower value of the 
Rayleigh number. Fig. (2) represents the effect of 
the strain retardation parameter, and from the 
graph it is clear that the strain retardation 
parameter stabilizes the onset of oscillatory 
convection, since the critical value of the Rayleigh 
number increases on increasing the value of the 
strain retardation parameter. Figs. (3, 4) shows the 
effect of the concentration Rayleigh number on the 
onset of convection and is observed from the 
graph that the concentration Rayleigh number 
destabilizes the onset of stationary convection 
which is similar to the result obtained by Nield and 
Kuznetsov (2014), while stabilizes the onset of 
oscillatory convection for its increasing values. 

Fig. (5) shows the effect of the Darcy-Prandtl 
number and is observe from the graph that the 
Darcy-Prandtl destabilizes the onset of convection 
for its increasing values. Fig. (6) shows the effect 
of Lewis number on the onset of convection and is 
observed from the Lewis number destabilizes the 
onset of stationary convection while stabilizes the 
oscillatory convection, for its increasing values. 
Figs. (7, 8) shows the effect of modified diffusivity 
ratio on the onset of convection and is observed 
from the graph that the modified diffusivity ratio 
destabilizes the onset of stationary convection, 
while stabilizes the onset of oscillatory convection 
for its increasing values Fig. (9) shows the effect 
of heat ratio on the onset of convection and is 
observed from the graph that heat ratio stabilizes 
the onset of convection for its increasing values. 
Figs. (10, 11) shows the effect of porosity on the 
onset of convection and is observed from the 
graph that the porosity stabilizes the onset of 
stationary convection while destabilizes the 
onset of oscillatory convection for its increasing 
values. 

 

 
Fig. 2. Neutral stability curves for the different 

values of 2λ . 

 

 
Fig. 3. Neutral stability curves for the different 

values of Rn. 



A. Srivastava and B. S. Bhadauria / JAFM, Vol. 9, No. 6, pp. 3117-3125, 2016.  
 

3123 

 
Fig. 4. Neutral stability curves for the different 

values of Rn. 

 

 
Fig. 5. Neutral stability curves for the different 

values of Pr. 

 

 
Fig. 6. Neutral stability curves for the different 

values of Le. 

 
Fig. 7. Neutral stability curves for the different 

values of AN . 

 
Fig. 8. Neutral stability curves for the different 

values of AN . 

 

 
Fig. 9. Neutral stability curves for the different 

values of σ. 
 

 

Fig. 10. Neutral stability curves for the different 
values of ε. 

 

 
Fig. 11. Neutral stability curves for the different 

values of ε. 
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5. CONCLUSIONS 

We investigate the onset of convection viscoelastic 
nanofluid convection in an infinite horizontal porous 
layer which is heated from with the set of new 
boundary condition which is physically more 
realistic. From the expression of Rn, it is observed 
that Rn is defined as a typical nanofluid fraction 
instead of the difference of two fractions so that, Rn 
cannot be negative, the modified diffusion ratio AN

is positive, also it is not necessary to take large values 
of Le as mentioned by Nield and Kuznetsov (2009), 
moreover, the Eq. (54) can be taken as an upper 
bound for the value of critical Rayleigh number in 
case of stationary convection. For the increasing 
value of various parameters, we found the following 
results: 

1. Relaxation parameter 1λ : destabilizes the 

onset of convection. 

2. Retardation parameter 2λ : stabilizes onset of 

convection. 

3. Concentration Rayleigh number Rn: 
destabilizes the onset of stationary convection, 
stabilizes the onset of oscillatory convection. 

4. Modified diffusivity ratio AN : destabilizes the 

onset of stationary convection, stabilizes the 
onset of oscillatory convection. 

5. Lewis number Le: stabilize the stationary 
convection, destabilize the oscillatory 
convection. 

6. Darcy-Prandtl number Pr: destabilizes the 
oscillatory convection. 

7. Porosity ε: stabilizes the onset of stationary 
convection, destabilizes the onset of 
oscillatory convection. 

8. Heat ratio σ: stabilizes the onset of convection. 
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