Flow Characterizations and Drag Reduction on the Hydrophobic Surface with a Full Covering Gas Film

P. Du¹,², D. Song¹, F. Ren¹, Q. Xue³ and H. Hu¹,⁴†

¹ School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, People’s Republic of China
² Sorbonne Universities, University of Technology of Compiegne, Lab. Roberval, UMR 7337 CNRS Centre de recherches Royallieu BP 20529, 60206 Compiegne Cedex, France
³ Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, People’s Republic of China
⁴ The Institute of NPU in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, Peoples Republic of China

†Corresponding Author Email: huhaibao@nwpu.edu.cn

(Received April 25, 2016; accepted November 24, 2016)

ABSTRACT

Characteristics of the flow on hydrophobic surfaces with a full covering gas film are investigated using the single-component multi-phase (SCMP) Lattice Boltzmann (LB) simulation. By adopting the Shan-Doolen force model and incorporating equations of state (EOS) of real fluids, large density ratios are achieved. The height of the air film maintained is observed to increase with the improvement of the surface hydrophobicity. In the laminar flow, the state of the gas-liquid interface is not influenced by the Reynolds number (Re). On the gas layer, the slip effect and wall shear stress reduction are sustained continuously regardless of their positions (on the space or on the micro-structure). Even so, decreasing the solid area fraction is also significant to enhance the slip effect and decrease the wall shear stress on hydrophobic surfaces.

Keywords: Hydrophobic surface; Lattice Boltzmann method; Gas film; Slip; Drag reduction.

NOMENCLATURE

- a: acceleration
- CA: contact angle
- c: lattice sound speed
- e: lattice speed
- α: discrete velocity
- G: fluid-solid interaction strength
- G: interparticle strength
- h: height of micro-structure
- H: height of gas-liquid interface
- L: slip length
- p: pressure
- Re: Reynolds number
- s: width of space between micro-structures
- swi: switch function
- T: temperature
- u: velocity
- u: slip velocity
- w: width of micro-structure
- f: velocity distribution function
- δ: time step
- τ: single relaxation time
- δ: spatial step
- ω: weighting factor
- ρ: density
- ν: kinetic viscosity
- f: driving force
- τw: wall shear stress
- fs: space ratio

1. INTRODUCTION

Hydrophobic surface is a new technique to reduce the frictional drag, whose effect has been proved in many studies (Haibao, Peng, Feng, Dong, and Yang 2015; Martell, Perot, and Rothstein 2009; Min and Kim 2004; Ou and Rothstein 2005; Tretheway and Meinhart 2002). As for the mechanism, most researchers consider an air-water interface existing between micro-structures, on which the shear is
sharply decreased and the slip is formed (Choi, Ulmanella, Kim, Ho, and Kim 2006; Martell, Perot, and Rothstein 2009; Ou and Rothstein 2005; Park, Park, and Kim 2013; Samaha, Tafreshi, and Gad-el Hak 2011; Tretheway and Meinhardt 2002). Ou et al. (2005) conducted direct velocity measurements of the flow on hydrophobic surfaces using \(\mu = \nabla \cdot \mathbf{v} \) and discovered that an air-water interface was supported between ridges; the slip velocity at the center of the interface reached 60% of the average velocity in the microchannel. Martell et al. (2009) established a model of hydrophobic surfaces using Direct Numerical Simulations (DNS), with a free surface interface between micro-ridges and posts. The wall shear stress reduction was found to be nearly 40%. Song et al. (Song, Daniello, and Rothstein 2014) conducted experiments for the laminar flow of water through microchannels using hydrophobic surfaces. A maximum slip length of 20 \(\mu \) was obtained and a correlation between the slip length and the contact angle hysteresis was found. Choi et al. (Choi, Ulmanella, Kim, Ho, and Kim 2006) reported the effective slip and drag reduction in hydrophobic microchannels. A noticeable slip of 100-200 nm generated by the nanostraps of air was observed. This surface would not only reduce friction in liquid flows but also enable directional control of the slip.

However, inconsistent with former studies, gas was found to not only exist between micro-structures, but formed a film and covered the whole surface (Fig. 1). Sheng et al. (2011) observed this phenomenon on a lotus leaf placed underwater. The gas layer was found to become unstable and even disappeared when the hydraulic pressure was in-creased. Yu et al. (Yong-Sheng and Qing-Ding 2006) also observed air layers in macroscopic size on hydrophobic surfaces, which can cause apparent velocity slip for the drag reduction. Gao et al. (2009) performed numerical simulations of the shear flow over periodically patterned substrates. A continuous gas film was formed when the shear rate was larger than a critical value, resulting in an enhanced slip length proportional to the liquid-gas viscosity ratio. Fukuda et al. (Fukuda, Tokunaga, Nobunaga, Nakatani, Iwasaki, and Kunitake 2000) tested the effect of hydrophobic surfaces with an air film using ship models. A drag reduction up to 80% was obtained. After all, relative studies are still insufficient and the effect of this air film needs further investigations.

As a new simulation technique, especially in the hydrophobic field, Lattice Boltzmann (LB) method showed great applicability (Hao and Cheng 2009; Harting, Kunert, and Hyvälouma 2010; Moradi, Varnik, and Steinbach 2010; Zhu, Tretheway, Petzold, and Meinhardt 2005; Aidun and Clausen 2010). The pseudo-potential model proposed by Shan and Chen (1993) can be used to simulate the single-component multi-phase (SCMP) problem; thus the fluid-fluid interaction and fluid-solid interaction can be adjusted, which are in accordance with the properties of the fluid and solid wall in the practical situation. Based on this model, Cui et al. (2011) investigated the fluid flows through channels with different wettability conditions and topographical surfaces. They found that the roughness has a positive effect for reducing the pressure drop on hydrophobic surfaces. Harting et al. (2005) simulated the flow in hydrophobic rough microchannels and discovered that the roughness created a non-linear effect for the slip length.

In this paper, multi-phase flows with a gas film on hydrophobic surfaces were simulated using the LB method. An equation of state (EOS) was incorporated to improve the density ratio and decrease spurious currents. The state of the gas film, the slip effect and the shear stress changing with the solid-liquid interaction, the flow speed and microstructures were analyzed to characterize the properties of this flow.

2. METHODOLOGY

2.1 SCMP Lattice Boltzmann Model

The concept of the LB method is to calculate the probability at a certain state of each particle, and then get the macroscopic parameters statistically. The basic equation of the LB method (He and Luo 1997a; He and Luo 1997b; Chen and Doolen 1998; Succi 2001; Swift, Osborn, and Yeomans 1995; He, Chen, and Zhang 1999) is

\[
f_\alpha(x, t) = \frac{1}{\tau} \left[f_\alpha(x, t) - f_\alpha^{eq}(x, t) \right]
\]

where \(f_\alpha^{eq} \) is the local equilibrium velocity distribution function. The macroscopic state is the collective behavior of particles’ velocity distribution functions. In this study, the D2Q9 model is applied (Qian, d’Humières, and Lallemand 1992). The equilibrium velocity distribution of the D2Q9 model can be expressed as

\[
f_\alpha^{eq} = \rho_0 \alpha \left[1 + \frac{\mathbf{e}_\alpha \cdot \mathbf{u}}{c_s^2} + \frac{(\mathbf{e}_\alpha \cdot \mathbf{u})^2}{2c_s^4} + \frac{\mathbf{u}^2}{2c_s^4} \right]
\]

where the weighting factor \(\rho_0 \alpha \), the discrete velocity \(\mathbf{e}_\alpha \) and the lattice sound speed \(c_s \) are defined as

\[
\rho_0 = \frac{4}{9}, \quad 0 = \frac{1}{9}, \quad \alpha = 1, 2, 3, 4
\]

\[
\begin{bmatrix}
1 / 36 \\
5, 6, 7, 8
\end{bmatrix}
\]

\[
\begin{bmatrix}
e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 & -1 & 0 & 1 & -1 & -1 \\
0 & 0 & 1 & 1 & 1 & -1 & -1 & 1
\end{bmatrix}
\]
Particles are the same, the density and Doolen (1995), step average according to the Shan-Doolen model (Shan and Chen 1993), the EOS for the pseudo-potential model can be obtained.

\[p = \rho c_s^2 + \frac{G}{6} \Psi^2(\rho) \]

(14)

which is a non-ideal gas EOS. \(c_s \) is the lattice sound speed. The EOS (Yuan and Schaefer 2006) describes the relation of pressure, temperature and density. By substituting various EOSs of real fluids into this equation, different EOSs for the LB method can be obtained. The modified Kaplun Meshalkin (mKM) EOS (Kupershtokh, Medvedev, and Karpov 2009) is applied in this study.

\[\tilde{p} = \tilde{c} \tilde{T} (1 + \frac{\tilde{a}}{1/\tilde{T}} - \tilde{b}) - \tilde{a} \tilde{c}^2 \tilde{g} \]

(15)

To satisfy the critical point conditions (Chen, Zhong, and Yuan 2011),

\[\tilde{a} = 1 \quad \tilde{T} = 1 \quad \tilde{p} = 1 \]

\[\left(\frac{\tilde{c}}{\tilde{p}} \right)_f = 0 \quad \left(\frac{\tilde{c}^2}{\tilde{p}^2} \right)_f = 0 \]

(16)

the parameters are calculated as

\[\tilde{c} = \frac{1}{3} \quad \tilde{b} = 3 - \tilde{c} \quad \tilde{d} = \frac{12 \tilde{c} - 6 \tilde{c}^2 + \tilde{c}^3 - 8}{\tilde{c}(3 - \tilde{c})} \]

(17)

According to the work of Kupershtokh (Kupershtokh, Medvedev, and Karpov 2009), the value \(\tilde{c} = 2.78 \) should be chosen to best agree with the experimental data. So the values of the variables are

\[\tilde{a} = 4.5455 \quad \tilde{b} = 0.22 \quad \tilde{c} = 2.78 \quad \tilde{d} = 0.7759 \]

When \(\tilde{T} < 1 \), two phases can coexist. To incorporate the mKM EOS, Eq. (14) should be changed to

\[\Psi(\rho) = \frac{6(\rho - \rho/3)}{G} \]

(18)

It can be seen that the incorporated EOS functions indirectly through the effective mass \(\Psi \). During the evolution, the fluid-fluid interaction \(G \) will be crossed out; instead, the temperature \(T \) will function and affect the interaction between fluid particles, which is in accordance with the practical situation. By incorporating the mKM EOS, large density ratios are obtained. In this paper, the temperature \(T = 0.63 \) is adopted and the corresponding density ratio is about 1500.
3. PREPARATION OF SIMULATION

3.1 Characterization of Wettability

The wettability of the solid surface is always evaluated using the intrinsic contact angle (CA) (Song, Daniello, and Rothstein 2014; Song, Song, Hu, Du, and Ma 2015). In the LB simulation, there are three factors affecting the CA, i.e., the temperature, the solid-liquid interaction and surface structures. The temperature influences the surface tension; in this study, the surface tension is already known (about 0.187) because the temperature has been fixed as in Section 2.3. The solid-liquid interaction and surface structures correspond to the surface energy and the roughness of real solid surfaces (Yao, Hao, Zhang, and He 2012).

The effect of the solid-liquid interaction \(s_G \) can be obtained by simulating a liquid drop under different \(s_G \) on the smooth surface. As seen in Fig. 2, with decreasing \(s_G \), the interaction between the wall and the fluid drops, and so the CAS increase. On the smooth surface, the CA and the solid-liquid interaction show a linear relation \((y = 440.04 + 157.4x)\). This phenomenon is consistent with former studies (Cui, Li, and Lam 2011). Here, when \(|G_s| < 2.2 \), \(CA \leq 90^\circ \), the surface is hydrophobic.

3.2 Computational Domain

As introduced in Section 1., instead of only existing between micro-structures, the air layer is also observed covering the entire hydrophobic surface, i.e., the solid wall contact indirectly with water. The effect of this air film needs to be characterized. According to this phenomenon, a LB model is established. Fig. 5 shows the initial state of the LB simulation. A gas layer covers the entire solid surface, including the top of micro-structures. The bottom wall is structured, while the top wall is smooth for comparison.

4. RESULTS AND DISCUSSIONS

According to the initial model in Fig. 3, the system is controlled to evolve under different solid-liquid interactions \(G_s \) (statically without outer interferences). When the system is balanced, the height of the gas-liquid interface \(H \) is extracted. As seen in Fig. 4, when the wall shows good hydrophobicity \((G_s < 2.2) \), the gas-liquid interface can be sustained steadily. On both the spaces and the micro-structures, the height of the interface held increases with improving surface hydrophobicity. Because of the support of hydrophobic pillars, the height of the interface in the spaces is much thicker than that over the micro-structures. When the wall is hydrophilic \((G_s \geq 2.2) \), the liquid will enter into the spaces.

![Fig. 2. Relation between the contact angle (CA) and the solid-liquid interaction (\(G_s \)).](image)

![Fig. 3. Lattice Boltzmann model of hydrophobic surfaces with a gas film: (1) liquid; (2) gas; (3) solid; (4) gas-liquid interface. A is the midpoint of the space. B is the midpoint of the top of the micro-structure.](image)

![Fig. 4. Height of the gas-liquid interface (\(H \)) sustained at position A (midpoint of the space) and B (midpoint of the micro-structure) with different solid-liquid interactions (\(G_s \)).](image)

Good hydrophobicity is seen to be crucial for the maintenance of the gas-liquid interface. High interface will weaken the restriction of the wall and accelerate the neighboring fluids, which will benefit the formation of the slip on hydrophobic surfaces.

To investigate the properties of the gas layer dynamically, the system is controlled to evolve as the static state at first. When the air layer becomes steady, different forces \(f_x \) are added at the entrance of the channel (see Fig. 3) to drive the flow. The
corresponding Reynolds numbers \(Re \) are 54.81, 76.56, 95.7, 113.1, 217.5 and 330.6 when the system is balanced. Continuing increasing \(Re \) will cause the computational divergence, so the flows in this paper are in the laminar state. The height of the gas layer \(H \) is also extracted. Fig. 5 shows that \(H \) at different \(Re \) are completely the same, regardless of the positions on the spaces or over the micro-structures.

![Fig. 5. Height of the gas-liquid interface \((H)\) sustained at position A (midpoint of the space) and B (midpoint of the micro-structure) with different Reynolds numbers \((Re)\).](image)

This phenomenon demonstrates that, in the laminar state, the flow speed will not influence the state of the gas liquid interface.

The velocity profiles at the middle of the space and the micro-structure, i.e. position A and B in Fig. 3, are extracted. In Fig. 6, a lifting-up phenomenon can be observed in the near-wall region (Zhang, Tian, Yao, Hao, and Jiang 2015; Tian, Zhang, Jiang, and Yao 2015). On the hydrophobic surface, the existence of the air film and the low surface energy weaken the wall’s restriction to the fluids, so the fluids are accelerated compared with that on the smooth surface, which forms the slip on the gas liquid interface. This effect has been confirmed in both experimental and numerical studies previously (Choi, Ulmanella, Kim, Ho, and Kim 2006; Ou and Rothstein 2005; Park, Park, and Kim 2013; Samaha, Tafreshi, and Gadel Hak 2011). But unlike these works, because of the full covering of the gas layer in this study, the velocity profiles over the two positions are close, which demonstrates that a full gas layer can maintain the acceleration of fluid particles continuously. The continuous slip can then be formed along the gas-liquid interface, thus benefits the drag reduction on hydrophobic surfaces.

By fitting the velocity profile, slip parameters can be calculated. The definition of the slip is shown in Fig. 7, which is deduced from Navier’s model (Rothstein 2010):

\[
\frac{du}{dy}_{wall}
\]

Table 1 shows that the slip exists on both the spaces and the micro-structures as pointed in Fig. 6. The slip velocity increases with increasing Reynolds number \(Re \). Because the gas-liquid interface is closer to the top of the micro-structure, the interaction between liquids and the wall is stronger. The nearby fluids will be more restrained, so the slip velocity over the micro-structure is lower than that over the space. The largest slip velocity over the micro-structure and the space reaches 7.92\% and 5.65\% of the central flow, respectively. The slip lengths of the two are nearly the same. This demonstrates that, with an air film, the slip will be maintained continuously on the gas-liquid interface, regardless of the position over the wall. According to Newton’s law of viscosity, wall shear stresses on the smooth and hydrophobic surfaces can be calculated.

\[
\tau_{wall} = \mu \frac{du}{dy}_{wall}
\]

![Fig. 6. Velocity profiles when \(Re = 95.7 \) on the smooth surface and position A (midpoint of the space) and B (midpoint of the micro-structure) of the hydrophobic surface.](image)

![Fig. 7. Sketch of the slip on the hydrophobic surface.](image)

The velocity gradient at the wall \(\frac{du}{dy}_{wall} \) can be obtained from the slip Eq. (19). The detailed
calculation process can refer to (Haibao, Peng, Feng, Dong, and Yang 2015). Normally, the wall shear stress can be used to represent the frictional drag on the wall. In Table 1, the shear stresses on both positions of the hydrophobic surface are lower than that on the smooth surface, which proves that the gas film is able to reduce the frictional drag on the entire hydrophobic surface.

To further investigate the effect of micro-structures, three solid area fractions $f_s = \frac{w}{s+w}$ were designed, 66.67%, 50.00% and 33.33%, with the solid-liquid interaction $G_s = 1.9$ and the Reynolds number $Re = 95.7$. Table 2 indicates that, both the slip velocity and the slip length increase as the solid fraction declines, because the influence of the wall is further weakened, which results in stronger acceleration of near-wall fluids and higher up-lifting of the velocity profile. The wall shear stress also drops with decreasing solid area fraction. So, smaller solid area fraction benefits the slip and the drag reducing effect on the hydrophobic surface, even with a full-covering gas film.

Table 2 Slip parameters and wall shear stresses with different solid area fractions.

<table>
<thead>
<tr>
<th>f_s</th>
<th>66.67%</th>
<th>50.00%</th>
<th>33.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_s \times 10^2$</td>
<td>0.693</td>
<td>0.769</td>
<td>1.532</td>
</tr>
<tr>
<td>L_s</td>
<td>1.985</td>
<td>2.649</td>
<td>5.352</td>
</tr>
<tr>
<td>$\tau_{\theta} \times 10^5$</td>
<td>1.136</td>
<td>0.915</td>
<td>0.711</td>
</tr>
</tbody>
</table>

5. CONCLUSION

Based on the recognition of a full covering air film on the hydrophobic surface, a new numerical model was established using LB method correspondingly. During the simulation, the SCMP LB method was adopted. By employing the Shan-Doolen force model and incorporating the mKM EOS, large density ratios were achieved in the study. The conclusions can be drawn as follows:

1. Hydrophilic surfaces are not able to maintain the gas layer on the wall. The height of the gas film sustained increases with improving surface hydrophobicity. In the laminar flow, the state of the gas film is not influenced by the Reynolds number Re.

2. The air film can reduce the difference of velocity fields over the micro-structure and the space between micro-structures. The slip effect and the wall shear stress reduction are achieved continuously on the entire hydrophobic surface.

3. Small solid area fraction is beneficial to increase the slip and decrease the wall shear stress. So even on the hydrophobic surface with a full covering air film, the optimization of micro-structures is also required to achieve good drag reducing effect.

ACKNOWLEDGMENTS

The authors acknowledge the supports from National Natural Science Foundation of China (Grant No. 51679203, 51335010), Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM1002), and Natural Science Basic Re-search Plan in Shenzhen City of China (Grant No. JCYJ20160510140747996).

REFERENCES

Science and Technology 5(3), 123-130.

