Modeling of Erosion Wear of Sand Water Slurry Flow through Pipe Bend using CFD

V. Singh†, S. Kumar2 and S. K. Mohapatra1

1Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
2National Institute of Technology, Jamshedpur, India

†Corresponding Author Email: varinder8382@gmail.com
(Received May 16, 2018; accepted October 12, 2018)

ABSTRACT

In the present study, erosion wear of a 90° pipe bend has been investigated using the Computational fluid dynamics code FLUENT. Solid particles were tracked to evaluate the erosion rate along with k-ε turbulent model for continuous/fluid phase flow field. Spherical shaped sand particles of size 183 µm and 277 µm of density 2631 kg/m³ are injected from the inlet surface at velocity ranging from 0.5 to 8 ms⁻¹ at two different concentrations. By considering the interaction between solid-liquid, effect of velocity, particle size and concentration were studied. Erosion wear was increased exponential with velocity, particles size and concentrations. Predicted results with CFD have revealed well in agreement with experimental results. The magnitude and location of maximum erosion wear were more severe in bend rather than the straight pipe.

Keywords: Computational Fluid Dynamics (CFD); Erosion wear; Discrete Phase Model (DPM); Pipe bend.

NOMENCLATURE

c = drag coefficient
Er = erosion rate
F = bouyancy force
Fr = drag force
FP = pressure gradient force
spp = distribution function
Kfp = fluid-Solid particles exchange coefficient
Kpf = solid particles- fluid exchange coefficient
mp = solid particle mass flow rate in kg/sec
mpf = mass transformation from phase p to f
Re = Relative Reynolds number
r/D = radius of curvature -to-diameter ratio
Uf = mean phase of flow velocity
Unl = normal phase of the particle
Un2 = normal components of the particle velocity before impact
Vp1 = tangential components of the particle velocity after impact
Vp2 = tangential components of the particle velocity after impact
Vf = volume of fluid
Vp = volume of solid particles
λp = bulk viscosity of solid
ρf = density of continuous fluid
ρm = density of pipe bend material
ρp = density of solid particles
μp = shear viscosity of solid particles
μp,bul = particles bulk viscosity
μp,col = particles Collision viscosity
vp = solid particles velocity
fluid velocity
1. INTRODUCTION

Erosion is the phenomena in which material is removed from the target surface/wall due to continuous impingement of solid particles on it and finally component/part fails with elapse of time. Such erosion problems are found in pipelines, bends, elbows, tees, valves, pumps etc. while transporting liquid-solid, gas-solid mixture through these. In power plants erosion occurs due to the transportation of coal water slurry, ash water slurry (Modi et al. 2000) and pneumatic conveying of ash to silo through the pipeline system. Whereas in oil, gas and petroleum production sand particles are entrained which contribute to erosion in the various parts of the pipeline fitting (Edward et al., 2001). Hence erosion phenomenon may be extremely costly; leads to failure of the concerned components or pipeline fittings; require frequent replacement or may arise system’s shut down (Edward et al. 2001). Sand erosion is also concerned with transportation of sand-water slurry through the pipeline system. Due to a sudden change in the flow direction in bends/elbows, the particles cause much erosion in these sections. (Chen et al. 2004, Edward et al. 2001, Wang et al. 2003).

Many researchers have reported erosion models to evaluate the intensity of erosion of target wall. Some of these models are given by (Finnie et al. 1960, Bitter et al. 1963, Neilson and Gilchrist et al. 1968, Mclaury et al. 2004, Huang et al. 2008, Oka et al. 2005, Zhang et al. 2007) and others through experiments. During the last few years, design and performance analysis of fluid mechanics have experienced great progress with the availability of less expensive high performance computers and user friendly computational fluid dynamics (CFD) software’s (J.P. Singh et al. 2017, S. Shyji et al., 2017, E. Shirani K. et al., 2011, Talbi et al., 2009, A. Ababci et al., 2017).

(Zhang et al. 2000) have studied the erosion and corrosion in the pipe using glass particles in CFD with the Lagrangian particle track model. (Edward et al. 2001) have numerically investigated erosion in standard elbows, long radius elbows and plugged tees. They observed low erosion rate due to efficient momentum transfer from the fluid to particles in long radius bend than plugged tees and standard elbow. They also compared the predicted erosion results with experimental data. Gnanavelu et al. (2009), Wang et al. 2009, Gnanuvela et al. 2011) have also measured erosion on a flat plate through jet impingement test (JIT) and also compared with CFD predicted results as well as with erosion models. (Mazumder et al. 2012) have numerically studied the effect of liquid and gas velocities to analyze the maximum erosion magnitude and location in U-bend with different size of particles. (Okita et al. 2012) have studied numerically and experimentally the effect of fluid viscosity on erosion ratio with different size of sand particles at various velocities for water and air flow. (Mansouri et al. 2014) have proposed erosion depth equation using CFD predicted data and submerged jet test methodology. (Safaei et al. 2014) have presented erosion wear in elbow using water-copper particles flow through CFD. They also studied the effect of solid particles concentration, velocity and particles size. (Shahata et al. 2014) has numerically investigated erosion wear in bend using seawater-sand slurry at five different concentrations with laminar and turbulent flow models. (Chen et al. 2015) have carried out the simulation to predict the erosion wear in three different pipe bend angles. The maximum erosion was found near the exit of bends and the erosion intensity was decreased for smaller bend angle. (Solnordal et al. 2015) have evaluated the erosion by pneumatic conveying of sand particles through a standard elbow.

The results revealed that good agreement with experimental data by considering the wall roughness rather than a smooth wall in the simulation. (Duarte et al., 2017) have numerically and experimentally investigated the low erosion on twisted pipe bend than untwisted. Less erosion was found in elbow due to the swirling of particles in the 4-spiral designed pipe than the 8-spiral designed pipe bend and untwisted pipe bend.

CFD validation had been done with experimental data of (Zeng et al. 2014). Hence, CFD is widely used industrial and commercial application to predict the flow behavior of fluid flow and solid particles by imposing the appropriate physical boundary conditions over the CAD-modelled (prototype/model) flow domain. However, for the better understanding of CFD analysis, a physical prototype/model testing may be carried out but it depends upon the industrial application or utility. (Wood et al. 2004). In the present study, the erosion rate was predicted in horizontal pipe-bend for the flow of sand–water suspension.

2. CFD MODELING

In ANSYS R15.0 software package, a standard 90° H-H pipe bend is made as shown in Fig. 1 and the geometry’s detail is given in Table 1. Length of the pipe is sufficient for the fully developed flow through the pipe bend. The properties of carrier fluid and solid particles are described in the Table 2. Hexahedron type elements are used, for CFD post processing simulation. Simulations are carried out at Intel Xenon E51607 v2.30 computer having 2.59

\[\mu_{p,fr} \] particles frictional viscosity

\[\mu_{p,kin} \] particles kinetic viscosity

\[\bar{\tau}_f \] fluid phase stress tensor

\[\bar{\tau}_p \] solid particle phase stress tensor

\[f(\theta) \] impact angle function

\[\theta \] Particle impact angle

The governing equations are solved by Navier Stokes equations and the two phase flow Eular- Lagrangian (DPM) is employed in simulation. Eularian model simulates the continuous phase whereas Lagrangian approach tracks the solid particles. k-ε model turbulent model with standard wall function for near wall treatment, SIMPLE algorithm for pressure–velocity coupling and first order upwind schemes are used. Two way-coupling methodology is applied for solid–liquid phases to solve alternatively by considering their effect on each other. Boundary conditions for the flow domain are set to velocity inlet; pressure outlet and wall with no slip condition as well as roughness constant of 0.5 along with convergence residual 10e-4. The injected particles (I = Ni x Ns counted as 12000) from inlet, when impact on the pipe-bend wall reflect back and rebound many times.

Where \(\theta \) is the particle impact angle. The wear mechanism depends upon the normal and tangential impact. So it is assumed that normal impact contributes to deformation and cutting wear is observed with low impact angles up to 18°.

Table 1 Geometry description

<table>
<thead>
<tr>
<th>Diameter, D</th>
<th>r/D ratio</th>
<th>Total length, L</th>
<th>Density, (\rho_{ns})</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1m</td>
<td>1.5</td>
<td>1.5m</td>
<td>7850 kg/m³</td>
<td>Mild Steel</td>
</tr>
</tbody>
</table>

Fig. 1. Meshing of Pipe Bend.

Hence the particles loose their energy in the form of heat dissipation or material deformation of pipe bends (Mansouri et al. 2015). This loss of energy of particle is taken into account in the form of coefficient of restitution (COR). COR is the ratio of particle impact velocity to the rebound velocity of particle. The reflection coefficients for solid particles in normal \(e_n \) and tangential \(e_t \) directions are given below:

\[
e_n = \frac{V_{nt}}{V_{nt1}}
\]

(1)

\[
e_t = \frac{V_{pt2}}{V_{pt1}}
\]

(2)

In this study, the rebound model proposed by (Grant and Tabakoff 1975, 1973) is used. \(U_{nt} \) and \(\Omega_{pt} \) are the normal and tangential velocity components of the particle velocity as shown in Fig. 2.

\[
e_n = 0.993 - 1.76\theta^2 + 1.46\theta^2 - 0.49\theta^3
\]

(3)

\[
e_t = 0.998 - 1.66\theta^2 + 2.11\theta^2 - 0.67\theta^3
\]

(4)

Fig. 2. Impact of particles on curved wall.

2.1 Continuity Equation

The continuity equation is applied to evaluate the volumetric fraction of discrete phase (p) and continuous phase (i), is proposed by (Jashanpreet Singh et al. 2018) as given below:

\[
\frac{\partial}{\partial t} (\rho_p \text{e}_p) + \nabla (\rho_p \text{e}_p \text{U}_p) = \sum_{i=1}^{n} (m_{pf} - m_{fp}) + S_i
\]

(5)

In Eq. (5), the mass transformation from phase p to f is denoted by term \(m_{pf} \) and effective density of discrete phase (p) is denoted by term \(\rho_p \).

2.2 Momentum Equations

The momentum equations is proposed (Cheng and Mewes et al. 2012) for discrete phase (p) and continuous phase (i) given below:

\[
\frac{\partial}{\partial t} (\rho_p \text{e}_p \text{U}_p) + \nabla (\rho_p \text{e}_p \text{U}_p \text{U}_p) =
\]

(6)

\[
-\rho_p \nabla p + \nabla \text{e}_p + \text{e}_p \nabla \text{e}_p + K_{pf} (\text{V}_p - \text{U}_f)
\]

(7)

Where \(\text{V}_p \) and \(\text{V}_f \) are the phase tensor for discretesolid (p) and continuoustfluid (f) phases (Cheng and Mewes 2012 and Brennen 2005) are given by:

\[
\frac{\partial}{\partial t} (\text{V}_p) + \nabla (\rho_p \text{U}_p \text{V}_p) =
\]

(8)

\[a_p \mu_p (\nabla \delta_p + \nabla \delta_p^T) + a_p (\lambda_p - \frac{2}{3} \mu_f) \nabla \delta_p
\]
\[\tilde{\eta}_f = a_f \mu_f (V^2 + \nabla \tilde{\eta}) \] (9)

In Eq. (6), \(K_{pf} \) represents the solid-liquid exchange coefficient whereas \(K_{pf} = K_{sp} \).

\[K_{pf} = 150 \frac{a_f (1 + a_f) \mu_f}{a_f d_p^2} + 1.75 \frac{\rho_f a_f}{d_p} \left| V_p - U_f \right| \] (10)

In Eq. (7),

\[p_p = \left(a_p \rho_p \theta_p \right) + 2 \rho_p (1 + \epsilon_{pp}) a_p g_{o, pp} d_p \]

where, \(g_{o, pp} \) represents the intermolecular collision between grains of the solid particles, (Cheng and Mewes 2012 and Brennen 2005) represented as:

\[g_{o, pp} = \left(a_p \rho_p \theta_p \right) + 2 \rho_p (1 + \epsilon_{pp}) a_p g_{o, pp} d_p \theta_p \]

\[s_{o, pp} = \left[1 - \frac{a_p}{a_p, \text{max}} \right]^{-1} \] (11)

In Eq. (8), \(\lambda_p \) represents the bulk viscosity between particles of discrete phase (Chen, L. et al. 2009) is given by:

\[\lambda_p = \frac{4}{3} (a_p \rho_p d_p g_{o, pp}) (1 + \epsilon_{pp}) \left(\frac{\theta_p}{\pi} \right)^2 \] (12)

\(\mu_p \) Represents the shear viscosity of discrete phase solid particles which rises due to the momentum exchange between solid particles by means of collision and translation (Duan et al. 2009) can be written as:

\[\mu_p = \mu_{p, \text{col}} + \mu_{p, \text{kin}} + \mu_{p, \text{bulk}} \] (13)

In above equation, terms \(\mu_{p, \text{col}}, \mu_{p, \text{kin}}, \mu_{p, \text{bulk}} \) indicates the collisional, kinetic and bulk viscosities which are simplified as:

\[\mu_{p, \text{col}} = 4 \left(\frac{a_p \rho_p d_p g_{o, pp}}{1 + \epsilon_{pp}} \right) \left(\frac{\phi_p}{\pi} \right)^2 \] (14)

\[\mu_{p, \text{kin}} = \left(10 \rho_p d_p \left(\frac{\rho_p}{\pi} \right)^2 \left(1 + \epsilon_{pp} \right) \right) a_p \]

\[\mu_{p, \text{bulk}} = \frac{p_p \sin \phi}{2} \frac{\sin \phi}{2} \] (16)

\[\frac{\partial \rho_f}{\partial t} + \nabla \cdot \left(\rho_f \mathbf{V}_f \right) = 0 \] (17)

\[\nabla \left(\frac{\mu + \frac{\mu_f}{\sigma_e}}{\nabla} \right) \cdot \mathbf{V} + G_k \mathbf{F}_k \in \] (18)

\[\mathbf{U}_f = \overline{\mathbf{U}_f} + \mathbf{U}_f \] (19)

Where, term \(\overline{\mathbf{U}_f} \) represents the mean phase of flow velocity. Equation (19) predicts the value of liquid flow fluctuating velocity in large number of iterations that evaluates the dispersion of solid particles due to the turbulence effect.

2.2 Particle Tracking Equation According to Newton’s Second Law

Trajectories of Particle are tracked by the Euler-Lagrange Model in which a number of iteration is apply on equation to find a solution. A number of trajectories of particles are used to make perfect wall collision sites of particle. In the current study, a k- \(\epsilon \) turbulence model is using to track the discrete phase in the flow field (Dewan et al., 2011):

\[m_p \frac{d\mathbf{V}_p}{dt} = F_A + F_B + F_D + F_P \] (20)
Added force:

\[
F_A = \frac{1}{12} \pi d^3 \rho_p \frac{dV_p}{dt}
\]

(21)

Buoyancy force:

\[
F_B = \frac{1}{6} \pi d^3 (\rho_p - \rho_f) g
\]

(22)

\[
F_D = C_D \rho_f \frac{\pi d^2}{8} (V_f - U_p) \left(U_f - V_p \right)
\]

(23)

\(C_D \) is Drag coefficient given by:

\[
C_D = \frac{24}{Re} \left(1 + 0.15 Re^{0.687} \right)
\]

(24)

\(Re \) is Relative Reynolds number. The Reynolds number obtain after dividing the inertia to viscous force. It determined the fluctuation of the discrete phase (p) and continuous phase (f). The equation is written as:

\[
Re = \frac{\rho_p d^2 V_p}{\mu_f}
\]

(25)

\(F_p \) is Pressure Gradient force:

\[
F_p = \frac{1}{4} \pi d^3 \nabla p
\]

(26)

2.3 CFD Based Erosion Wear Model

Discrete phase model (DPM) is applied to predict the erosion wear in the pipe bend for the flow of solid-liquid suspension. DPM solves the generalized erosion wear equation tracks the solid particles in fluid flow. (Edwards 2000)

\[
E_r = \sum_{p=1}^{N_{\text{particle}}} \frac{m_p P_s f (\partial \psi / \partial t)}{A_{face}}
\]

(27)

Where \(P_s \) is taken as 1 for triangular, 0.53 for semi-round, 0.2 for spherical shape, \(n \) is velocity exponent varies from 2 to 3 for ductile material.

Validation of Numerical Model

Present simulation results are validated with Experimental data of (Zeng et al. 2014). They experimentally measured the erosion corrosion in 90° elbow having diameter of 50 mm and radius of curvature of 76.9 mm. For fully developed flow, the horizontal and vertical lengths of the pipe were taken as 1 m and 0.5 m respectively. They used the spherical shape of sand particles with the size of 450 µm. The flow velocity is taken as 4 ms⁻¹. The parameters used in simulation are mentioned in Table 3. Figure 3 shows the comparison between present simulation results and experimental data of (Zeng et al. 2014) at \(\phi = 180^\circ \) of pipe bend. Although the predicted CFD simulation results having ±12% error but model shows relatively good in agreement with (Zeng et al. 2014) experimental data.

Table 3 Experimental data of (Zeng et al. 2014)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier fluid</td>
<td>Water</td>
<td>1000 kg/m³</td>
</tr>
<tr>
<td>Carrier fluid density</td>
<td></td>
<td>1000 kg/m³</td>
</tr>
<tr>
<td>Solid particles</td>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>Particle diameter</td>
<td>450µm</td>
<td></td>
</tr>
<tr>
<td>Solid particles mass flow rate</td>
<td>235g/sec</td>
<td></td>
</tr>
<tr>
<td>Pipe material density</td>
<td>7800kg/m³</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 3. Comparison of Predicted results with experimental data of (Zeng et al. 2014).](image)

3. RESULTS AND DISCUSSION

3.1 Effect of Particle Velocity

In the solid liquid flow of water and sand particles, the sand particles can be assumed to be analogous to the gas particles, and all the laws which control/define their motion can also be used to great extent for the solid particles dispersed in a liquid phase. So according the kinetic theory, the solid particles at higher velocities possess a higher kinetic energy. The randomness in the particle’s motion is reported to increase exponentially with kinetic energy. So, in the case of the sand particles, the motion is more random at higher velocities (6-8 m/s⁻¹). As a result, greater erosion is expected at 6-8 m/s⁻¹. In the present case, the erosion wear of the subjected parts is observed to increase exponentially. As the velocity increases 0.5-2, 2-4, 4-6, 6-8 m/s⁻¹ the momentum of the impacting particles also increases, which corresponds to maximum erosion rate at bend section rather than straight pipe. At the low flow velocity most of the particles settle down and slide slowly over the lower side of the pipe-bend where the erosion severity exists as shown in Fig. 4. As velocity gradually increases from 0.5 to 8 m/s⁻¹, particles start to entrain into the flowing fluid and due to the momentum, particles deviate from the streamline in curved section and hence strike on Extrados wall of the bend as shown in Fig. 4 where high erosion wear is observed. Hence, the effect of particle velocity is observed as presented in Fig. 5, in which the erosion rate is increasing with particles velocity.

683
3.3 Effect of Solid Concentration

Generally, the erosion severity is increased with the solid particles concentration. So, the predicted results are good in agreement with previous experimental and numerical approaches used by many authors. The increase in the concentration does not always increase the erosion percentage correspondingly; sometimes the percentage may decrease due to the deposition or settling of particles at bottom region in the pipe-bend wall. This deposition or settling of particles is because of low flow velocity of particles which tends to decrease in erosion percentage or low erosion wear at bottom side in pipeline. However, increasing the solid phase concentration leads to increase in pressure drop in pipe line during the slurry transportation.

3.2 Effect of Particle Size

The results shown by Fig. 6 reveal that the lowest erosion wear is predicted for 183µm particle size of sand particles as compared to 277µm sand particle for all velocities and concentrations. Although particles size do not show any significantly results for low velocity up to 2 m/s after that erosion rate is increasing instantly for both concentrations and velocities. For 183µm sand particles size, the maximum erosion wear percentage is increased by 1.36, 2.06, 2.36, 1.06% at velocities ranging from 0.5-2, 2-4, 4-6 and 6-8 ms⁻¹ for concentration of 2.5% respectively. Similarly for 277µm, erosion rate is increased by 2.80, 1.09, 2.21, and 1.26% at velocities ranging from 0.5-2, 2-4, 4-6 and 6-8 ms⁻¹ respectively.
3.4 Turbulence Intensity Distributions

Figure 7 and Fig. 9 show the turbulence intensity of solid liquid inside the pipe bend before (black) and after (red) the bend section. The turbulence intensity is found to be uniform at the bend inlet section but in the curved section the turbulence intensity is observed to increase at the region close to bend’s intrados. This happens due to the centripetal force of action in the curved section. As a result of which particles are seen to be moving from the outer radii to inner radii of pipe-bend section as shown in Fig. 8. Particles start moving from the interior wall and strike the exterior wall, causing erosion at the wall. Figure 9 clearly depicts the aforementioned statement, indicative from the velocity vectors. Therefore, the turbulence intensity is observed to increase from 14 to 15, 25 to 28, 36 to 42, 48 to 57% at velocities of 2, 4, 6, 8 ms$^{-1}$, respectively.

3.5 Erosion Rate Distributions

Figure 4 shows the erosion rate on the pipe bend wall at different velocity. At velocities of 2 ms$^{-1}$ and 4 ms$^{-1}$ the erosion rate becomes 5×10^4 kgm$^{-2}$s$^{-1}$ at distance of 1.3 m and 4.25×10^5 kgm$^{-2}$s$^{-1}$ at distance 1.33 m, whereas at higher velocity 4-6 and 6-8 ms$^{-1}$ the erosion rate is observed 4.80×10^6 kgm$^{-2}$s$^{-1}$ and 1×10^7 kgm$^{-2}$s$^{-1}$ at the distance of 1.32 m and 1.37 m respectively.

4. CONCLUSION

In the present study, a CFD based erosion model is employed to evaluate the erosion rate in horizontal pipe bend. Also, the effects of particles velocity, particles size and solid concentration have been studied

- The predicted results show that the erosion rate is influenced by particle impact velocity. An exponential relationship take place between erosion rate and particle impact.
- At low velocity, erosion is observed at the bottom side of the pipe bend due to settling and low inertia as well as gravitational acting force in the particles.
- Maximum erosion rate is predicted in curved section rather than straight one. Maximum erosion magnitude is observed at location of 1.33m (approx.) for different velocities.
- As the velocity is increased, the maximum erosion location is shifted toward the convex side of the bend due to centripetal force of action.
- Solid particles concentration and particle size contribute significantly to increase in erosion rate. As the solid concentration is increased, the probability and frequency of particle-pipe collisions increases. This increase is observed to a certain value of solid concentration. As the concentration is increased beyond this limit, the particles start settling at the bottom of the pipe, which further reduces the collisions between pipe and the particles. The larger particles have greater momentum as compared to the smaller particles. As a result, the larger particles cause greater erosion as compared to the smaller ones.
- Due to the momentum in the particles turbulence intensity increase in inner side of the bend rather than outer size.

REFERENCES

Grant, G. and W. Tabakoff (1975). Erosion

