Mathematical Analysis of Effects of Surface Roughness on Steady Performance of Hydrostatic Thrust Bearings Lubricated with Rabinowitsch Type Fluids

U. P. Singh

Rajkiya Engineering College, Sonbhadra, Uttar Pradesh, India

Email: jens4phd@gmail.com

(Received June 27, 2019; accepted December 21, 2019)

ABSTRACT

The objective of present theoretical analysis is to study the combined influence of surface roughness and lubricant inertia on the steady performance of stepped circular hydrostatic thrust bearings lubricated with non-Newtonian Rabinowitsch type fluids. To take the effects of surface roughness into account, Christensen theory of rough surface has been adopted. Solution for momentum equation has been derived for radial and circumferential roughness patterns. Results for film pressure, load carrying capacity of bearing and lubricant flow rate has been plotted and analyzed on the basis of numerical results. Due to surface roughness, significant variations in these properties have been observed.

Keywords: Hydrostatic lubrication; Pressurized bearings; Rabinowitsch type fluids; Surface roughness; Thrust bearings.

NOMENCLATURE

\[\begin{align*}
E(.) & \quad \text{expectancy function} \\
F & \quad E(I) \\
f(.) & \quad \text{probability density function of the stochastic film thickness} \\
H & \quad \text{dummy variable to define } E(h^r) \text{ for radial and transverse roughness} \\
\bar{h}, \bar{h} & \quad \text{nominal smooth part of film thickness, } h = \frac{\bar{h}}{R} \\
\bar{f}, \bar{f} & \quad \text{total film thickness, } h = \frac{\bar{f}}{R} \\
\bar{h}_a, \bar{h}_s & \quad \text{part of film thickness due to asperities, } h_s = \frac{\bar{h}_s}{R} \\
I & \quad \frac{\pi}{\bar{f}} \left(\frac{20 \bar{v}^2}{2} + \frac{2p}{\bar{v}} \right) d\bar{z} \\
P_0 & \quad \text{supply pressure} \\
p, \bar{p} & \quad \text{film pressure, } p = \frac{\bar{p}}{P_0} \\
P & \quad E(p) \\
P_l, P_R & \quad \text{dimensionless pressure in land and recess region respectively} \\
Q, Q & \quad \text{lubricant flow rate } Q = \mu \bar{Q}/p_R R^3 \\
R & \quad \text{bearing radius}
\end{align*} \]

\[\begin{align*}
\bar{r}, \bar{r} & \quad \text{variable in radial direction, } r = \frac{\bar{r}}{R} \\
\bar{r}_0, \bar{r}_0 & \quad \text{radius of supply hole, } r_0 = \frac{\bar{r}_0}{R} \\
\bar{r}_s, \bar{r}_s & \quad \text{step position, } r_s = \frac{\bar{r}_s}{R} \\
S & \quad 3 \frac{\rho r^2 \Omega^2}{20} \bar{p}_0 \quad \text{(inertia parameter)} \\
\bar{u}, \bar{v} & \quad \text{radial velocity, } u = \frac{\bar{u}}{\bar{v}} \bar{r}_0 \\
\bar{v}, \bar{v} & \quad \text{circumferential velocity, } v = \frac{\bar{v}}{\bar{v}} \bar{r}_0 \\
\bar{W}, \bar{W} & \quad \text{load carrying capacity, } W = \frac{\bar{W}}{2\pi^2 \bar{p}_0 R_0} \\
\bar{z}, \bar{z} & \quad \text{variable in } Z\text{-direction, } z = \frac{\bar{z}}{R} \\
\alpha & \quad \frac{\kappa^2}{2} \\
\beta & \quad \text{film thickness ratio} \\
\delta & \quad \frac{P_d h_s}{n} \\
\kappa & \quad \text{coefficient of pseudoplasticity} \\
\mu & \quad \text{viscosity} \\
\mu_\mu, \mu & \quad \text{viscosity of fluid, } \mu = \frac{\mu}{\mu_\mu} \\
\bar{\tau}_R, \bar{\tau}_R & \quad \text{shear stress, } \tau = \frac{\bar{\tau}_R}{\bar{r}_R} \\
\end{align*} \]

1. INTRODUCTION

Amongst the externally pressurized bearings, circular hydrostatic thrust bearings are of great importance for industrial and engineering applications due to its wide uses in high speed rotating machines. Researchers have also paid significant attention towards improvement of performance of these bearings under various operating and lubricating conditions (Singh et al.}

Several investigations have been carried out to analyse the dependence of different performance properties of these bearings on rotational inertia, fluid compressibility and temperature variation of the fluid (Coombs and Dowson 1964; Peterson et al. 1994; Kapur and Verma 1979). Optimization of design of hydrostatic thrust bearings with special consideration on shape and radii of recess and supply hole, and different operating conditions have been done time-to-time (Singh et al. 1983; Sharma et al. 2002; Tian et al. 2018; Younes 1993; Bakker and van Ostayen 2010; Sawano et al. 2015). Yadav and Kapur (1981) considered the simultaneous effects of temperature and rotational inertia of fluid on the overall performance of hydrostatic step thrust bearings. Some investigators also focused their attention to analyse the dynamic performance of hydrostatic thrust bearings lubricated with couple stress fluids (Zhicheng et al. 1993; Lin 1999).

On the same time, many researchers also emphasized that roughness of lubricated surfaces plays very important role on the performance of bearings (Christensen 1969). Prakash and Tiwari (1985) presented the analysis of porous bearing with surface corrugations. Singh et al. (1993) studied the characteristics of corrugated thrust bearings. Lin (2000) analysed the dynamic stiffness and damping of hydrostatic thrust bearings with corrugated surfaces. Xuebing et al. (2009) investigated the effects of centripetal inertia on spherical shaped hydrostatic thrust bearings with rough walls. Xuebing et al. (2009) investigated the effects of surface roughness and rotational inertia on performance characteristics of high speed hydrostatic thrust bearings. Walicka et al. (2014) considered Ellis fluids model to analyse various performance characteristics of thrust bearing with rough walls.

Researchers also paid attention towards stabilizing the performance of industrial and commercial lubricants. It was observed that viscosity index of lubricants can be improved by blending high molecular weight polymer solutions to them (Stokes 1966; Wada and Hayashi 1971; Spikes 1994). Theoretical studies of different lubrication regimes with such additive based lubricants have been done with different non-Newtonian fluid models. Some of such models are Casson, Ellis, micropolar, power-law and couple stress models. Rabinowitsch or cubic stress model (Singh et al. 2011b; Singh et al. 2013a; Singh et al. 2012c) is one of the best fluid models to describe viscosity dependent characteristics of fluids. Wada and Hayashi (1971) showed with an experimental verification that this model accurately fits viscosity data of lubricants blended with additives. For one-dimensional fluid flow, Rabinowitsch fluid model is defined as following empirical relation:

\[
\tau_{rz} + \kappa \tau_{rzz} = \mu \frac{\partial \bar{\mu}}{\partial \varepsilon}
\]

(1)

where \(\bar{\mu}\) is viscosity of fluid at zero shera rate, \(\kappa\) - coefficient of pseudoplasticity is responsible for non-Newtonian behaviour of fluids. This model works for Newtonian fluids (\(\kappa = 0\)) and pseudoplastic fluids (\(\kappa > 0\)). In the present decade, this model has been one of the frequently used fluid models for theoretical study of bearings (Bourging and Gay 1984; Hayashi and Wada 1974; Hashimoto and Wada 1986; Lin 2001). Singh et al. (2011a) presented theoretical analysis of pressurized flow between two curvilinear surfaces of revolution. Lin (2012) studied the characteristics of In the present investigation, it is proposed to uncover the combined influences of surface roughness, fluid inertia and non-Newtonian fluids on the performance properties of a hydrostatic thrust bearing using Rabinowitsch fluid model squeeze films between parallel annular plates. Singh et al. (2012b), Singh et al. (2012a), Singh et al. (2013b) investigated influences of non-Newtonian pseudoplastic lubricants on the various performances of squeeze films and hydrodynamic sliders. Singh et al. (2017), Singh et al. (2018) and Bhatt et al. (2017) also extended the applications of this fluid model to study peristaltic flow regimes of physiological fluids. Recently, Walicka et al. (2017b), Walicka et al. (2017a) used this model for theoretical investigation of film characteristics between two curvilinear rough surfaces. In light of this discussion, it is observed that type of lubricants and surface roughness are important considerations for theoretical prediction of bearings properties, life and stability. But none of the researchers has involved Rabinowitsch fluid model in theoretical analysis of hydrostatic thrust bearings, considering these aspects (surface roughness, non-Newtonian lubricant and fluid inertia) altogether.

In the present investigation, it is proposed to uncover the combined influences of surface roughness, fluid inertia and non-Newtonian fluids on the performance properties of a hydrostatic thrust bearing using Rabinowitsch fluid model.

2. Constitutive Equations

A schematic configuration of circular plates hydrostatic step thrust bearing with rough surfaces is shown in Fig.1. It is assumed that the lubricant is incompressible and non-Newtonian, the body couples and forces are not present, and usual assumptions of hydrodynamic lubrication are applicable to lubricant film. Under these assumptions, the governing equations for one dimensional, axially symmetric fluid flow in hydrostatic circular thrust bearings in dimensionless form (c.f. Appendix – A), together with constitutive Eq. (1) can be written as:

\[
\tau_{rz} + \alpha \tau_{rzz} = \mu \frac{\partial u}{\partial r}
\]

(2)

\[-\frac{20}{3} \frac{\tau^2}{r} + \frac{\partial}{\partial r} \left(\frac{\partial \tau_{rz}}{\partial r} \right) = 0\]

(3)

\[0 = \rho \frac{\partial u}{\partial r} \]

(4)

\[0 = \frac{\partial}{\partial r} (ru) \]

(5)

These equations satisfy the boundary conditions \(u = 0\) at \(z = 0.5\); \(v = 0\) at \(z = 0\) and \(v = r \Omega\) at \(z = 0\); \(p(r) = 1, p(l) = 0\). The lubricant film thickness is
taken as $h = bh + h_s$, where h is the nominal smooth part of the film thickness, b is step ratio, h_s is the part of film thickness due to asperities on the surface measured from smooth level. In case of radial roughness, $h_s = h_s(\theta, \zeta)$, and in case of transverse or circumferential roughness, $h_s = h_s(r, \zeta)$; where, ζ is a random variable to characterize some definite arrangement of the surface asperities.

$$f(h_s) = \begin{cases} \frac{3}{20}(c^2 - h_s^2)^{3} - c & \text{for } 0 < h_s < c \\ 0 & \text{elsewhere} \end{cases}$$ \hfill (8)

and defining the expectancy function $E(\Theta)$ as:

$$E(\Theta) = \int_{-\infty}^{\infty} \Theta f(h_s) \, dh_s$$ \hfill (9)

stochastic form of Eq. (7) can be written as (c f. Appendix - B):

$$E(H^3)F = -\frac{6\mu Q}{\pi r E(H^2)^2} + \frac{3}{20} \alpha E(H^3)^2$$ \hfill (10)

where, $E(I) = F$; $E(H^3) = E(\tilde{H}^3)$ for radial roughness and $E(H^4) = \frac{1}{6} \alpha$ for circumferential roughness; c is the half range assumed by the random film thickness variable ζ with the standard deviation σ. The function $f(h_s)$ - defined in Eq. (8) terminates at $c = 3\sigma$. In the present analysis, c will be referred to as roughness parameter.

As Eq. (10) is nonlinear in F, it is not easy to solve it for analytical solution of pressure. Therefore, perturbation method is adopted to simplify it. Observing that the effective coefficient of E^3 is sufficiently smaller than 1, considering $F = F_0 + \alpha F_1$ will suffice for further analysis and, therefore, Eq. (10) can be simplified to

$$F = -\frac{6\mu Q}{\pi r E(H^2)^2} + \frac{3}{20} \alpha E(H^3)^2$$ \hfill (11)

Noting that $F = E(I) = -\frac{20}{9} \frac{\partial P}{\partial r} + \frac{\partial E(p)}{\partial r}$ from Eq. (34) and representing $E(p) = P$, expression for pressure is obtained from Eq.(11) as:

$$P(r) = \frac{10}{9} r^2 - \frac{6\mu Q}{\pi E(H^2)} \log \left(\frac{r}{r_0}\right)$$ \hfill (12)

where, c_1 is the constant of integration.

Using the boundary conditions for pressure, $P(r_0) = E(p(r_0)) = E(1) = 1$ and $P(1) = E(p(1)) = E(0) = 0$ with the additional condition of continuity of pressure at the step, expression for pressure in recess region (P_0) and land region (P_l) are obtained as:

$$P_0(r) = 1 + \frac{10}{9} r^2 - \frac{6\mu Q}{\pi E(H^2)} \log \left(\frac{r}{r_0}\right)$$ \hfill (13)

$$P_1(r) = \frac{10}{9} r^2 - \frac{6\mu Q}{\pi E(H^2)} \log \left(\frac{r}{r_0}\right)$$ \hfill (14)

3.1 Load Capacity and flow Rate

Expression for lubricant flow rate (Q) is derived in Appendix-C. The load capacity of bearing is defined as $W_0 = \int_{0}^{r_0} \tilde{P}(r) \, r \, dr$. Taking $W = \frac{Q}{2n_0 \pi r_0}$, dimensionless load capacity can be calculated as:

$$W = \int_{0}^{r_1} r P(r) \, dr = \frac{r_0^2}{2} + 2 \int_{0}^{r_0} r P(r) \, dr + 2 \int_{r_1}^{r_0} r P(r) \, dr$$ \hfill (15)
4. **PRESSURE DISTRIBUTION**

4.1 **Case I: Radial Roughness**

For the radial roughness, the stochastic film thickness is \(h = \beta h + h_2(\theta, \xi) \) and expressions for pressure in recess and land regions are:

\[
P_h(r) = 1 + \frac{10}{\pi^2} (r^2 - r_0^2) - \frac{6\rho A_1}{\pi} \log \left(\frac{r}{r_0} \right)
\]

\[
= \frac{54}{4} \frac{\alpha}{\pi^2} (r^2 - r_0^2) \left(\frac{1}{\beta} - \frac{1}{r_0^2} \right)
\]

where, \(\rho = \frac{S_0}{\pi r_0^2} \) and \(E(h) = h^3 \beta^3 + \frac{c^2 h^3}{3} \) And \(E(h) = h^3 \beta^3 + \frac{c^2 h^3}{3} \) and expressions for pressure in recess and land regions are:

\[
P_h(r) = 1 + \frac{10}{\pi^2} (r^2 - r_0^2) - \frac{6\rho A_1}{\pi} \log \left(\frac{r}{r_0} \right)
\]

\[
= \frac{54}{4} \frac{\alpha}{\pi^2} (r^2 - r_0^2) \left(\frac{1}{\beta} - \frac{1}{r_0^2} \right)
\]

where, \(A_1 = E(h) \)

\[
= \frac{35}{2(\beta + c)} (36c^2h^2\beta^2 - c^4 - 5h^4\beta^4)
\]

\[
\times \log \left(\frac{h^3\beta^3}{(\beta - c)} \right) + 30ch^3\beta^3 - 26c^3h\beta
\]

(19)

\[A_2 = E(h) \]

\[
= \frac{35}{2(\beta + c)} (3c^4 - 6c^2h^2\beta^2 + 5h^4\beta^4) \times \log \left(\frac{h^3\beta^3}{(\beta - c)} \right) + 30ch^3\beta^3 + 26c^3h\beta
\]

(20)

and,

\[
P_i(r) = \frac{10}{\pi^2} (r^2 - 1) - \frac{6\rho B_1}{\pi} \log \left(\frac{r}{r_0} \right)
\]

\[
= \frac{54}{4} \frac{\alpha}{\pi^2} (r^2 - 1) \cdot \frac{1}{\beta} - \frac{1}{r_0^2}
\]

(21)

where,

\[
B_1 = E(h) \]

\[
= \frac{35}{2(\beta + c)} (3c^4 - 6c^2h^2 - c^4 - 5h^4) \log \left(\frac{h^3\beta^3}{(\beta - c)} \right)
\]

\[+ 30ch^3 - 26c^3h\]

(22)

\[
B_2 = E(h) \]

\[
= \frac{35}{2(\beta + c)} (3c^4 - 6c^2h^2 + 5h^4) \times \log \left(\frac{h^3\beta^3}{(\beta - c)} \right) + 26c^3h - 30ch^3
\]

(23)

such that \(A_1 = \frac{1}{h^3\beta^2}, A_2 = \frac{1}{h^3\beta^2}, B_1 = \frac{1}{h^3}, B_2 = \frac{1}{h^3} \) when \(c = 0 \).

5. **RESULTS AND DISCUSSION**

In order to analyze the effect of roughness on the performance properties of externally pressurized thrust bearings lubricated with non-Newtonian (pseudoplastic) lubricants, pressure and load capacity have been plotted and compared for roughness parameter \(c (0 \leq c \leq 0.005) \) and pseudoplasticity parameter \(a(a = \kappa P_0) \). In order to provide a practical justification to this analysis, values of \(\kappa \) have been taken from experimental work. \(\kappa = 5.65 \times 10^{-4} \text{m}^2/\text{N} \) and \(3.5 \times 10^{-4} \text{m}^2/\text{N} \) (Wada and Hayashi 1971). The values of operating parameters, namely, ratio of film thickness \(\beta = 2, 5 \), inertia parameter \(S = 0,1,2 \); supply radius \(r_s = 0.05 \), and step radius \(r_l = 0.4 \) have been taken from experimental results of Coombs and Dowson (1964). The results obtained for pressure and load capacity for Newtonian as well as pseudoplastic lubricants are compared with the experimental results of Coombs and Dowson (1964) and established theoretical results of Singh et al. (2011b).

Figure (2) shows the variation of film pressure along the radial direction for step ratio \(\beta = 2.18 \) and values of roughness parameter (c), coefficient of pseudoplasticity (\(\kappa \)) and inertia parameter (S). To maintain the graphical clarity, the results for radial and circumferential roughness have been presented as separate figures. In both the case of radial and circumferential roughness patterns, the dimensionless pressure for \(c = 0 \) is same as obtained by Singh et al. (2011b) for each value of S, which validates the present results for smooth surfaces. It is, further, observed that radial roughness lowers the dimensionless values of film pressure, while the circumferential roughness increases the dimensionless pressure. In case of the radial roughness patterns \((c = 0.0005) \), the pressure is less than that for \(c = 0 \) for Newtonian as well as non-Newtonian lubricants, and the trend holds for each value of S, whereas reversed results are obtained for circumferential roughness patterns. Further, in comparison to smooth surface, the theoretical values of pressure obtained for rough surfaces with radial roughness are closer to the experimental values. Pressure for radial roughness \((c = 0.0005) \) and non-Newtonian lubricants \((\kappa = 5.65 \times 10^{-4}) \) are more close to the experimental results of Coombs and Dowson (1964) than the earlier theoretical results (Singh et al. 2011b).

In Fig. (3), similar variation of profile of dimensionless pressure has been obtained and compared with established theoretical and experimental results for step ratio \(\beta = 1.54 \). This establishes the sustainability of present results of film pressure for surface roughness. Furthermore, all the figures for pressure also shows that the effects of surface roughness and non-Newtonian pseudoplastic lubricants are more significant at higher values of inertia parameter S.
Figure (4) shows variation of load capacity with respect to the step position r_1 for different values of c, κ and S. In case of radial roughness ($c = 0.0005$), the load capacity is less than that for smooth surfaces in both the cases of Newtonian and non-Newtonian lubricants, and the trend of variations sustain for each value of S. In case of circumferential roughness, the results are reversed and sustain for variation in other operating and fluid parameters. Furthermore, it can be clearly observed from the figures that higher is the value of inertia parameter S, more significant are the effects of surface roughness and non-Newtonian lubricants.

In order to observe precisely the influence of amount and patterns of surface roughness on the load capacity, Fig. (5) has been produced. This figure shows variation of non-dimensional load carrying capacity with respect to roughness parameter c for values of S and κ, and a typical value of step parameter $r_1 = 0.4$. Results for both the type of radial and circumferential roughness patterns are plotted simultaneously. It is easy to observe that load capacity decreases with the increase of radial roughness, and increases with the increase of circumferential roughness. The variations sustain...
their nature for Newtonian as well as pseudoplastic lubricants at each value of inertia parameter S. It is also clearly observed that surface roughness has more significant influence on load capacity for higher values of inertia parameter S because high inertia causes faster discharge of lubricant. Hence, as a result of simultaneous influences of inertia, surface roughness, non-Newtonian nature of lubricant, the film pressure and load capacity show too significant amount of variation to be ignored in the optimization and modeling of a hydrostatic thrust bearing.

5.1 Physical Interpretation of Effects of Roughness, Lubricant and Inertia

5.11 Effect of Roughness:
The variation in film pressure due to nature of roughness is physically consistent because in case of radial roughness, asperity ridges and valleys run along the direction of fluid flow. On interaction of fluid with a ridge, fluid tends to flows around the ridge which gives rise to a local pressure drop at a radial point which results into lower load capacity. In case of circumferential roughness, ridges and valleys run in perpendicular to the direction of radial flow, which restricts the available area for flow and diminishes the lubricant flow. This causes an increase in film pressure and, thereby, an increase in load capacity.

5.12 Effect of Lubricant:
Effect of inertia: The pseudoplastic fluids have lower viscosity than the Newtonian fluids, due to which the pseudoplastic lubricants cause faster flow and, thereby, lower film pressure and less load capacity.

5.13 Effect of Inertia:
Inertia of lubricant is the most important factor influencing the performance characteristics of a hydrostatic thrust bearing. Higher inertia causes faster flow rate of lubricant which causes significant drop in film pressure. Lower film pressure results into lower load capacity of the bearing.

6. CONCLUSIONS

Combined effects of surface roughness, non-Newtonian pseudoplastic lubricants and lubricant inertia on the steady performance of hydrostatic thrust bearings, neglecting the radial inertia of lubricant and cavitation effects, have been presented. Rabinowitsch fluid model for non-Newtonian nature of the fluid, Christensen theory for surface roughness and averaged inertia method to derive pressure gradient were used in the analysis, based on which, following conclusions are drawn –

1. In comparison with smooth surfaces, dimensionless film pressure and load capacity is lower for radial roughness and higher for circumferential roughness patterns.

2. With increase of amount of roughness, load carrying capacity decreases for radial roughness.
Singh, Gupta, and Kapur

\[\frac{\partial}{\partial t} \frac{\partial \vec{u}}{\partial r} + \frac{\partial \vec{u}}{\partial r} \vec{\nabla} \vec{u} + \vec{V} : \tau = - \frac{\partial \vec{p}}{\partial r} + \vec{V} \cdot \vec{\tau} \]

(24)

where \(q = (\vec{u}, \vec{v}, \vec{w}) \) is the velocity of the fluid, \(\vec{B} = (\vec{B}_x, \vec{B}_y, \vec{B}_z) \) is body force per unit mass and \(\vec{p} = \vec{p}(x,y,z) \) is film pressure, \(\rho \) is fluid density and \(\tau \) is stress tensor.

Equation of continuity for fluid flow is given as:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \]

(25)

In absence of external body forces, the Navier-Stoke Eqs. (24) for incompressible fluids can be represented in cylindrical polar coordinate system as:

\[\rho \left(\frac{\partial \vec{u}}{\partial r} + \frac{\partial \vec{v}}{\partial \theta} + \frac{\partial \vec{w}}{\partial z} \right) = - \frac{\partial \vec{p}}{\partial r} + \frac{\partial (\rho \vec{u})}{\partial r} + \frac{\partial (\rho \vec{v})}{\partial \theta} + \frac{\partial (\rho \vec{w})}{\partial z} \]

(26)

The equation of continuity (25), in this case, can be written as:

\[\frac{\partial}{\partial r} (\rho \vec{u}) + \frac{\partial \rho}{\partial r} \vec{u} + \frac{\partial \rho}{\partial \theta} \vec{v} + \frac{\partial \rho}{\partial z} \vec{w} = 0 \]

(27)

The assumptions of thin film lubrication (Cameron 1976) and symmetry of flow applicable to circular bearings, Eqs. (26-29) can be re-written as:

\[- \frac{\rho \vec{u}^2}{r} = - \frac{\partial \rho}{\partial r} + \frac{\partial \rho u}{\partial \theta} \]

(30)

\[0 = \frac{\partial \rho u}{\partial z} \]

(31)

\[0 = \frac{\partial \rho}{\partial \theta} \]

(32)

\[\frac{1}{r} \frac{\partial}{\partial r} (\rho \vec{u}) + \frac{\partial \rho}{\partial z} = 0 \]

(33)

System of Eqs. (30-33) have to be solved under the conditions \(\vec{u} = 0, \vec{v} = 0, \vec{w} = 0 \) at \(\vec{z} = 0, \vec{z} = 0 \); \(\vec{v} = 0 \) at \(\vec{z} = 0 \; \vec{z} = 0 \); \(\vec{v} = 0 \) at \(\vec{z} = 0 \; \vec{z} = 0 \); \(\vec{v} = 0 \) at \(\vec{z} = 0 \; \vec{z} = 0 \); \(\vec{v} = 0 \) at \(\vec{z} = 0 \; \vec{z} = 0 \); \(\vec{v} = 0 \) at \(\vec{z} = 0 \; \vec{z} = 0 \);

\(\vec{v} = R \Omega \) at \(\vec{z} = \vec{z} \); \(\vec{p} = \vec{p}_0 \) at \(\vec{r} = r_0 \) and \(\vec{p} = \vec{p}_0 \) at \(\vec{r} = \vec{R} \).

Now dimensionless form (2-5) can be easily obtained with the dimensionless quantities described in nomenclature.

APPENDIX B

Stochastic form of \(I \) is:

\[E(I) = E \left[\left(-\frac{20}{9} \vec{S} \vec{r} + \frac{\partial \vec{p}}{\partial r} \right) + \left(\frac{\partial \vec{p}}{\partial r} \right) \right] \]

(34)

where, \(E \left(\frac{\partial \vec{p}}{\partial r} \right) = \frac{\partial \vec{p}}{\partial r} \), (Christensen 1969).

Further,

\[E(I^3) = E \left[\left(-\frac{20}{9} \vec{S} \vec{r} + \frac{\partial \vec{p}}{\partial r} \right) \right] \]

(35)

APPENDIX C

CASE I: Radial Roughness

Continuity of pressure, Eqs. (16-17), gives the expression for flow rate as:

\[Q = \left(\frac{\phi}{\pi A} + \sqrt{\frac{\phi^2}{\pi A} + \frac{\mu}{\pi A}} \right)^{1/3} \]

(36)

where, \(\phi = 1 + \frac{9}{10} \vec{S}(1 - \vec{r}^2) \) and,

\[A = \frac{2187 \vec{u}^2}{495 \pi m} \]

\[\times \left(\frac{1}{\vec{r}_1^2} - \frac{1}{\vec{r}_2^2} \right) \]

(37)

\[\times \left(\frac{1}{\vec{r}_1^2} - \frac{1}{\vec{r}_2^2} \right) \]

\[\times \left(\frac{1}{\vec{r}_1^2} - \frac{1}{\vec{r}_2^2} \right) \]

\[\times \left(\frac{1}{\vec{r}_1^2} - \frac{1}{\vec{r}_2^2} \right) \]

CASE II: Circumferential Roughness

Continuity of pressure, Eqs. (18-23), gives the expression for flow rate as:

\[Q = \left(\frac{\phi}{\pi A} + \sqrt{\frac{\phi^2}{\pi A} + \frac{\mu}{\pi A}} \right)^{1/3} \]

(38)
\[-\frac{\beta}{3\alpha} \left(\frac{\varphi}{2} + \sqrt{\left(\frac{\varphi}{2\alpha}\right)^2 + \left(\frac{\beta}{3\alpha}\right)^2} \right)^{-1/3} \]

(39)

where, \(\varphi = 1 + \frac{9}{10}S(1 - r_0^2) \) and,

\[B = \frac{81\mu^2}{5} S^2 \mu^4 \left(\frac{A_1}{A_2} + \frac{1}{r_2} - \frac{1}{r_1} \right) \]

(40)

\[\frac{8\mu}{\pi} \left(A_1 \log \left(\frac{r_2}{r_1} \right) - B_1 \log r_1 \right) \]

(41)

REFERENCES

Transactions 54(5), 723–729.

