Please note that all the papers submitted to JAFM, after revision and prior to acceptance, will be checked with iThenticate, a powerful plagiarism detection software, in order to guarantee the quality of papers being published in JAFM. The papers with 20% or more similarities with any other published journal papers will be rejected.
Published Volumes
Recent Volume

2017 Vol. 10, No. 4

Welcome to the JAFM online scientific journal system

Dear visitor

We hope you have a convenient and pleasant experience in using our JAFM online system. Please do not hesitate to contact us (secretary@jafmonline.net) if you require anything or if you have any suggestions to improve our website.

JAFM is indexed in:

ISI (Thomson reuters) IF (2015)= 0.888
Science Citation Index Expanded (SciSearch)
Journal Citation Reports/Science Edition
Current Contents/Engineering Computing Technology

SCOPUS    SNIP (2015): 1.04  IPP (2015): 0.98  SJR (2015): 0.34

InfoBase    IBI factor(2015): 2.8;  EBSCO

Journal

Journal of Applied Fluid Mechanics

ISSN: 1735-3572    EISSN: 1735-3645

www.jafmonline.net

Editor-in-chief

Prof. Ebrahim Shirani

Email: director@jafmonline.net

Co-Editor

Dr. Ahmad Reza Pishevar

Editorial Manager

Dr. Mohammad Reza Tavakoli

Secretary of JAFM

Mrs. Shakiba Rostami

 

JAFM is an open access, peer-reviewed online journal with a scope that covers all aspects of theoretical, numerical and experimental fluid mechanics. The emphasis is on the applied rather than purely mathematical aspects of fluid mechanics.

 

JAFM offers a rapid and high quality peer-review process overseen by its distinguished international Editorial Board. The journal benefits from an efficient online submission process and online publication upon acceptance.

 

JAFM papers are freely available and the accepted papers are published free of cost.

 


For further assistance for submitting manuscripts, the JAFM secretary may be contacted by the following email address: secretary@jafmonline.net.

 

 

Most Viewed Papers
Vol7 , No 4
Back to list
Title : Visco-Elastic MHD Free Convective Flow through Porous Media in Presence of Radiation and Chemical Reaction with Heat and Mass Transfer
Pages : 603-609
Authors : Rita Choudhury,  Sajal Kumar Das, 
Anstract : An analysis of visco-elastic free convective transient MHD flow over a vertical porous plate through porous media in presence of radiation and chemical reaction with heat and mass transfer is presented. A transverse variable suction velocity is applied on the porous plate. The equations governing the fluid flow, heat and mass transfer are solved by applying multiple perturbation technique. The expressions for transient velocity, temperature, species concentration and non-dimensional skin friction at the plate are obtained and the expressions for transient velocity and non-dimensional skin friction at the plate are illustrated graphically to observe the visco-elastic effect in combination of other flow parameters involved in the solution.
 PDF