iThenticate Please note that all the papers submitted to JAFM, after revision and prior to acceptance, will be checked with iThenticate, a powerful plagiarism detection software, in order to guarantee the quality of papers being published in JAFM. The papers with 20% or more similarities with any other published journal papers will be rejected.
Become a referee
Published Volumes
Recent Volume

Recent Volume

2020 Vol. 13, No. 6

Welcome to the JAFM online scientific journal system

JAFM is indexed in:

ISI (Thomson Reuters) IF (2019)= 0.689

Science Citation Index Expanded (SciSearch)
Journal Citation Reports/Science Edition
Current Contents/Engineering Computing Technology

SCOPUS    SNIP (2019): 0.686   SJR (2019): 0.285   CiteScore (2019): 2.3


Ulrich's Periodicals Directory

AJC        ISC        SID
 Open Access

Journal of Applied Fluid Mechanics

ISSN: 1735-3572    EISSN: 1735-3645


Prof. Ahmad Reza Pishevar


Editorial Manager

Dr. Mohammad Reza Tavakoli

Editorial Assistant

Ms. Shakiba Rostami


JAFM is an open access, peer-reviewed online journal with a scope that covers all aspects of theoretical, numerical and experimental fluid mechanics. The emphasis is on the applied rather than purely mathematical aspects of fluid mechanics.


JAFM offers a rapid and high quality peer-review process overseen by its distinguished international Editorial Board. The journal benefits from an efficient online submission process and online publication upon acceptance.


JAFM papers are freely available and the accepted papers are published free of cost.


For further assistance for submitting manuscripts, the JAFM secretary may be contacted by the following email address:



Most Viewed Papers
Vol13 , No 6 (in progress)
Back to list
Title : Blood Flow in Prefractal Media: Rheological Model Approaches and Sensitivity Analysis
Pages : 1675-1682
Authors : A. Miguel, 
Anstract : The development of microfluidic media supporting blood flow is significant for many applications. Prefractal models have considerable potential for contributing to the study of flow in these media, since information about scale complexity is captured by a small number of parameters. Flows of power law fluids, Bingham fluids and described by the marginal zone theory are considered. In this study, physically based models for estimating the permeability of a microfluidic porous materials are presented. Models are derived assuming that media are represented by a bundle of tortuous capillary tubes with fractal pore-size distributions. They are expressed in terms of porosity, microstructural parameters and fluid characteristics. Expressions for the flow resistance through single tortuous tubes, and the relationship between fluid velocity through tortuous tubes and through straight tubes, in terms of fractal dimensions, are also obtained.