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ABSTRACT 

A supercritical airfoil is geometrically optimized using the new developed adjoint compressible lattice 

Boltzmann method. Minimizing the drag coefficient and eliminating the shock wave on the supercritical airfoil 

surface are considered as the cost function with constraint of fixed lift coefficient. The continuous adjoint 

method is applied to able designers to implement large number of design variables in actual optimization 

problems. The adjoint equation based on the specified cost function and constrains is successfully derived. 

Discretization of the governing equations is carried out using the finite volume approach and 3rd order of the 

MUSCL scheme. The supercritical SC(2)0410 airfoil, which has a strong shock on the top surface at transonic 

cruise conditions, is numerically optimized using the inviscid developed algorithm to eliminate the shock and 

reduce the wave drag. To validate the obtained results and show viscosity effect on the results, the base airfoil 

and optimized one are experimentally tested in a transonic wind tunnel at the same conditions. Pressure 

distribution on the surface of both the base and optimal airfoil are extracted from the experimental tests and 

compared with those of numerical simulations. The results indicate that the developed approach can be properly 

used for supercritical airfoil shape optimization for elimination the shock and reduction the wave drag. 

 

Keywords: Adjoint approach; Aerodynamic shape optimization; Transonic wind tunnel; Supercritical airfoil; 

Wave drag reduction; Lattice Boltzmann method. 
 

 

1. INTRODUCTION 

Wave drag reduction in supercritical airfoils is 

always one of key challenges in design of transonic 

airplanes. Thus, airfoil shape optimization for 

eliminating the shock wave on the airfoil surface at 

such conditions to reduce the wave drag has been 

noticed by researchers for many years.   

In many different optimization algorithms, the adjoint 

method has been well-known and applicable in 

aerodynamic problems. This algorithm can efficiently 

reduce the computation cost, since the computational 

expense incurred in the calculation of the complete 

gradient is effectively independent of the number of 

design variables (Jameson 1998). Jameson et al. 

(2003), (2005), actually could use CFD in shape 

optimization for different configuration such as 

airfoil, wing, wing-body and etc. They have 

successfully used the adjoint shape optimization with 

vast ranges of flow equations in macroscopic level; 

such as the Potential, Euler, NS, RANS and etc. 

equations. Pishevar et al. (2013) and Farrokhfal et al. 

(2014) applied the adjoint method with the Euler 

equation for optimization of the rotor blade and its 

plan form. Leoviriyakit (2005) derived the adjoint 

scheme based on the RANS equations and applied it 

on airfoil and wing plan form optimization. Anderson 

and Venkatakrishnan (1999) applied this approach 

based on the NS equations and unstructured grids.  

Most of research in the adjoint method is performed 

based on the traditional CFD flow solvers like the 

Potential, Euler and NS equations. The Lattice 

Boltzmann method (LBM) has been developed as an 

alternative for the computational fluid dynamics 

approaches in simulation of fluid flows (Kadanoff et 

al. 1989 and Hardy et al. 1973). Specific features of 

the LBM against to the traditional CFD methods 

such as inherent parallelizability, simple explicit 

governing equation, easy access 

to solve pressure field, avoidance of nonlinear 

convective terms unlike the Navier-Stokes/Euler 

equations and so on, result in its vastly using, 
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development and improvement in numerical 

simulations (Frisch et al.1987).  

The standard LBM is extremely limited to simulate 

incompressible flows (Kadanoff et al. 1989) because 

it is constructed basis on Maxwellian expansion with 

low Mach number assumption. However, there are 

many numerical efforts for developing the LB 

models to simulate high Mach number compressible 

flows in recent years (Hardy et al. 1973, Frisch et. al. 

1987, Alexander et. al. 1992, Kun et. al. 2001, Sun 

et. al. 1998). At the first, collision rules on the lattice 

Boltzmann equation (LBE) was constructed by 

Frisch et. al. (1987). Alexander et. al. (1992) 

implemented the LBM to analysis compressible 

flows and simulated the Berqures equation. Kun et. 

al. (2001) presented the BGK-models for viscous 

compressible flows by entering a non-equilibrium 

term to particle distribution functions. Sun et. al. 

(1998) developed a locally adaptive LB model by 

adding a mean flow velocity to local velocity of 

particles for simulating high speed flows. Recently, 

Hi et al. (2013) developed a 3-D LB model based on 

double-distribution function (DVBE) and solved it 

via the finite difference scheme. Qu et al. (2007) 

presented a new fantastic and simple method for 

evaluating distribution function that cover high 

speed flow regime. They used circular function (CF) 

instead of the Maxwellian distribution function. 

They simulated many gas dynamic benchmark 

problems and also validated applied problems such 

as transonic flow over a Rae 2822 airfoil. The Qu 

method was very efficient and applicable for 

development of a new LB model and lattice in all 

flow regimes (Qu et al. 2005 and 2010). So, in this 

paper, the Qu method based on the CF idea was used 

and developed with some numerical efforts to 

capture discontinuities caused in compressible flow 

fields like contact discontinuities and shock waves. 

Very little research has been carried out in 

integration of the LBM and adjoint scheme. Major 

studies in this field have been restricted to topology 

optimization; however, this integration has been 

lightly used in aerodynamic shape optimizations. 

Pingen et al. (2009) used the standard LBM and 

adjoint algorithm for topology optimization and 

sensitivity analysis. Recently, Hekmat et al. (2015) 

developed the adjoint technique based on the 

standard LBM and applied it for flow optimization 

of the channel flow. Some researchers like Li et al. 

(2018) or Ngnotchouye et al. (2011) who have 

combined the adjoint approach and the LBM for the 

inverse problem, have developed it just for 

incompressible conditions using the Maxwell 

distribution function. There are several studies in 

developing the continuous-adjoint based 

optimization using the lattice Boltzmann method 

(Kreissl et al. 2011, Pingen et al. 2008, Tekitek et al. 

2006 and Vergnault et al. 2014). 

However, all of these developed methods have been 

restricted to use the standard LBM in incompressible 

flows or optimize the flow properties.  

According to authors' literature review, the adjoint 

method based on the inviscid compressible LBM has 

not been developed for aerodynamic shape 

optimization. Derivation of the adjoint inviscid 

compressible LBM based the circular function to 

study the supercritical airfoil optimization problem 

has been performed by the authors for the first time. 

Due to universality of Boltzmann equation against 

the Euler/NS equations, the LBM is selected as flow 

solver due to its power and to be economical for 

simulation of large range of Knudsen number of flow 

(Chenghai and Hsu 2003). Also, the circular function 

is chosen as distribution function instead of the 

Maxwell distribution function due to its 

mathematical simplicity and flexibility of new lattice 

definition in simulation of compressible flowfield 

(Qu et al. 2007). Then, the adjoint method is selected 

as the optimization algorithm for calculation of the 

objective function gradient vector. Finally, the 

steepest decent technique is utilized as the gradient 

optimizer due to fast convergence to the optimize 

conditions. The finite volume method is also applied 

to discretize the governing equation which is suitable 

for optimization of both the compressible and 

incompressible inviscid flow. The developed 

procedure can be used for shape optimization at vast 

flow regimes.  

Another innovation is to validate the developed 

algorithm by comparison of numerical shape 

optimization of the supercritical SC(2)0410 airfoil at 

cruise conditions with experimental test results in 

transonic wind tunnel. In this paper, airfoil 

optimization is performed with the objective 

function of minimizing the drag coefficient and 

eliminating the shock wave on the airfoil surface 

with constraint of fixed lift coefficient. The optimal 

airfoil profile is numerically extracted by developed 

inviscid algorithm; however, the obtained profile is 

experimentally tested in the transonic wind tunnel 

with viscosity effect. Pressure distribution on the 

surface of both the base and optimized airfoil are 

extracted from experimental tests and compared with 

those of numerical simulations. Therefore, effect of 

viscosity is investigated in eliminating the shock 

wave of optimized airfoil as the objective function. 

The results indicate that the developed approach can 

be properly used for airfoil shape optimization. 

2. GOVERINIG EQUATIONS 

In this section, the governing equations for the 

compressible LBM are explained and the new 

derived adjoint equation based on the flow governing 

equation is presented. 

2.1 Compressible Lattice Boltzmann 

Method 

The lattice Boltzmann method is developed based on 

the mesoscopic kinetic equations. Since the 

macroscopic fluid dynamics is result of the 

mesoscopic particles behavior, the Boltzmann 

equation defines the statistical concept of a system 

by expression of the density distribution function 

f(x,t). General form of the Boltzmann equation with 

the BGK collision operation is expressed as (Qu et 

al. 2007): 

𝜕𝑓𝑖,𝜐
𝜕𝑡

+ 𝑒𝑖 ∙ 𝛻𝑓𝑖,𝜐 = Ω𝑖(𝑓𝑖,𝜐) 
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Ω𝑖(𝑓𝑖,𝜐) =
1

𝜏
(𝑓𝑖,𝜐

𝑒𝑞
− 𝑓𝑖,𝜐) 

𝑖 = 1,⋯ ,𝑀 

𝜐 = 1,⋯ , 𝐿                                                   (1) 

where, 𝑓𝑖,𝜐  denotes the probability of existing a 

particle at time 𝑡 in location of 𝑥 with velocity of 𝑒𝑖 

and 𝑓𝑖,𝜐
𝑒𝑞

 is equilibrium distribution function. In this 

research, the discrete velocities are defined in 𝑀 =
13 discrete velocities and 𝐿 = 2 energy levels which 

are presented for 2D directions on each lattice. As the 

LB grid is fixed, the problem should be expressed on 

grid scale.  

The standard lattice Boltzmann equation is valid only 

for low-speed and incompressible flows (Chenghai 

and Hsu 2003). The basic Maxwell distribution 

function cannot be used in the standard LB models 

for simulation of compressible flows because it does 

not consider the rotational degree of freedom for 

diatomic or polyatomic molecules. In this paper, the 

circular function method is used to calculate the 

equilibrium distribution functions and remove 

limitations of the LBM in simulation of the 

compressible flows.  

The circular function ( g𝑐 ) means that all mass, 

specific momentum and energy are concentrated on 

a circle located in a space of 𝝃 = (𝜉, η, 𝜆) , where 

(𝜉, η) denotes the coordinate directions and 𝜆 is the 

specific energy levels (Qu et al. 2007). 

g𝑐 = {

𝜌

2𝜋𝑐
             𝑖𝑓 ‖𝝃 − 𝒖‖ = 𝑐 ≡ √𝐷(𝛾 − 1)𝑒 

                𝑎𝑛𝑑  𝜆 = [1 −
𝐷

2
(𝛾 − 1)] 𝑒

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                        

    (2) 

𝒖 is the mean flow velocity, c is effective peculiar 

velocity, and D=2 is the spatial dimension. Although 

this function is very simple, it satisfies all needed 

statistical relations to make the BGK model recover 

the compressible the NS equations. The circular 

function is discretized onto some fixed points in the 

space of 𝝃  to construct the LB model. The 

Lagrangian interpolation is adopted to assign the 

circular function onto a set of discrete points without 

small Mach numbers assumption. In the space of 𝝃, 

there are M discrete points which the circular 

function is discretized onto all directions. The 

density for each discrete point, 𝑖, and velocity, 𝑒𝑖, is 

determined using a weight function 𝜑𝑖,𝜐(𝜉, 𝜆) as: 

𝜌𝑖,𝜐 =
𝜌

2𝜋𝑐
∮𝜑𝑖,𝜐(𝜉, 𝜆)𝑑𝑠                                (3) 

The final circular equilibrium functions, 𝑓𝑖,𝑣
𝑒𝑞

, can be 

obtained using this weight function (Qu et al. 2007): 

𝑓𝑖,𝜐
𝑒𝑞
=

𝜌

2𝜋𝑐
∮𝜑𝑖,𝜐(𝜉, 𝜆)𝑑𝑠                                (4) 

2.2 Definition of Optimization Problem 

The optimization problem is defined such that certain 

objective function should be minimized. In this 

paper, the objective function is to minimize the drag 

coefficient with constrain of the constant lift 

coefficient at cruise conditions. The design variables 

include all of surface points of airfoil geometry at y 

coordinate and the angle of attack. Therefore, the 

cost function gradient vector, δI, is calculated versus 

flow properties and points position on the airfoil 

surfaces. Finally, the obtained gradient vector is 

changed by the steepest descent algorithm to arrive 

to the desired conditions at steady state. 

2.3. Continuous Adjoint Lattice Boltzmann 

Equation 

In this section, adjoint lattice Boltzmann equation is 

derived for the mentioned optimization problem. The 

main objective function, I , is defined as drag 

minimization at constant desired lift coefficient: 

min dI C                                                             (5) 

Design variables are angle of attack,   and airfoil 

surface points  . So, variation of the objective 

function due to design variables can be calculated as: 

d d
d

C C
I C



   
 

 
   

 
                       (6) 

According to aerodynamic constraint of design 

problem, another objective function should be 

considered to keep constant the lift coefficient as: 

dl lI C C                                                            (7) 

where, 
dl

C is the desired lift coefficient. Then the 

adjoint equation has to be solved for both the 

objective functions (Eq. 5 and 7) and the gradients 

are calculated in each design cycle. 

Variation of the constant lift coefficient is zero, so 

variation of the angle of attack can be computed as: 

0l l
l

C C
C



  
 

 
   
 

 

l lC C



 
 

  
   

  
 

(8) 

 

(9) 

By substituting the variation of angle of attack in Eq. 

(8), variation of the main objective function due to 

design variables can be calculated as: 

| |l dC C
I   

  
    

  
 

  

(10) 

| |d lC C

 
 

 
  

 

 

(11) 

The drag and lift coefficients can be defined versus 

surface pressure coefficients ( pC ) as: 

𝐶𝑑 = −∮ 𝐶𝑝(𝑆22𝑠𝑖𝑛𝛼 − 𝑆21𝑐𝑜𝑠𝛼)
𝑐

 (12) 

𝐶𝑙 = −∮ 𝐶𝑝(𝑆22𝑐𝑜𝑠𝛼 + 𝑆21𝑠𝑖𝑛𝛼)
𝑐

 (13) 

where 

21 22,
dS dS

S d S d
d d

 
 

   
    
   

 (14) 

S is the surface function and ( , )   are the 
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coordinate directions in computational plane. For 

computing the objective function variation, the Eq. 

(1) should be rewritten in the computational plane for 

steady state conditions: 

 i, i,

1 2 i, ,i i i

f f
e e f

 


 

 
  

 
                            (15) 

where 1ie  and 2ie  present the contravariant 

velocities in ( , ) 

 

directions, respectively. By 

substituting variation of the pressure coefficient in 

Eq. (9), and using the Lagrange multiplier method to 

the Eq. (14), then variation of the objective function 

can be calculated as: 

  (16) 

where J is the metric Jacobian and q  is the free 

stream dynamic pressure. After some algebraic, and 

eliminating the gain of flow variation, the adjoint 

equation is derived as: 

 , , ,

1 2 , ,

1i i i eq

i i i ie e
t

  

 

  
 

  

  
   

  
   (17) 

where 
,i   is adjoint distribution function and 

,

eq

i 

 
is adjoint equilibrium distribution function which is 

defined as: 

 

 j,

, j,

1 1 ,

M L
jeq

i

j i

f

f



 
 

 
 





                                  (18) 

2.4. Adjoint Boundary Condition 

The adjoint boundary condition is obtained from 

terms of integration of Eq. (15) on the boundary c . 

Since boundary condition is singular after using 

conservation relations, after study, a new relation 

between the pressure and distribution function for 

inviscid adjoint boundary condition is presented as 

follow: 

 , 1 2 1 2

1 1

( )M L
i i i i i

i

f ae be e e
p

a b



 

   
  

 
              (19) 

and 

 

 

1 2 1 2

,

1 1

1 2 1 2

,

1 1

( )

( )

M L
i i i i

i

i

M L
i i i i

i

i

ae be e e
p f

a b

ae be e e
f

a b







 



 

 

   
  

 

   
  

 





         (20) 

where 

,a b
x y

  
 
 

                                                 (21) 

Value of the 
,i   on the boundary c  can be 

derived by making independent of Eq. (15) from 

flow variation: 

 
 

 

1 2
, 22 21

22 21

( )
[ cos sin

sin cos ]

i i
i

e e
S S

q J a b

S S

  

 




   



 

            (22) 

Finally, by substituting the Eq. (19) in Eq. (15), the 

final variation of the objective function can be 

simplified as: 

       (23) 

3. EQUATIONS DISCRETIZATION 

3.1 Flow Equation 

To discretize the lattice Boltzmann equation (LBE) 

for flow simulation using the cell centered finite 

volume method, the conservative form should be 

used [Qu et al. (2007)]: 

𝜕𝑓𝑖,𝜐

𝜕𝑡
+
𝜕𝐹𝑖,𝜐

𝜕𝜉
+
𝜕𝐺𝑖,𝜐

𝜕η
= 𝛺𝛼,𝜐         (24) 

Ω𝛼,𝜐 =
𝑓𝑖,𝜐
𝑒𝑞
−𝑓𝑖,𝜐

𝜏
         (25) 

where Ωα,υ is the collision operation and 𝐹 and G are 

the convection fluxes in 𝜉  and η  directions, 

respectively. The finite volume discrete form of the 
lattice Boltzmann equation can be written as: 

𝑓𝑖,𝑗
𝑛+1  = 𝑓𝑖,𝑗

𝑛 −
∆𝑡

𝑉𝑜𝑙𝑖,𝑗
{(𝐹

𝑖+
1

2
,𝑗

𝑛 ∆𝑠
𝑖+

1

2
,𝑗
+

𝐹
𝑖−

1

2
,𝑗

𝑛 ∆𝑠
𝑖−

1

2
,𝑗
) (𝐺

𝑖,𝑗+
1

2

𝑛 ∆𝑠
𝑖,𝑗+

1

2

+ 𝐺
𝑖,𝑗−

1

2

𝑛 ∆𝑠
𝑖,𝑗−

1

2

)} +

∆𝑡Ω𝑖,𝑗                                                                   (26) 

In Eq.                                                                    (26), 

𝑖, 𝑗  are the cell centers, 𝑉𝑜𝑙𝑖,𝑗  represents the cell 

volume, 𝐹
𝑖±

1

2
,𝑗

  and 𝐺
𝑖,𝑗±

1

2

  are the numerical fluxes 

and  ∆𝑠 is the cell surface.  

Numerical fluxes can be calculated by the Riemann 

solver and interpolation methods. To capture the 

shock waves in numerical simulations of the 

compressible flow, the numerical dissipation or 
artificial viscosity is applied to the solver.  

For spatial discretization of the numerical fluxes, the 

3rd order of MUSCL method is used with a smooth 

limiter to interpolate the fluxes on both sides of the 

cell surface. For example, 𝐹 fluxe can be discretized 
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as: 

𝐹
𝑖+

1

2
,𝑗

𝑛 =  

{
 
 
 

 
 
 (𝑓𝐿)𝑖+1

2
,𝑗
(𝒆𝛼𝜉 ∙ 𝑵𝑖+1

2
,𝑗
)    

𝑖𝑓(𝒆𝛼𝜉 ∙ 𝑵𝑖+1/2,𝑗) ≥ 0 

(𝑓𝑅)𝑖+1
2
,𝑗
(𝒆𝛼𝜉 ∙ 𝑵𝑖+1

2
,𝑗
)    

𝑖𝑓(𝒆𝛼𝜉 ∙ 𝑵𝑖+1/2,𝑗) ≤ 0

              (27) 

where  𝑵𝑖+1/2,𝑗  is the surface normal vector. The left 

(𝑓𝐿 ) and right (𝑓𝑅)  distribution functions of the 

surface can be written as: 

{
  
 

  
 

(𝑓𝐿)𝑖+1
2
,𝑗
=

𝑓𝑖,𝑗 + {
𝑠

4
[(1 − 𝑘𝑠)∆− + (1 + 𝑘𝑠)∆+]}

𝑖
        

(𝑓𝑅)𝑖+1
2
,𝑗
=

𝑓𝑖+1,𝑗 − {
𝑠

4
[(1 − 𝑘𝑠)∆+ + (1 + 𝑘𝑠)∆−]}

𝑖+1

    (28) 

where 𝑘  determines accuracy of the interpolation. 

For example, 𝑘 = 1/3, 0, 1 gives 3rd , upwind 2nd and 

central 2nd order of interpolations, respectively. The 

Van Albada limiter, 𝑠, is also defined as: 

𝑠 =
2∆+∆++𝜀

2

∆+
2+∆−

2+𝜀
                                                        (29) 

where 𝜀 has a very small value about 10−6 and the 

 ∆ operator is expressed as: 

(∆+)𝑖 = 𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗(∆−)𝑖 = 𝑓𝑖,𝑗 − 𝑓𝑖−1,𝑗            (30) 

Other numerical fluxes are also calculated in the 

same way. 

3.2 Adjoint Equation 

In order to discretize the adjoint lattice Boltzmann 

equation (ALBE) for calculation of the objective 

function gradients which are independent to number 

of the design variables, the same method applied to 

the LBE is used. Therefore, the ALBE in 

conservative form in 2D can be written as: 

𝜕𝜓𝑖,𝜐

𝜕𝑡
+
𝜕ℱ𝑖,𝜐

𝜕𝜉
+
𝜕ℛ𝑖,𝜐

𝜕𝜂
=

1

𝜏
(𝜓𝑖,𝜐 − 𝜓𝑖,𝜐

𝑒𝑞
)                  (31) 

where ℱ and ℛ are the adjoint convection fluxes in 

𝜉  and 𝜂  directions, respectively. The finite volume 

discrete form of the adjoint lattice Boltzmann 

equation can be written as: 

𝜓𝑖,𝑗
𝑛−1  = 𝜓𝑖,𝑗

𝑛 +
∆𝑡

𝑉𝑜𝑙𝑖,𝑗
{(ℱ

𝑖+
1

2
,𝑗

𝑛 ∆𝑠
𝑖+

1

2
,𝑗
+

ℱ
𝑖−

1

2
,𝑗

𝑛 ∆𝑠
𝑖−

1

2
,𝑗
) (ℛ

𝑖,𝑗+
1

2

𝑛 ∆𝑠
𝑖,𝑗+

1

2

+ ℛ
𝑖,𝑗−

1

2

𝑛 ∆𝑠
𝑖,𝑗−

1

2

)} −

∆𝑡 (
1

𝜏
(𝜓𝑖,𝑗 − 𝜓𝑖,𝑗

𝑒𝑞
))                                             (32) 

Also, after discretization, the same numerical 

techniques can be applied to solve Eq.                                              

(32).  

At the microscopic level, one can solve the FV-LBM 

to obtain solution of 𝑓𝑖,𝜐. One then takes the moments 

to obtain the microscopic variables at any times 0 ≤
𝑡 ≤ 𝑇𝑠𝑡𝑒𝑎𝑑𝑦 . These are then used to solve the 

mesoscopic adjoint equation backward in time for 

the adjoint variable 𝜓𝑖,𝜐 . The solution is used 

together with optimal condition to obtain the gradient 

of the objective function respect to the design 

variables. 

4. OPTIMIZATION ALGHORITM 

The optimization procedure can be presented as 

following steps: 

step 1. Solve the flow field governing equation, 

Eq. (26), and calculate 𝑓𝑖,𝜐, forward in time 

for 𝛼 and 𝛼 + ∆𝛼. 

step 2. Calculate 𝐶𝑙𝛼 and  𝐶𝑑𝛼. 

step 3. Calculate constant Φ from Eq. (11). 

step 4. Solve the adjoint equation, Eq. (32), 

backward in time to compute 𝜓𝑖,𝜐 for both 

the objective functions. 

step 5. Calculate the gradient vector of main 

objective function using Eq. (23). 

step 6. Modify airfoil shape using steepest descent 

method, 𝑦𝑖,1
𝑛𝑒𝑤 = 𝑦𝑖,1

𝑜𝑙𝑑 − 𝜆 × ∇I  (where 𝜆 

is optimization step size). 

step 7. Calculate the gradient vector of I   

objective function. 

step 8. Modify the angle of attack using Eq. (9). 

step 9. Modify the grid using Jamson’s method. 

step 10. Return to Step 1 until the optimization 

convergence criterion is satisfied.  

For clarification, the flowchart of the present 

algorithms of airfoil optimization is shown in Fig. 

1.  

 

Flow equation solution 

(LBM) for α and α+ α 

Calculation of slops:  Cl/ α  

and  Cd/ α

Calculation of Φ

Solution of adjoint 

equation with I =Cl-Cld 

cost function 

Solution of adjoint 

equation with I=Cd cost 

function 

Calculation of gradients Calculation of gradients

Airfoil shape 

modification due to 

coordinate change (δyi) 

Angle of attack 

modification

Grid modification using 

Jameson’s method

 
step 11.  

Fig. 1. Flowchart of optimization algorithm 

for airfoil optimization. 
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5. NUMERICAL RESULTS 

To determine capability of the derived AFV-LBM 

and optimization algorithm, the supercritical 

SC(2)0410 airfoil is numerically optimized at cruise 

conditions based on minimizing the drag coefficient 

by eliminating the wave drag with constraint of fixed 

lift coefficient. 

5.1. Airfoil Optimization 

In this section, the supercritical airfoil SC(2)-0410 is 

optimized using the developed algorithm at 

0.758M   and 1.29   in inviscid conditions. 

The cost function is to minimize the drag coefficient 

and the optimization constraint is to keep fixed the 

lift coefficient at 0.641lC  . The design variables 

in this problem are the angle of attack ( ) and y 

coordinates of the airfoil surface. Convergence 

history of the drag coefficient reduction, lift 

coefficient constraint and angle of attacks during 20 

design cycle has been presented in Figs. 2 to 4. The 

results indicate that the optimization goal in 

minimizing the drag coefficient and keeping fixed 

the lift coefficient are satisfied after 20 design cycles. 

Geometric profiles of the base and optimized airfoil 

after 20 design cycles have been compared in Fig. 5. 

The optimal airfoil design has been performed using 

the developed optimization algorithm in inviscid 

conditions. Comparison of the Mach number 

contours for both the base and optimized airfoil in 

Fig. 6 indicates that the strong shock wave is 

eliminated in new airfoil profile. Some oscillations 

in contour lines are due to y coordinate movement of 

surface points during the optimization. Comparison 

of the pressure distributions on the base and optimal 

airfoil in Fig. 7 also confirms that the optimization 

approach can eliminate the upper shock wave on the 

airfoil surface.  

 

 
Fig. 2. Lift coefficient history during 20 design 

cycles. 

 
To show accuracy of the developed optimization 

algorithm to achieve our goals in wave drag 

reduction, the coefficients values have been 

presented in table 1. It is obvious that the lift 

coefficient has remained constant for the optimized 

airfoil profile and the drag coefficient has been 

reduced about 49% by neglecting the wave drag. 

Totally, this optimization improves the airfoil 

performance in Cl/Cd about 106%. It is noted that the 

angle of attack has been also decreased to 1 degree 

during the optimization process because it is selected 

as a design variable. 

 

 
Fig. 3. Drag coefficient reduction history during 

20 design cycles. 

 

 
Fig. 4. Angle of attack history during 20 design 

cycles. 

 

 
Fig. 5. Comparison of the base and optimal 

airfoil profile. 
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(a) 

 

 
(b) 

Fig. 6. Mach number contours around the base 

and optimized airfoil. (a) Base airfoil (b) 

Optimal airfoil. 

 

 
Fig. 7. Comparison of the pressure distribution 

on the base and optimal airfoil. 

 

Table 1 Comparison of the base and optimal 

aerodynamic coefficients at design conditions 

Percent of 

Optimization 

Optimal 

Airfoil 

Base 

Airfoil 
Parameter 

Constant 0.641 0.641 CL 

49% 0.00289 0.00568 CD 

106% 232.94 112.82 CL/CD 

 0.998 1.29 AOA 

 

6. WIND TUNNEL TEST 

Since the optimization is numerically performed at 

inviscid conditions, the experimental test has been 

defined to find effect of viscosity in obtained results. 

The results indicate that the viscosity makes the 

shock position on the airfoil surface closer to the 

nose and causes the shock become weaker than that 

in inviscid condition. Thus, it is expected that 

optimization performance designed at inviscid 

conditions does not have the same efficiency. The 

main goal of the experimental test is to find variation 

of optimization performance due to real condition.  

6.1. Experimental Set Up 

 The experimental test has been performed in a high 

speed suction wind tunnel with a test chamber of 

0.6×0.6 m2 with a Mach number of 0.4 to 0.85 (see 

Fig. 8). The free steam turbulence level is 0.5% at the 

most. The chamber's walls are porous which are 

adjustable up to 6%. The tests were performed under 

the conditions and specifications presented in table 

2.  

 

Table 2 Flow Conditions 

Parameters Value 

Mach number 0.76 

Angle of Attack (Base airfoil) (Deg.) 1.2 

Angle of Attack (Optimal airfoil) 

(Deg.) 
1 

Free stream pressure (Pa) 57600 

Free stream dynamic pressure (Pa) 23062 

Free stream temperature (K) 300 

 

 
Fig. 8. Transonic wind tunnel and experimental 

equipment. 

 

The test plan has been involved measuring the 

pressure distribution on the airfoil upper and lower 

surfaces, and qualitative analysis of output data. The 

Mach number measurements, during the tests, were 

done with a pitot-static tube fixed at the model 

upstream whit maximum calculation error of 1%. 

The pressures were measured using differential 

pressure sensors with a measurement range of up to 

15 psi and maximum error of 0.15% span. The 

pressure sensors uncertainty from the sum of the 

random error and the systematic error, in measuring 

the pressure and calculating the pressure coefficient 

was 2.1%. 
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The base model used is a NASA-SC-0410 

supercritical airfoil with a chord length of 20 cm, 

thickness of 2 cm, and span of 60 cm, made of VCN 

steel (see Fig. 9). To measure the pressure 

distribution on the upper and lower surfaces, 32 

pressure taps for optimal airfoil and 40 pressure taps 

for base airfoil have been used, congested more at the 

leading edge.  

The tests error sources include the flow field (both 

non-uniformity and turbulence level in the wind 

tunnel), model installation and α-setting, pressure 

sensors, airfoil model making, linear potentiometer, 

A/D range, and pressure points locations on the 

airfoil, effects of walls, and model blockage. The 

maximum uncertainty of 4% was calculated and 

applied to the obtained results (Haghiri et al. 2015). 

 

 
 

 
 

 
Fig. 9. Optimal airfoil model fixed in the tunnel. 

 

5.1. Experimental Results 

To find effect of viscosity and turbulent flow in 

obtained optimal supercritical airfoil, the numerical 

simulation and experimental test have been 

performed at real conditions in the transonic wind 

tunnel. 

Firstly, the base airfoil (SC(2)-0410) has been 

experimentally tested at transonic cruise conditions, 

M=0.76 and angle of attack of  1.2 degree. Figure 10 

shows comparison of numerical simulation and 

experimental results. The Mach number contours 

prepared from numerical results and shadowgraph 

from experimental test indicates that there is a strong 

shock on the top surface of base airfoil. The pressure 

distributions on the airfoil shows the shock occurs at 

about X/C=0.3. Good agreement of the experimental 

and numerical results demonstrates correct trend of 

this study.  
 

 
(a) 
 

 
(b) 
 

 
(c) 

Fig. 10. Experimental and numerical results 

around the base airfoil (a) Shadowgraph 

visualization, (b) Pressure Contours, (c) 

Comparison of the pressure distributions. 

Secondly, the optimal airfoil, obtained from inviscid 

optimization algorithm, has been experimentally 

tested at transonic optimal conditions, M=0.76 and 

angle of attack of 1 degree. Again, the Mach number 

contours from numerical simulation and 

experimental shadowgraph and comparison of 

pressure distributions on the airfoil surface have been 

shown in Fig. 11. The good agreement of the 
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numerical and experimental results is also seen in 

this test. Some important points can be understood 

from these results. Firstly, as obtained from inviscid 

optimal airfoil design, the shock is also eliminated 

from physical domain at real conditions in the wind 

tunnel. The extracted pressure distribution from the 

experimental test is well shown this fact. Secondly, 

the surface point’s movement in y coordinate during 

the optimization process creates a non-smoothed 

surface which causes some Mach waves and 

oscillations on top of airfoils. Thirdly, gathering 

these Mach waves on top surface of optimal airfoil 

make an expansion wave where located at about 

X/C=0.6.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 11. Experimental and numerical results 

around the optimal airfoil (a) Shadowgraph 

visualization, (b) Pressure Contours, (c) 

Comparison of the pressure distributions. 

To ensure the accuracy of numerical simulation in 

presented results, the grid study is performed using 

comparison of the pressure distribution for three 

types of grid including coarse, medium and fine 

meshes for both the original and optimal models 

(Fig. 12). The total elements of coarse, medium and 

fine grids are about 30,000, 70,000 and 240,000, 

respectively. To accurately capture wall effects, the 

boundary layer grid and standard wall function have 

been applied near the wall for numerical simulation. 

The first boundary layer row has 0.02 mm distance 

from the wall and 20 rows of the boundary layer 

mesh with 1.1 aspect ratio create maximum Y+ about 

15 near the wall. 

The captured Y+ makes us sure that the turbulent 

structure are well captured. The results show that the 

medium grid is proper to numerical simulation. All 

of results presented in comparison with experimental 

data have been extracted by the medium grid. 

 

 
(a) Base Model 
 

 
(b) Optimal Model 

Fig. 12. Grid study of surface pressure 

distribution for numerical simulation. 
 

To more accurate comparison, summary of obtained 

results at real conditions have been presented in table 

3. It is found that the designed optimal airfoil has 

better performance rather than the base airfoil even 

at real conditions, where the lift coefficient has been 

kept fixed and the drag coefficient has been reduced 

about 22% due to eliminating the shock. Although  
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Table 3 Comparison of the base and optimal aerodynamic coefficients at real conditions 

Percent of Optimization Optimized Airfoil Based Airfoil Parameter 

-0.4% 0.5296 0.532 CL 

22% 0.01049 0.0134 CD 

27% 50.46 39.61 CL/CD 

 1 1.2 AOA 

 

 

the designed optimal airfoil has supplied our goals in 

drag reductions, it has lower performance at real 

conditions rather than the inviscid design conditions. 

It is indicated that the viscosity and turbulence 

conditions has reduced the designed airfoil 

performance about 27%. 

5. CONCLUSION 

The present research includes two main parts. The 

first part is to develop a new adjoint compressible 

lattice Boltzmann method to geometrically optimize 

a supercritical airfoil in inviscid conditions. The 

second part is to experimentally investigate the 

obtained optimal airfoil profile in the transonic wind 

tunnel in real conditions. Minimizing the drag 

coefficient and eliminating the shock wave on the 

supercritical airfoil surface are considered as the cost 

function with constraint of fixed lift coefficient.  

In developed code, the circular function is chosen as 

distribution function instead of the Maxwell 

distribution function due to its mathematical 

simplicity and flexibility of new lattice definition in 

simulation of compressible flowfield. The 

continuous adjoint method is applied for calculation 

of objective function gradient vector. Also, the finite 

volume method is utilized to discretize the governing 

equation which is suitable for optimization of both 

the compressible and incompressible inviscid flow. 

The supercritical SC(2)0410 airfoil has been 

optimized using the developed code at inviscid 

condition. 

For validation of the developed algorithm, the 

optimal airfoil has been experimentally tested in 

transonic wind tunnel with viscosity effect. Pressure 

distribution on the surface of both the base and 

optimized airfoil are extracted from experimental 

tests and compared with those of numerical 

simulations. Therefore, effect of viscosity is 

investigated in eliminating the shock wave of 

optimized airfoil as the cost function. As obtained 

from inviscid optimal airfoil design, the shock is also 

eliminated from physical domain at real conditions 

in the wind tunnel. It is also found that the designed 

optimal airfoil has better performance rather than the 

base airfoil even at real conditions, where the lift 

coefficient has been kept fixed and the drag 

coefficient has been reduced about 22%. 
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