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ABSTRACT 

The objective of present theoretical analysis is to study the combined influence of surface roughness and 

lubricant inertia on the steady performance of stepped circular hydrostatic thrust bearings lubricated with non-

Newtonian Rabinowitsch type fluids. To take the effects of surface roughness into account, Christensen theory 

of rough surface has been adopted. Solution for momentum equation has been derived by means of average 

inertia approach. Analytic expressions for film pressure have been established for radial and circumferential 

roughness patterns. Results for film pressure, load carrying capacity of bearing and lubricant flow rate has been 

plotted and analyzed on the basis of numerical results. Due to surface roughness, significant variations in these 

properties have been observed. 

Keywords: Hydrostatic lubrication; Pressurized bearings; Rabinowitsch type fluids; Surface roughness; Thrust 

bearings. 

NOMENCLATURE 

E(.) expectancy function 

F E(I) 

f (.) probability density function of the 

stochastic film thickness  

𝐻 dummy variable to define E(ħn) for radial 

and transverse roughness  

ℎ ̅, ℎ  nominal smooth part of film  

thickness, h = 
ℎ̅

𝑅
 

ħ̿, ħ ̅  total film thickness, ħ = 
ħ̅

𝑅
 

ℎ̅𝑠,hs part of film thickness due to  

asperities, hs = 
ℎ𝑠
̅̅ ̅

𝑅
 

𝐼 
1

ħ̅
∫ (−

20

3

𝑆𝑣2

𝑟
+

𝜕𝑝

𝜕𝑟
)

ħ ̅

0
𝑑𝓏 

𝑝0 supply pressure 

𝑝, �̅� film pressure, p = �̅�/p0  

P E (p) 

PL, PR dimensionless pressure in land and recess 

region respectively 

Q̅, Q lubricant flow rate  

R bearing radius 

r̅,r variable in radial direction, r = 
𝑟̅

𝑅
 

�̅�0,ro radius of supply hole, r0 = 
𝑟0̅̅̅̅

𝑅
 

�̅�1,r1 step position, r1 = 
𝑟1̅̅̅̅

𝑅
 

S 
3

20

𝜌𝑟2Ω2

𝑃0
  (inertia parameter) 

�̅�, 𝑢 radial velocity, u= 
𝑢

𝑅𝛺
 

�̅�, 𝑣 circumferential velocity, v= 
�̅�

𝑅𝛺
 

�̅�, 𝑊 load carrying capacity,  

�̅�, 𝓏 variable in Z−direction, z = 
�̅�

𝑅
 

𝛼 𝜅𝑝0
2 

𝛽 film thickness ratio 

δ 
𝑝0𝜇0

Ω
  

κ coefficient of pseudoplasticity 

µ viscosity 

�̅�, 𝜇 viscosity of fluid, µ = 
µ

𝜇0
  

�̅�𝑟𝓏 , 𝜏𝑟𝓏 shear stress,   

1. INTRODUCTION 

Amongst the externally pressurized bearings, 

circular hydrostatic thrust bearings are of great 

importance for industrial and engineering 

applications due to its wide uses in high speed 

rotating machines. Researchers have also paid 

significant attention towards improvement of 

performance of these bearings under various 

operating and lubricating conditions (Singh et al. 
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2011b; Singh et al. 2013a; Singh et al. 2012c; 

Hamrock et al. 2004; Bassani and Piccigallo 1992). 

Several investigations have been carried out to 

analyse the dependence of different performance 

properties of these bearings on rotational inertia, 

fluid compressibility and temperature variation of 

the fluid (Coombs and Dowso 1964; Peterson et al. 

1994; Kapur and Verma 1979). Optimization of 

design of hydrostatic thrust bearings with special 

consideration on shape and radii of recess and supply 

hole, and different operating conditions have been 

done time-to-time (Singh et al. 1983; Sharma et al. 

2002; Tian et al. 2018; Younes 1993; Bakker and van 

Ostayen 2010; Sawano et al. 2015). Yadav and 

Kapur (1981) considered the simultaneous effects of 

temperature and rotational inertia of fluid on the 

overall performance of hydrostatic step thrust 

bearings. Some investigators also focused their 

attention to analyse the dynamic performance of 

hydrostatic thrust bearings lubricated with couple 

stress fluids (Zhicheng et al. 1993; Lin 1999). 

On the same time, many researchers also emphasized 

that roughness of lubricated surfaces plays very 

important role on the performance of bearings 

(Christensen 1969). Prakash and Tiwari (1985) 

presented the analysis of porous bearing with surface 

corrugations. Singh et al. (1993) studied the 

characteristics of corrugated thrust bearings. Lin 

(2000) analysed the dynamic stiffness and damping of 

hydrostatic thrust bearings with corrugated surfaces. 

Yacout (2008) studied the effects of centripetal inertia 

on spherical shaped hydrostatic thrust bearings with 

rough walls. Xuebing et al. (2009) investigated the 

effects of surface toughness and rotational inertia on 

performance characteristics of high speed hydrostatic 

thrust bearings. Walicka et al. (2014) considered Ellis 

fluids model to analyse various performance 

characteristics of thrust bearing with rough walls. 

Researchers also paid attention towards stabilizing 

the performance of industrial and commercial 

lubricants. It was observed that viscosity index of 

lubricants can be improved by blending high 

molecular weight polymer solutions to them (Stokes 

1966; Wada and Hayashi 1971; Spikes 1994). 

Theoretical studies of different lubrication regimes 

with such additive based lubricants have been done 

with different non-Newtonian fluid models. Some of 

such models are Casson, Ellis, micropolar, power-

law and couple stress models. Rabinowitsch or cubic 

stress model (Singh et al. 2011b; Singh et al. 2013a; 

Singh et al. 2012c) is one of the best fluid models to 

describe viscosity dependent characteristics of 

fluids. Wada and Hayashi (1971) showed with an 

experimental verification that this model accurately 

fits viscosity data of lubricants blended with 

additives. For one-dimensional fluid flow, 

Rabinowitsch fluid model is defined as following 

empirical relation: 

�̅�𝑟𝓏 + 𝜅�̅�𝑟𝓏
3 = �̅�

𝜕𝑢

𝜕�̅�
                                                    (1) 

where µ̅ is viscosity of fluid at zero shera rate, κ− 

coefficient of pseudoplasticity is responsible for non-

Newtonian behaviour of fluids. This model works for 

Newtonian fluids (κ = 0), dilatant fluids (κ < 0) and 

pseudoplastic fluids (κ > 0) . In the present decade, 

this model has been one of the frequently used fluid 

models for theoretical study of bearings (Bourging 

and Gay 1984; Hayashi and Wada 1974; Hashimoto 

and Wada 1986; Lin 2001). Singh et al. (2011a) 

presented theoretical analysis of pressurized flow 

between two curvilinear surfaces of revolution. Lin 

(2012) studied the characteristics of In the present 

investigation, it is proposed to uncover the combined 

influences of surface roughness, fluid inertia and 

non-Newtonian fluids on the performance properties 

of a hydrostatic thrust bearing using Rabinowitsch 

fluid model squeeze films between parallel annular 

plates. Singh et al. (2012b), Singh et al. (2012a), 

Singh et al. (2013b) investigated influences of non-

Newtonian pseudoplastic lubricants on the various 

performances of squeeze films and hydrodynamic 

sliders. Singh et al. (2017), Singh et al. (2018) and 

Bhatt et al. (2017) also extended the applications of 

this fluid model to study peristaltic flow regimes of 

physiological fluids. Recently, Walicka et al. 

(2017b), Walicka et al. (2017a) used this model for 

theoretical investigation of film characteristics 

between two curvilinear rough surfaces. In light of 

this discussion, it is observed that type of lubricants 

and surface roughness are important considerations 

for theoretical prediction of bearings properties, life 

and stability. But none of the researchers has 

involved Rabinowitsch fluid model in theoretical 

analysis of hydrostatic thrust bearings, considering 

these aspects (surface roughness, non-Newtonian 

lubricant and fluid inertia) altogether. 

In the present investigation, it is proposed to uncover 

the combined influences of surface roughness, fluid 

inertia and non-Newtonian fluids on the performance 

properties of a hydrostatic thrust bearing using 

Rabinowitsch fluid model. 

2. Constitutive Equations 

A schematic configuration of circular plates 

hydrostatic step thrust bearing with rough surfaces is 

shown in Fig.1. It is assumed that the lubricant is 

incompressible and non-Newtonian, the body 

couples and forces are not present, and usual 

assumptions of hydrodynamic lubrication are 

applicable to lubricant film. Under these 

assumptions, the governing equations for one 

dimensional, axially symmetric fluid flow in 

hydrostatic circular thrust bearings in dimensionless 

form (c f. Appendix − A), together with constitutive 
Eq. (1) can be written as: 

𝜏𝑟𝓏 + 𝛼𝜏𝑟𝓏
3 = 𝜇

𝜕𝑢

𝜕𝓏
                                                     (2) 

−
20

3
𝑆

𝑣2

𝑟
+

𝜕𝑝

𝜕𝑟
=

𝜕𝜏𝑟𝓏

𝜕𝓏
                                                 (3) 

0 = 𝜇
𝜕2𝑣

𝜕𝓏2                                                                   (4) 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢) = 0                                                             (5) 

These equations satisfy the boundary conditions u = 

0 at 𝓏 = 0,βħ ̅ ; v = 0 at 𝓏 = 0 and v = rΩ at 𝓏 = βħ ̅; 
p(ro) = 1, p(1) = 0. The lubricant film thickness is 
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taken as ħ ̅=βh+hs, where h is the nominal smooth 

part of the film thickness, β is step ratio, hs is the part 

of film thickness due to asperities on the surface 

measured from smooth level. In case of radial 

roughness, hs = hs(θ,ξ), and in case of transverse or 

circumferential roughness, hs = hs(r,ξ); where, ξ is a 

random variable to characterize some definite 
arrangement of the surface asperities. 

 

 
Fig. 1. Schematic diagram of step thrust bearing 

with rough surfaces. 
 

3. SOLUTION BY AVERAGE INERTIA 

THEORY 

From Eq.(4) and relevant boundary conditions, the 

circumferential velocity can be obtained as 𝑣 =
𝑟𝓏/ħ ̅ Now, taking the average of inertia term on the 

left hand side of radial momentum Eq. (3) across the 

film thickness and defining 𝐼 =
1

ℎ̅
∫ (−

20

3

𝑆𝑣2

𝑟

ℎ̅

0
+

𝜕𝑝

𝜕𝑟
)𝑑𝓏 = −

20

3
𝑆𝑟 +

𝜕𝑝

𝜕𝑟
, solution to Eq. (3) is obtained 

as 𝜏𝑟𝓏 = I 𝓏 + c1. Substituting this expression for τrz 

in Eq. (2) and integrating with the boundary 

conditions, a close form solution to the radial 

velocity u can be obtained as: 

𝑢 =
𝛿

2𝜇
[

𝐼(𝓏2 − 𝓏𝛽ħ ̅) + 𝛼𝐼3

× (
𝓏4

2
− 𝓏3𝛽ħ ̅ +

3

4
𝓏2𝛽2ħ ̅2 −

1

4
𝓏𝛽3ħ ̅3

] (6) 

Volumetric-flow rate of lubricant is defined as �̅� =

2𝜋 ∫ �̅��̅�𝑑�̅�
ħ ̅

0
 to satisfy the equation of continuity, Eq. 

(5). Taking dimensionless form for flow rate 𝑄 =
𝜇0�̅�/𝑝0𝑅3 , a cubic relation between Q and I is 

obtained as follows: 

ħ ̅3𝐼 +
3

20
𝛼ħ ̅5𝐼3 = −

6𝜇𝑄

𝜋𝑟
                                         (7) 

Taking the probability density function of the 

stochastic film thickness f (hs), (Christensen 1969): 

                           (8) 

and defining the expectancy function E(Θ) as : 

Ε(Θ) = ∫ Θ𝑓(ℎ𝑠)
∞

−∞
𝑑ℎ𝑠                                           (9) 

stochastic form of Eq. (7) can be written as (c f . 

Appendix −B): 

Ε(H3)𝐹 = −
6𝜇𝑄

𝜋𝑟
+

3

20
𝛼Ε(H5)𝐹3                         (10) 

where, E(I) = F ; E(Hn) = E(ℎ̅𝑛) for radial roughness 

and E(Hn) = 
1

ℎ̅−𝑛
 for circumferential roughness; c is 

the half range assumed by the random film thickness 

variable ξ with the standard deviation σ. The function 

f (hs) - defined in Eq. (8) terminates at c = 3σ. In the 

present analysis, c will be referred to as roughness 

parameter. 

As Eq. (10) is nonlinear in F, it is not easy to solve it 

for analytical solution of pressure. Therefore, 

perturbation method is adopted to simplify it. 

Observing that the effective coefficient of F3 is 

sufficiently smaller than 1, considering F = Fo +αF1 

will suffice for further analysis and, therefore, Eq. 

(10) can be simplified to 

𝐹 = −
6𝜇𝑄

𝜋𝑟𝛦(𝐻3)
+

3

20
𝛼

𝛦(H5)

𝛦(𝐻3)
(

6𝜇𝑄

𝜋𝑟𝛦(𝐻3)
)3                    (11) 

Noting that 𝐹 =  𝐸(𝐼)  = −
20

9
𝑆𝑟 +

𝜕𝐸(𝑝)

𝜕𝑟
  from 

Eq.(34) and representing 𝐸(𝑝) = 𝑃, expression for 

pressure is obtained from Eq.(11) as: 

𝑃(𝑟) =
10

9
𝑆𝑟2 −

6𝜇𝑄

𝜋𝛦(𝐻3)
log 𝑟 

−
54

4

𝛼𝜇3𝑄3

𝜋3

𝛦(𝐻5)

[𝛦(𝐻3)]4

1

𝑟2 + 𝑐1                                       (12) 

where, c1 is the constant of integration. 

Using the boundary conditions for pressure, P(ro) = 

E(p(ro)) = E(1) = 1 and P(1) = E(p(1)) = E(0) = 0 

with the additional condition of continuity of 

pressure at the step, expression for pressure in recess 

region (PR) and land region (PL) are obtained as: 

𝑃𝑅(𝑟) = 1 +
10

9
𝑆(𝑟2 − 𝑟0

2) −
6𝜇𝑄

𝜋Ε(𝐻3)
log (

𝑟

𝑟0
)   

−
54

4

𝛼𝜇3𝑄3

𝜋3

𝛦(𝐻5)

[𝛦(𝐻3)]4 (
1

𝑟2 −
1

𝑟0
2)                                   (13) 

𝑃𝐿(𝑟) =
10

9
𝑆(𝑟2 − 1) −

6𝜇𝑄

𝜋Ε(𝐻3)
log 𝑟   

−
54

4

𝛼𝜇3𝑄3

𝜋3

Ε(H5)

[Ε(𝐻3)]4 (
1

𝑟2 − 1)                                      (14) 

3.1   Load Capacity and flow Rate 

Expression for lubricant flow rate (Q) is derived in 

Appendix−C. The load capacity of bearing is defined 

as 𝑊0 = ∫ �̅�
𝑅

0
�̅�(�̅�)𝑑�̅�  . Taking 𝑊 =

�̅�

2𝜋𝑅3𝑝0
, 

dimensionless load capacity can be calculated as: 

𝑊 = ∫ 𝑟𝑃(𝑟)𝑑𝑟
1

0
  

= 𝑟0
2  + 2 ∫ 𝑟𝑃(𝑟)𝑑𝑟

𝑟1

0
+ 2 ∫ 𝑟𝑃(𝑟)𝑑𝑟

1

𝑟1
                  (15) 
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4. PRESSURE DISTRIBUTION 

4.1   Case I: Radial Roughness 

For the radial roughness, the stochastic film 

thickness is ħ ̅ =  𝛽ℎ +  ℎ𝑠(𝜃, 𝜉)   and expressions 

for pressure in recess and land regions are: 

𝑃𝑅(𝑟) = 1 +
10

9
𝑆(𝑟2 − 𝑟0

2) −
6𝜇𝑄

𝜋Ε(ħ ̅3)
log (

𝑟

𝑟0
)  

 −
54

4

𝛼𝜇3𝑄3

𝜋3

Ε(ħ ̅5)

[Ε(ħ ̅3)]
4 (

1

𝑟2 −
1

𝑟0
2)                                   (16) 

where,Ε(ħ ̅3) = ℎ3𝛽3 +
𝑐2ℎ𝛽

3
 And Ε(ħ ̅5) = ℎ5𝛽2 +

5𝑐4ℎ𝛽

33
+

10𝑐2ℎ3𝛽3

9
. 

𝑃𝐿(𝑟) =
10

9
𝑆(𝑟2 − 1) −

6𝜇𝑄

𝜋Ε(ħ ̅3)
log 𝑟  

 −
54

4

𝛼𝜇3𝑄3

𝜋3

Ε(ħ ̅5)

[Ε(ħ ̅3)]
4 (

1

𝑟2 − 1)                                      (17) 

where, Ε(ħ ̅3) = ℎ3 +
𝑐2ℎ

3
 And Ε(ħ ̅5) = ℎ5 +

5𝑐4ℎ

33
+

10𝑐2ℎ3

9
. 

4.2   Case II: Circumferential or Circumferential 

Roughness 

For the radial roughness, the stochastic film 

thickness is ħ ̅ =  𝛽ℎ +  ℎ𝑠(𝜃, 𝜉)   and expressions 

for pressure in recess and land regions are: 

𝑃𝑅(𝑟) = 1 +
10

9
𝑆(𝑟2 − 𝑟0

2) −
6𝜇𝑄𝐴1

𝜋
log (

𝑟

𝑟0
)  

 −
54

4

𝛼𝜇3𝑄3

𝜋3

A1
4

𝐴1
(

1

𝑟2
−

1

𝑟0
2)                                           (18) 

where, 

𝐴1 = Ε(ħ ̅−3)  

=
35

32𝑐7 [3(6𝑐2ℎ2𝛽2 − 𝑐4 − 5ℎ4𝛽4)  

× 𝑙𝑜𝑔
(ℎ𝛽+𝑐)

(ℎ𝛽−𝑐)
+ 30𝑐ℎ3𝛽3 − 26𝑐3ℎ𝛽                      (19) 

𝐴2 = Ε(ħ ̅−5)   =
35/32

𝑐7(𝑐2−ℎ2𝛽2)
[3(𝑐4 − 6𝑐2ℎ2𝛽2 +

5ℎ4𝛽4)  × 𝑙𝑜𝑔
(ℎ𝛽+𝑐)

(ℎ𝛽−𝑐)
− 30𝑐ℎ3𝛽3 + 26𝑐3ℎ𝛽]    (20) 

and, 

𝑃𝐿(𝑟) =
10

9
𝑆(𝑟2 − 1) −

6𝜇𝑄𝐵1

𝜋
log 𝑟   

 −
54

4

𝛼𝜇3𝑄3

𝜋3

B1
4

𝐵2
(

1

𝑟2 − 1)                                                 (21) 

where, 

𝐵1 = Ε(ħ ̅−3)  

 =
35

32𝑐7 [3(6𝑐2ℎ2 − 𝑐4 − 5ℎ4)𝑙𝑜𝑔
(ℎ+𝑐)

(ℎ−𝑐)
  

+30𝑐ℎ3 − 26𝑐3ℎ]                                                    (22) 

𝐵2 = Ε(ħ ̅−5)    

=
35

32

𝑐7(𝑐2−ℎ2)
[3(𝑐4 − 6𝑐2ℎ2 + 5ℎ4)    

× 𝑙𝑜𝑔
(ℎ+𝑐)

(ℎ−𝑐)
+ 26𝑐3ℎ − 30𝑐ℎ3                                   (23) 

such that𝐴1 =
1

ℎ3𝛽3
,  𝐴2 =

1

ℎ5𝛽5
 ,  𝐵1 =

1

ℎ3
 and 𝐵2 =

1

ℎ5 when c=0. 

5. RESULTS AND DISCUSSION 

In order to analyze the effect of roughness on the 

performance properties of externally pressurized 

thrust bearings lubricated with non-Newtonian 

(pseudoplastic) lubricants, pressure and load 

capacity have been plotted and compared for 

roughness parameter c (0 ≤ c ≤ 0.005) and 

pseudoplasticity parameter α(α = κ𝑃0
2). In order to 

provide a practical justification to this analysis, 

values of κ have been taken from experimental work. 

κ = 5.65 × 10−6 m4/N2 and 3.5 × 10−6m4/N2 (Wada 

and Hayashi 1971). The values of operating 

parameters, namely, ratio of film thickness β = 2,5; 

inertia parameter S = 0,1,2; supply radius ro = 0.05 , 

and step radius r1 = 0.4 have been taken from 

experimental results of Coombs and Dowson (1964). 

The results obtained for pressure and load capacity 

for Newtonian as well as pseudoplastic lubricants are 

compared with the experimental results of Coombs 

and Dowson (1964) and established theoretical 

results of Singh et al. (2011b). 

Figure (2) shows the variation of film pressure along 

the radial direction for step ratio β = 2.18 and values 

of roughness parameter (c), coefficient of 

pseudoplasticity (κ) and inertia parameter (S). To 

maintain the graphical clarity, the results for radial 

and circumferential roughness have been presented 

as separate figures. In both the case of radial and 

circumferential roughness patterns, the 

dimensionless pressure for c = 0 is same as obtained 

by Singh et al. (2011b) for each value of S, which 

validates the present results for smooth surfaces. It 

is, further, observed that radial roughness lowers the 

dimensionless values of film pressure, while the 

circumferential roughness increases the 

dimensionless pressure. In case of the radial 

roughness patterns (c = 0.0005), the pressure is less 

than that for c = 0 for Newtonian as well as non-

Newtonian lubricants, and the trend holds for each 

value of S , whereas reversed results are obtained for 

circumferential roughness patterns. Further, in 

comparison to smooth surface, the theoretical values 

of pressure obtained for rough surfaces with radial 

roughness are closer to the experimental values. 

Pressure for radial roughness (c = 0.0005) and non-

Newtonian lubricants (κ = 5.65 × 10−6) are more 

close to the experimental results of Coombs and 

Dowson (1964) than the earlier theoretical results 

(Singh et al. 2011b). 

In Fig. (3), similar variation of profile of 

dimensionless pressure has been obtained and 

compared with established theoretical and 

experimental results for step ratio β = 1.54. This 

establishes the sustainability of present results of 

film pressure for surface roughness. Furthermore, all 

the figures for pressure also shows that the effects of 

surface roughness and non-Newtonian pseudoplastic 

lubricants are more significant at higher values of 

inertia parameter S. 
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(a) 
 

 
(b) 

Fig. 2. Variation of film pressure with radius for 

inertia S = 0,1,2 and roughness parameter (c). (a) 

Radial Roughness (b) Circumferential 

Roughness. 
 

Figure (4) shows variation of load capacity with 

respect to the step position r1 for different values of 

c,κ and S. In case of radial roughness (c = 0.0005), 

the load capacity is less than that for smooth surfaces 

in both the cases of Newtonian and non-Newtonian 

lubricants, and the trend of variations sustain for each 

value of S. In case of circumferential roughness, the 

results are reversed and sustain for variation in other 

operating and fluid parameters. Furthermore, it can 

be clearly observed from the figures that higher is the 

value of inertia parameter S, more significant are the 

effects of surface roughness and non-Newtonian 

lubricants. 

 
(a) 

 

 
(b) 

Fig. 3. Variation of film pressure with radius for 

values of inertia S = 0,1,2 and roughness 

parameter (c). (a) Radial Roughness (b) 

Circumferential Roughness. 
 

In order to observe precisely the influence of amount 

and patterns of surface roughness on the load 

capacity, Fig. (5) has been produced. This figure 

shows variation of non-dimensional load carrying 

capacity with respect to roughness parameter c for 

values of S and κ, and a typical value of step 

parameter r1 = 0.4. Results for both the type of radial 

and circumferential roughness patterns are plotted 

simultaneously. It is easy to observe that load 

capacity decreases with the increase of radial 

roughness, and increases with the increase of 

circumferential roughness. The variations sustain 
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(a) 
 

 
(b) 

Fig. 4. Variation of load capacity with step 

parameter (r1) for different values of roughness 

(c), inertia parameter (S) and coefficient of 

pseudoplasticity (κ) . (a) Radial Roughness (b) 

Circumferential Roughness. 
 

 
Fig. 5. Variation of load capacity with roughness 

parameter (c) for S = 0,1,2 and coefficient of 

pseudoplasticity (κ). ( △ -Radial Roughness,   

Circumferential Roughness. 

their nature for Newtonian as well as pseudoplastic 

lubricants at each value of inertia parameter S. It is 

also clearly observed that surface roughness has 

more significant influence on load capacity for 

higher values of inertia parameter S because high 

inertia causes faster discharge of lubricant. 

Hence, as a result of simultaneous influences of 

inertia, surface roughness, non-Newtonian nature of 

lubricant, the film pressure and load capacity show 

too significant amount of variation to be ignored in 

the optimization and modeling of a hydrostatic thrust 

bearing. 

5.1   Physical Interpretation of Effects of 

Roughness, Lubricant and Inertia 

5.11 Effect of Roughness: 

The variation in film pressure due to nature of 

roughness is physically consistent because in case of 

radial roughness, asperity ridges and valleys run 

along the direction of fluid flow. On interaction of 

fluid with a ridge, fluid tends to flows around the 

ridge which gives rise to a local pressure drop at a 

radial point which results into lower load capacity. In 

case of circumferential roughness, ridges and valleys 

run in perpendicular to the direction of radial flow, 

which restricts the available area for flow and 

diminishes the lubricant flow. This causes an 

increase in film pressure and, thereby, an increase in 

load capacity. 

5.12   Effect of Lubricant: 

Effect of inertia: The pseudoplastic fluids have lower 

viscosity than the Newtonian fluids, due to which the 

pseudoplastic lubricants cause faster flow and, 

thereby, lower film pressure and less load capacity. 

5.13   Effect of Inertia: 

Inertia of lubricant is the most important factor 

influencing the performance characteristics of a 

hydrostatic thrust bearing. Higher inertia causes 

faster flow rate of lubricant which causes significant 

drop in film pressure. Lower film pressure results 

into lower load capacity of the bearing. 

6. CONCLUSIONS 

Combined effects of surface roughness, non-

Newtonian pseudoplastic lubricants and lubricant 

inertia on the steady performance of hydrostatic 

thrust bearings, neglecting the radial inertia of 

lubricant and cavitation effects, have been presented. 

Rabinowitsch fluid model for non-Newtonian nature 

of the fluid, Christensen theory for surface roughness 

and averaged inertia method to derive pressure 

gradient were used in the analysis, based on which, 

following conclusions are drawn – 

1. In comparison with smooth surfaces, 

dimensionless film pressure and load capacity 

is lower for radial roughness and higher for 

circumferential roughness patterns. 

2. With increase of amount of roughness, load 

carrying capacity decreases for radial roughness 
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and increases for circumferential roughness. 

3. In comparison with Newtonian lubricants, 

dimensionless pressure and load is lower for 

pseudoplastic lubricants, which is also the 

established result (Singh, Gupta, and Kapur 

2011b). 

4. Effects of surface roughness and non-

Newtonian lubricants become more significant 

for larger values of inertia parameter, that is, for 

larger bearing radius and higher operating 

speed. 

Hence, the present analysis is expected to be helpful 

for better bearing designs. 

Appendix A 

The vector form of the Navier Stokes equation is 

given as: 

𝜌
𝐷𝐪

𝐷𝑡̅
= 𝜌𝑩 − ∇�̅� + ∇. 𝜏                                           (24) 

where q = (�̅� , �̅�, �̅�) is velocity of the fluid, B = (�̅�𝑥, 

�̅�𝑦, �̅�𝓏) is body force per unit mass and �̅� = �̅� (x,y, 𝓏) 

is film pressure, ρ is fluid density and τ is stress 

tensor. 

Equation of continuity for fluid flow is given as: 

𝜕𝝆

𝜕𝑡̅
+ ∇. (𝜌q)=0                                                        (25) 

In absence of external body forces, the Navier-Stoke 

Eqs. (24) for incompressible fluids can be 

represented in cylindrical polar coordinate system as: 

𝜌 (�̅�
𝜕�̅�

𝜕�̅�
+

�̅�

�̅�

𝜕�̅�

𝜕𝜃
+ �̅�

𝜕�̅�

𝜕�̅�
−

�̅�2

�̅�
) = −

𝜕�̅�

𝜕�̅�
 

+(
𝜕�̅�𝑟𝑟

𝜕𝑟̅
+

1

𝑟̅

𝜕�̅�𝑟𝜃

𝜕𝜃
+

𝜕�̅�𝑟𝓏

𝜕𝓏
)                                            (26) 

𝜌 (�̅�
𝜕�̅�

𝜕�̅�
+

�̅�

𝑟̅

𝜕�̅�

𝜕𝜃
+ �̅�

𝜕�̅�

𝜕�̅�
+

𝑢�̅�

�̅�
) = −

1

𝑟̅

𝜕�̅�

𝜕𝜃
 + (

𝜕�̅�𝜃𝑟

𝜕𝑟̅
+

1

𝑟̅

𝜕�̅�𝜃𝜃

𝜕𝜃
+

𝜕�̅�𝜃𝓏

𝜕𝓏
)                                                              (27) 

𝜌 (�̅�
𝜕�̅�

𝜕𝑟̅
+

�̅�

𝑟̅

𝜕�̅�

𝜕𝜃
+ �̅�

𝜕�̅�

𝜕�̅�
) =

𝜕�̅�

𝜕�̅�
 + (

𝜕�̅�𝓏𝑟

𝜕𝑟̅
+

1

𝑟̅

𝜕�̅�𝓏𝜃

𝜕𝜃
+

𝜕�̅�𝓏𝓏

𝜕�̅�
)                                                                        (28) 

The equation of continuity (25), in this case, can be 

written as: 

1

𝑟̅

𝜕

𝜕𝑟̅
(�̅��̅�) +

1

𝑟̅

𝜕�̅�

𝜕𝜃
+

𝜕�̅�

𝜕�̅�
= 0                                        (29) 

Under the assumptions of thin film lubrication 

(Cameron 1976) and symmetry of flow applicable to 

circular bearings, Eqs. (26-29) can be re-written as: 

−
𝜌�̅�2

�̅�
= −

𝜕�̅�

𝜕�̅�
+

𝜕�̅�𝑟𝓏

𝜕�̅�
                                                (30) 

0 =
𝜕�̅�𝜃𝓏

𝜕�̅�
                                                                    (31) 

0 =
𝜕�̅�

𝜕�̅�
                                                                      (32) 

1

𝑟̅

𝜕

𝜕𝑟̅
(�̅��̅�) +

𝜕�̅�

𝜕�̅�
= 0                                                 (33) 

System of Eqs. (30-33) have to be solved under the 

conditions �̅�  = 0, �̅�  = 0 at �̅� = 0, ħ ̅; �̅� = 0 at �̅�= 0; 

�̅�  = RΩ at �̅� =ħ ̅; �̅� = po at �̅� = ro and �̅� = 0 at �̅�= R. 

Now dimensionless form (2-5) can be easily obtained 

with the dimensionless quantities described in 

nomenclature. 

APPENDIX B 

Stochastic form of I is : 

Ε(𝐼) = Ε (−
20

9
𝑆𝑟 +

𝜕𝑝

𝜕𝑟
) = −

20

9
𝑆𝑟 +

𝜕𝐸(𝑝)

𝜕𝑟
         (34) 

where,𝐸 (
𝜕𝑝

𝜕𝑟
) =

𝜕𝐸(𝑝)

𝜕𝑟
, (Christensen 1969). 

Further, 

Ε(𝐼3) = Ε [(−
20

9
𝑆𝑟 +

𝜕𝑝

𝜕𝑟
)

3
]  

           = Ε[− (
20

9
𝑆𝑟)

3
+ 3 (

20

9
𝑆𝑟)

2
(

𝜕𝑝

𝜕𝑟
)  

                 −3 (
20

9
𝑆𝑟) (

𝜕𝑝

𝜕𝑟
)

2
+ (

𝜕𝑝

𝜕𝑟
)

3
]  

= − (
20

9
𝑆𝑟)

3
+ 3 (

20

9
𝑆𝑟)

2 𝜕Ε(𝑝)

𝜕𝑟
  

                 −3 (
20

9
𝑆𝑟) (

𝜕Ε(𝑝)

𝜕𝑟
)

2

 + (
𝜕Ε(𝑝)

𝜕𝑟
)

3

           (35) 

APPENDIX C 

CASE I: Radial Roughness 

Continuity of pressure, Eqs. (16-17), gives the 

expression for flow rate as: 

𝑄 = (
𝜙

2𝐴
+ √(

𝜙

2𝐴
)

2
+ (

𝐵

3𝐴
)

2
)

1/3

  

−
𝐵

3𝐴
(

𝜙

2𝐴
+ √(

𝜙

2𝐴
)

2
+ (

𝐵

3𝐴
)

2
)

−1/3

                         (36) 

where, φ =  1 +
9

10
S(1 − 𝑟0

2) and, 

𝐴 =
2187

495

𝜇3

𝜋3 𝛼  

× [
45𝑐4ℎ𝛽 + 330𝑐2ℎ3 + 729ℎ5𝛽5

(𝑐2ℎ𝛽 + ℎ3𝛽3)4  

   × (
1

𝑟1
2 −

1

𝑟0
2)   

−
45𝑐4ℎ + 330𝑐2ℎ3 + 729ℎ5

(𝑐2ℎ + ℎ3)4  

                 × (
1

𝑟1
2 − 1)]                                              (37) 

𝐵 =
18𝜇

𝜋
[

1

𝑐2ℎ𝛽+ℎ3𝛽3 log (
𝑟1

𝑟0
)  

    −
1

𝑐2ℎ+ℎ3 log 𝑟1                                                        (38) 

CASE II: Circumferential Roughness  

Continuity of pressure, Eqs. (18-23), gives the 

expression for flow rate as: 

𝑄 = (
𝜙

2𝐴
+ √(

𝜙

2𝐴
)

2
+ (

𝐵

3𝐴
)

2
)

1/3
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    −
𝐵

3𝐴
(

𝜙

2𝐴
+ √(

𝜙

2𝐴
)

2
+ (

𝐵

3𝐴
)

2
)

−1/3

                       (39) 

where, φ =  1 +
9

10
S(1 − 𝑟0

2) and, 

𝐵 =
81

5

𝜇3

𝜋3
𝛼(

𝐴1
4

𝐴2

𝜇3

𝜋3
(

1

𝑟1
2 −

1

𝑟0
2)     

𝐵1
4

𝐵2
(

1

𝑟1
2 − 1)                                                               (40) 

𝐵 =
6𝜇

𝜋
(𝐴1 log (

𝑟1

𝑟0
) − 𝐵1 log 𝑟1)                                (41) 
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