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ABSTRACT 

Interfacial stability of purely-viscous fluids is numerically investigated in channel flow. It is assumed that the 

main fluid (i.e., the fluid flowing through the center of the channel) is thixotropic and obeys the Moore model 

as its constitutive equation while the fluids flowing above and below this central (core) layer are assumed to be 

the same Newtonian fluids with the same thickness. Having found an analytical solution for the base-flow in 

all three layers, a temporal, normal-mode, linear stability analysis is employed to investigate the vulnerability 

of the base flow to small perturbations. An eigenvalue problem is obtained this way which is solved numerically 

using the pseudo-spectral collocation method. The main objective of the work is to explore the role played by 

the time-constant introduced through the core fluid’s thixotropic behavior on the critical Reynolds number. It 

is found that the thixotropic behavior of the core fluid has a stabilizing effect on the interface. An increase in 

the viscosity of the upper/lower Newtonian fluids is predicted to have a stabilizing or destabilizing effect on 

the interface depending on the parameter values of the Moore model (e.g., the ratio of the zero-shear viscosity 

to infinite-shear viscosity in this fluid model).   

Keywords: Core-annular flow; Interfacial instability; Thixotropy; Spectral method; Moore model. 

NOMENCLATURE 

a,b parameters of the Moore model 

Cr density ratio 

C cross-viscosity ratio 

G pressure gradient 

H channel’s half-height 

 number of Chebyshev terms 

p pressure 

R thickness ratio 

Re Reynolds number 

u streamwise velocity 

v cross-stream velocity 

x axial coordinate 

y vertical coordinate 

 

 dimensionless rebuild parameter 

 viscosity-difference ratio 

 deflection of interface 

 wave number 

 structural parameter 

 viscosity 

 density 

 phase speed 

 thixotropy number 

 

 

1. INTRODUCTION 

Instability of the interface between two or more 

fluid layers in direct contact with each other 

comprises one of the most important examples of 

instability in the field of fluid mechanics. This 

kind of instability is frequently encountered in 

several industrially-important processes such as co-

extrusion which is widely used for the production 

of multilayered plastic sheets and pipes (Schrenk et 

al. 1978; Anturkar et al. 1990a; Hinch et al. 1992; 

Chen and Zhang, 1993). It is also encountered in a 

variety of upstream and downstream operations in oil 

industry. One can mention, for example, enhanced 
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oil recovery (EOR) operations where the huge 

viscosity stratification at the interface between the 

displacing fluid (say, water) and the crude oil gives 

rise to finger instability severely limiting the rate of 

oil production (Saffman and Taylor, 1958). Another 

example is the pipeline transport of heavy crude oils 

where to lower the pressure drop, a low-viscosity 

fluid such as water or kerosene is injected near the 

wall to form core-annular flow (Clark and Shapiro, 

1949). In practice, however, the interface easily 

becomes unstable severely affecting effectives of the 

operation (Joseph et al. 1997; Ghosh et al. 2009).  

Another important operation which is severely 

affected by the interfacial instability is the cementing 

of oil wells (Taghiloo et al. 2019). In this operation, 

after drilling a borehole and inserting the steel casing 

inside the well, cement slurry is pumped into the 

casing such that it can fill/seal the annular gap 

between the casing and the rock formation 

surrounding the casing. During this operation, the 

cement slurry has to displace the drilling mud 

collected at the bottom of the well. In practice, 

however, due to density and viscosity stratification 

between the two liquids, we might witness finger 

instability which deteriorates cement quality thereby 

severely affecting its sealing efficiency (Foroushan 

et al. 2018).  

Due to its technological impact, interfacial instability 

has been the subject of many studies in the past (Hu 

and Joseph, 1989; Preziosi et al. 1990; Chen and 

Joseph, 1991; Sahu, 2019). These studies have been 

primarily concerned with Newtonian fluids. And, 

they have shown that viscosity stratification is the 

main cause of instability in the above-mentioned 

applications. As is well-established in the literature 

(Yih 1967; Yu et al. 1969; Hickox 1971; Hooper et 

al. 1983) any discontinuity in  the viscosity of the 

two fluids gives rise to a discontinuity in the slope of 

the velocity profile and this leads to an unstable 

distribution of vorticity at the interface. In practice, 

the instability exhibits itself by the interface 

becoming wavy-shaped. And, as soon as it becomes 

wavy-shaped surface tension becomes involved 

(through boundary conditions) provided the two 

fluids are immiscible. Under these conditions, it has 

been well established in the literature that surface 

tension stabilizes all wavenumbers larger than a 

threshold in viscosity-driven interfacial instability of 

long interfaces (Bellman and Pennington, 1954).  

Although the studies mentioned above have shed 

some light onto our understanding of the interfacial 

instability, it must be said that these works have been 

primarily concerned with Newtonian fluids only. 

Industrial fluids, however, are often realized not to 

be Newtonian. For example, waxy crude oils are 

known to exhibit a variety of non-Newtonian 

behavior such as shear-thinning, viscoelasticity, and 

thixotropic behavior (Martinez-Palou et al. 2011; 
Wardhaugh and Boger, 1991; Kan et al. 2004). The 

question then arises as to the role played by the 

rheological properties of the core fluid on the 

interfacial instability.  

In two excellent works, Renardy (1988) and Chen 

(1991) showed that stratification in the elasticity of 

the two fluids at the interface can be responsible for 

the rise of this kind of instability even when there is 

no density or viscosity stratification involved. In 

another interesting work, Su and Khomami (1991) 

investigated the role played by shear-thinning on the 

instability of core-annular flow and discovered that 

shear-thinning has a drastic effect on the interfacial 

stability. There are also several works addressing the 

effect of a fluid’s yield stress on the instability of 

core-annular flow. One can particularly mention the 

work by Hormozi et al. (2011) who showed that 

yield stress can be used as a passive means to 

stabilize the interface between cement slurry and 

drilling mud (even if they are viscoelastic) as 

encountered in the cementing operation of oilwells; 

see, also, Foroushan et al. (2018). To the best of our 

knowledge, however, the effect of a fluid’s 

thixotropic behavior on the interfacial instability in 

core-annular flow has not been addressed in the past. 

This is surprising realizing the fact that thixotropy is 

quite common among industrial and physiological 

fluids (Mewis 1979; Barnes 1997). In fact, thixotropy 

appears to be a rule rather than exception among 

fluids such as waxy crude oils (Ahmadpour and 

Sadeghy, 2014),  drilling muds (Livescu, 2012), and 

cement slurry (Clement, 1979). 

In this study, we intend to investigate the effect of a 

fluid’s thixotropic behavior on the stability of its 

interface with a Moore fluid sandwiched between two 

Newtonian fluid layers where Newtonian fluids are of 

the same viscosity and have the same height. The 

applicability of triple-layered fluids for stabilizing 

core fluid has been demonstrated in recent years 

(Sarmadi and Friggard, 2019). For ease of analysis, 

we assume that the thixotropic fluid flowing through 

the core of the channel obeys the Moore model 

(Moore, 1959; Cheng et al. 1965). With the same 

token, like Renardy (1985), and Anturkar et al. 

(1990b), we rely on a two-dimensional model as the 

flow geometry. Our main objective is to investigate 

the role played by the “characteristic time” of the 

fluid on the instability of the interface. The prime 

motivation for conducting this work arises from our 

interest in the cementing operation of drilled 

boreholes (Taghiloo et al. 2019) where cement slurry 

and drilling muds are known to be slightly miscible 

but not fully mixed (Frigaard and Crawshhaw, 1999).  

The work is organized as follows. In the next section 

we present the mathematical formulation in its 

unsteady form which can be used to find the base flow 

under steady conditions. We then proceed with 

developing the eigenvalue problem governing the 

unstable modes followed by the numerical method 

used to solve these differential equations. Numerical 

results are presented next accompanied by discussing 

their significance. The work is concluded by 

presenting a summary of its major findings and their 

implications in the oil industry and core-annular flow. 

2. MATHEMATICAL FORMULATION   

We consider pressure-driven flow of a triple-layered 

binary fluid system in a plane channel under laminar 

conditions. This geometry closely models the 

situation encountered for the production of  
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Fig. 1. Triple-layered channel flow considered for the analysis in this work. 

 

 

laminated sheets. It can also be considered as two-

dimensional representation of the core-annular flow 

of heavy oils in lubricated pipelines. Similarly, it 

can be used to model the flow of cement-

slurry/drilling-muds in the annulus between the 

borehole and the rock formation in drilling industry.  

As can be seen in Fig. 1, the height of the core fluid 

(which is thixotropic) is 2H, and the thickness of the 

upper and lower Newtonian fluid layers is equal to 

RH, where R is a real number. The fluids are 

assumed to be incompressible and the flow is 

isothermal. No gravity effects are involved in the 

problem. The flow is typical of plane Poiseuille 

flow. The upper and lower plates are parallel, rigid 

and fixed. Cartesian coordinate system is to be used 

for the mathematical development with its origin 

located somewhere on the lower interface.  

The width of the channel normal to the plane (i.e., 

in the z-direction) is assumed to be infinity such that 

it serves as the neutral direction. On the other hand, 

the length of the plates are large enough for the 

base-flow to be assumed fully-developed. (driven 

by the same negative pressure gradient, G, for all 

layers). It is the instability of this base-flow which 

we would like to study in the present work. To that 

end, we need equations governing the flow of each 

fluid in each layer. To achieve this goal, we have to 

start from the unsteady form of the Cauchy 

equations of motion because as soon as the base-

flow becomes unstable, we will be dealing with an 

unsteady flow which, for ease of analysis, is 

assumed to be two-dimensional based on the 

Squire’s theorem.  

The equations governing the unsteady flow which 

ensues when the base-flow becomes unstable 

comprise the conservation of mass and the 

conservation of momentum for each fluid. For the 

upper and lower Newtonian fluid layers, the 

equations of motions are just the Navier-Stokes 

equations. For the core fluid, in principle, we have 

to start from the Cauchy equations of motion which 

involves the fluid’s deviatoric stress tensor. In the 

present work, however, although the core fluid is 

non-Newtonian, it is an inelastic fluid with a 

viscosity which is both time- and shear-dependent. 

In other words, the core fluid belongs to the 

generalized Newtonian class of non-Newtonian 

fluids (GNF’s) for which we can use the variable-

viscosity version of the Navier-Stokes equations as 

the equations of motion; that is: 

Du p u u v
2

Dt x x x y y x
(1)

     
       

     

  
     
     

Dv p u v v
2

Dt y x y x y y
(2)

     
       

     

     
      

     

u v
0 (3)

x y

 
 

 
 

where (t, )  is the viscosity of the core fluid, 

denotes its density, p is the isotropic pressure, and 

(u, v) are the velocity components in the core of the 

channel. Also, x and y are respectively the stream-

wise and cross-stream coordinates with D/Dt serving 

as the material derivative. The thixotropic model 

used in this work is the Moore model (Moore 1959; 

Cheng and Evans, 1965). The viscosity of the core 

fluid (shown by subscript “1”) obeying this 

rheological model is linearly dependent on a 

“structural parameter”,  , as shown below: 

 1 1 ,                                               (4) 

where the “structural parameter” is time- and shear-

dependent scalar ranging between 0 and 1 with the 

former referring to a fully-broken-down structure 

and the latter to a fully-structured material. In this 

relationship,  0 /      is the viscosity-

difference ratio, with 0 and   being the zero-

shear and infinite-shear viscosities of the material 

(which correspond to 1   and 0  , 

respectively). It is worth-mentioning that, in practice, 

the fluid may settle at an equilibrium viscosity 

somewhere between these two limiting values. 

(Under equilibrium, the number of rebuilt 

microstructures balances the number of broken-

down microstructures.) It is also to be noted that, the 

Moore model can represent Newtonian fluids with a 

viscosity equal to  by simply setting 0  . There 

are many structural thixotropic models in the 

literature. A key feature of the Moore model is that 

in this model  satisfies the kinetic equation: 

 1 1 1u v a 1 b
t x y

  
     

  
                (5) 
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where “a” and “b” are material properties controlling 

the rate of structure rebuild (through Brownian 

motions) and structure breakdown (through shear 

deformation)—they are both positive numbers with 

“a” having the dimension of inverse time while “b” 

is dimensionless. In Eq. 5, 2II  d  is the 

effective shear rate with 2II d being the second 

invariant of the rate-of-deformation tensor (2d). In a 

two-dimensional core flow,   can be related to the 

velocity field as: 

2 22

1 1 1 1
1

u v u v
2 2

x y y x

       
        

        
       (6) 

where, again, subscript “1” means the core fluid. 

Figure 2 shows the time-evolution of the Moore 

fluid’s viscosity at different shear rates and different 

b/a ratios in steady shear for a typical
0 ,2 1   . 

These results clearly demonstrate the simultaneous 

shear-thinning and thixotropic nature of Moore 

fluids. That is, for a given b/a the viscosity of a 

Moore fluid drops when shear rate is increased rather  

slowly with time until equilibrium is reached 

somewhere between 
0 and   . Similarly, at a given 

shear rate, the viscosity of Moore fluid is reduced as 

time elapses but at a rate which is controlled by b/a 

until equilibrium is reached. Interestingly, the time 

needed by the fluid to reach the equilibrium state 

becomes shorter and shorter the higher the shear rate 

or the larger the b/a ratio (see Fig. 2). In fact, based 

on this figure, the equilibrium viscosity becomes 

smaller the larger the shear rate or the larger the b/a 

ratio. And the equilibrium viscosity becomes closer 

to the infinite-shear viscosity )1(    when the 

shear rate and/or the b/a ratio is increased. 

Obviously, as earlier mentioned, Moore fluids 

exhibit shear-thinning in addition to exhibiting 

thixotropic behavior. It is also evident that the 

thixotropic behavior of this fluid model is controlled 

by the b/a ratio which can be interpreted as the 

“characteristic time” of the fluid. 

2.1   Dimensionless Numbers 

To work with dimensionless numbers, we can use H  

as the length scale, 2H G/  as the velocity scale, 

HG  as the pressure scale, and / HG as the time 

scale. Obviously (with the flow being driven by 

pressure-gradient) the time scale can be interpreted 

as the “characteristic time of the flow”. As earlier 

mentioned, the ratio b / a can be interpreted as the 

“characteristic time of the fluid”. Their ratio is a 

dimensionless number referred to as the thixotropy 

number  : 

HG(b / a)



 


                                         (7) 

In practice, the competition between these two 

characteristic times determines the severity of any 

thixotropic effect. Fluids for which the thixotropy 

number is small need more time to reach a steady 

state, and so can be viewed as strongly thixotropic. 

On the other hand, fluids having a large thixotropy 

number are weakly thixotropic but highly shear-

thinning. These two limiting behavior can best be 

seen in Fig. 3 which shows the effect of the 

thixotropy number on the structural parameter 

(which is linearly related to viscosity; see Eq. 4). 

 

 

 
Fig. 2. Variation of the dimensionless viscosity of 

a Moore fluid with time in simple shear: (top 

plot) effect of the shear rate (b/a = 0.6), (bottom 

plot) effect of the b/a ratio ( 5)  . 

 

 
Fig. 3. Variation of structural parameter with 

time for different thixotropy numbers for a 

Moore fluid in steady shear flow ( 5  ). 

 

Another important dimensionless number involved 

in our fluid mechanics problem is the Reynolds 

number which is defined as: 

3

2
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where i = 1 stands for the core fluid and i = 2 for 

Newtonian layers. In dimensionless form, Eq. 5 

becomes, 

 1 1 1u v 1
t x y

   
       

   
          (9) 

where HG a   is the dimensionless rebuild 

number. It should be noted that everything in this 

equation is now dimensionless. We can also define 

the cross-viscosity ratio, 2C   (where 2  is 

the viscosity of the Newtonian fluids shown by 

subscript 2) as an important dimensionless number 

which might affect the instability picture. As the last 

dimensionless number involved in our problem, we 

can use R as the dimensionless thickness ratio (see 

Fig. 1). So, in general, the problem at hand is 

controlled by four dimensionless numbers: Re,  , 

C , and R. 

2.2   Boundary Conditions 

The boundary conditions needed to solve the 

equations of motion (say, after the interface becomes 

unstable) depends on the layer under consideration. 

For the Newtonian layers, we can impose the no-slip 

and no-penetration conditions at the walls. At the 

interface between the core fluid and the Newtonian 

fluid layers we can impose the continuity of velocity 

and (tangential/normal) stresses. We can also impose 

the symmetry condition for the thixotropic fluid at 

the centerline of the channel. The symmetry of the 

flow configuration also entitles us to consider only 

half of the channel. Focusing on just the lower half, 

at the middle of the channel (y = 1) we have: 

1

1 0 ;
du

0 ; 1,
dy

v                                      (10a) 

where the boundary condition on  is based on the 

notion that along the centerline of the channel, shear 

stress is equal to zero and microstructures are not 

broken down. At the wall (y R),  based on no-slip 

and no-penetration boundary conditions, we have: 

2 2
0u v  .                                                       (10b) 

At the interface (y = 0), the kinematic/dynamic 

boundary conditions are: 

1 2 1 2 1 2@y 0 :  u u ; p p ; .                   (10c) 

The shear stress boundary condition leads to the 

following equation: 

  1 2

y 0 y 0

y 0

du du
1 C

dy dy
.

 


                              (11a) 

This equation involves the value of  at y = 0 which 

is not known. To circumvent this problem, using Eq. 

5, we can related (0)  to the velocity gradient at this 

location. Thus, Eq. 11 becomes:  

  1

1

a
0 a 1 b (0) .

a b (0)
      

 
       (11b) 

So, in dimensionless form, Eq. 11a becomes: 

1 2

y 0 y 0
1

y 0

du du
1 C

dy dy
,

du
1

dy

 





 

 
 
 

  
  
    
  

    (12) 

which, fortunately, involves just the velocity 

gradients at y = 0. It needs to be mentioned that, the 

boundary conditions on λ are in line with those 

proposed by Billingham and Ferguson (1993) in 

their investigating the pipe flow of Moore fluids. 

We also would like to stress that in the present 

study we have ignored surface tension effects 

simply because the working fluids have been 

assumed to be slightly miscible. This scenario can 

be encountered in coating plastic sheets. It is also 

the case with the cementing operation of oil wells 

where cement slurry and drilling muds are known 

to be miscible even though their mixing is so weak 

that, in practice, the mixing is just confined to a thin 

mixing layer near the interface during the 

solidification phase (Frigaard and Crawshaw, 

1999). Obviously, surface tension effects should be 

taken into account for immiscible fluids, for 

example, when water (not kerosene) is used in core 

annular flow of heavy oils to lubricate the wall. But, 

even for immiscible fluids, surface tension cannot 

affect the base flow when the interface is flat, like 

that shown in Fig. 1. In fact, even for immiscible 

fluids, surface-tension effects enter the analysis as 

soon as the interface becomes wavy-shaped. And 

when it plays a role, its effect is confined to 

affecting short-wave modes where the radius of 

curvature is small. But not all systems are 

vulnerable to short waves. For systems which are 

vulnerable, surface tension is already known to 

stabilize wavenumbers larger than a cut-off value 

for unbounded flat interfaces (Bellman and 

Pennington, 1954). For a curved interface, such as 

that encountered in core-annular flow, its effect can 

be stabilizing or destabilizing depending on the 

curvatures of the two fluid layers (Wei, 2005). 

3. BASE FLOW 

A knowledge about the velocity profiles and 

structural parameter under steady conditions (the so-

called base-flow) is needed in our linear stability 

analysis. The base-flow corresponds to fully-

developed flow for each layer. For the upper and 

lower Newtonian layers the equations of motion 

(developed in the previous section) are reduced to: 

2

2 2

2

p u
0 C

x y


 
  

 
                                  (13) 

where 2u (y) is the base-flow velocity profile for the 

fluid in the wall layers. For the core thixotropic fluid, 

the pertinent equations governing the base-flow are: 

 1 1p u
0 1

x y y

   
     

   
                        (14) 
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  1du
0 1

dy
                                      (15) 

where
1u (y) is the core-flow velocity profile. Now, 

using the boundary conditions set forth above (see 

Eqs. 10-12), the base-flow velocity profiles in the 

Newtonian layers is easily obtained as: 

    2

G y R
y R 1

C 2
u y .




              (16) 

For the core fluid  we can easily show that we have: 

 2 2

2

2

1

2

1

1

2

1 3

2

1 2 3

1 1

2 1 1 2 3

2 3

2

3

1

1

1G y R 2R
u y y

2 2 C 2

k
k k

ky 4
k y k y k

2 4k 2k k

k y k 2 k k y k y k
ln

k 2 k k

k
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                                (17) 

where we have: 

  

 

2 2

1

2

2

3

k G

k 2 G 1 G

k 1 G 4 G

,

,

.

 

     

      

                              (18) 

The above analytical solutions has enabled us to 

easily investigate the effect of different parameters 

on the base-flow velocity profiles across the whole 

channel, u(y). Figures 4-6 show typical results 

obtained for G 1  . The effect of cross-viscosity 

ratio on the base-flow velocity profile has been 

shown in Fig. 4. For a given zero-shear viscosity 

(say, the viscosity of water) an increase in this ratio 

means an increase in the viscosity of the fluid near 

the wall. And, the results shown in this figure 

suggests that it has a retarding effect on the core 

flow, as expected. 

Figure 5 shows the effect of the thickness parameter 

(R) on the base-flow velocity profile. Based on this 

figure, one can conclude that an increase in the 

thickness of the wall layer (for a given thickness of 

the core layer) increases the core velocity. 

Figure 6 shows the effect of the thixotropy number 

on the velocity profile, u(y). As expected, the 

thixotropy number strongly affects the velocity 

profile in the core but not in the Newtonian layers. 

The strong effect of thixotropy number on the core 

fluid can be explained by its effect on the viscosity 

of the core fluid. With the flow occurring under 

steady conditions, variation in the viscosity in the 

y-direction for the core fluid is due to its shear-

thinning behavior and the fact that shear stress 

varies linearly across the channel starting from 

zero at centerline.  

 

 
Fig. 4. Effects of the cross-viscosity ratio on the 

base-flow velocity profile (R 1, 2.5 , 0.5 )   . 

 

 
Fig. 5. Effects of the thickness parameter (R) on 

the base-flow velocity profile 

( 2.5 , C 1, 0.5 )   . 

 

 
Fig. 6. Effect of the thixotropy number () on the 

base-flow velocity profile and viscosity variation 

(R 1 , 2.5, C 1 )    . 

 

Figure 7 shows the effect of viscosity-difference 

ratio on the velocity and viscosity profiles. As 

expected, this parameter strongly affects the velocity 

profile in the core but not in the Newtonian layers. 
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Fig. 7. Effect of viscosity-difference ratio () on 

base-flow velocity profile and viscosity variation. 
(R 1 , 0.5, C 1 ).     

 
The velocity profiles shown in Figs. 4-7 will be used 

in our stability analysis. 

4. LINEAR STABILITY ANALYSIS 

Having found the base-flow velocity profiles, we can 

proceed with perturb them by infinitesimally small 

disturbances and see if there exists any mode which 

can become unstable. To this end, the perturbed 

velocity and pressure fields are expressed in terms of 

normal modes as follows (Drazin, 1981): 

      i x t
i i iu x,y,t u y u y e ,                   (19-a)   

      i x t
i i iv x,y,t v y v y e ,                   (19-b) 

      i x t
i i ip x,y,t p y p y e ,                   (19-c) 

      i x tx,y,t y y e .                         (19-d) 

where “bar” means “base flow” and “tilde” means 

“perturbation” variables. In these equations the 

subscript “i” can be 1 representing the core fluid and 

2 representing the wall layer. After substituting 

perturbed velocity, pressure, and structural-

parameter fields into the equations of motion, we can 

neglect nonlinear perturbation terms. Having 

eliminated pressure (through cross-differentiation) 

and then subtracting the base-flow we end up with 

the following equation for the Newtonian layers: 

 
2

2
2 224 2

2 42 2
2 24 2 2

2 2
2 2

d u
i v i u (y)

dyd v d v
2 v Re 0

dy dy d v
v

dy

 
     

      
 
   

   

      

                (20) 

which is the classic Orr-Sommerfeld equation 

although in the current study it must be solved 

subject to a different boundary condition (i.e., the 

interfacial boundary condition).  Similarly, for the 

thixotropic fluid flowing through the core, we end up 

with the following equation: 

1 2 3 4

4 3 2

1 1 1 1

4 3 2
(y) (y) (y) (y)

d v d v d v dv
c c c c

dy dy dy dy
     

2

5 71 6 82
(y) (y) (y) (y)

d d
c v c c c 0

dydy

 
               (21) 

where we have: 
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 

1 22

1

1 (y)
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c y

dy(1 )

 
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2
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 
 

6

1
3

2i du
c y
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  
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12i du d
c y
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4i d u

dy1 (y)

 
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
  



  

 
   

   

8
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1 1
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24i du d 6i du d
c y
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   
  

    

   
   

       

               (21-a) 

For the structural parameter ( ) we have: 

   
1

2

1
2 1 32

0(y)
d v

a a y v a y
dy

                           (22) 

where, 

   
1

1du
a y sgn y

i dy


  






 
                              (22-a) 

   1
2

d du
a y i sgn y

dy dy



   




 
                    (22-b) 

    1
3 1

du
a y 1 i u y

dy
                         (22-c) 

As to boundary conditions, obviously, the two 

Newtonian fluid layers should satisfy the no-slip and 

no-penetration conditions at their respective walls. 

They should also satisfy the interfacial kinematic and 

dynamic boundary conditions in contact with the 

Moore fluid. By focusing only the symmetric modes 

in our instability analysis, the core fluid should 

satisfy the symmetry conditions at the center of the 

channel. Thus, at the center line of channel and also 

the lower wall we should have: 

y 1
y 1 y 1

2
1 1

1 12y 1

2
2 2y R y R

y R

0 ; 0
du d v

v 0 ; , 0.
dy dy

dv
v ; u 0 ; 0,

dy


 



 


   

 

     

                                                                       (23-a) 

At the interface we have: 

1 2
1 2y 0 y 0

y 0 y 0

;
du du

u u 0
dy dy 

 


    

 
 

y 0 y 021v v 0;
 
           

xy,1 xy,2

xy,1 xy,2y 0 y 0

y 0

d d
0

dy dy 



 
    

 
 

 

 

 

2 yy,1 yy,2 y 0y 0

xy,2 xy,1
y 0

1p p

i 0,





   

 

 

  
    (23-b) 

where   is the vertical displacement of the perturbed 

interface which can be related to the normal 

perturbed velocity at the interface by the following 

kinematic condition: 

1 1y 0 y 0
u ( ) v

t x 

 
 

 
                                  (24) 

In the next section, we discuss the numerical method 

for solving the instability equations. 

5. NUMERICAL METHOD 

Equations 20-22 can be solved numerically using the 

pseudo-spectral colocation method. To that end, all 

variables are expanded in a series consisting 

Chebyshev polynomials. Since Chebyshev 

polynomials are defined in the range of [-1,1], we 

have to map the physical domain onto this range. To 

achieve this goal, we substitute:  

Y 2y 1   ;   0 y 1,     

2y R
W  ; R y 0.

R


                                        (25) 

The disturbance variables are then expressed as: 

     
N N N

1 n n n n 2 n n

n 1 n 1 n 1

v a T Y , c T Y , v b T W

  

            

                                              (26)   

where     nT X cos n.arccos X  are Chebyshev 

polynomials. After substituting equations (26) into 

Eqs. (20-22) and the boundary conditions (23-a,b) an 

eigenvalue problem is obtained in the form of 

AX BX  in which  is the eigenvalue and 

1 n 1 n 1 nX [a ,...,a ;b ,...,b ;c ,...,c ]  is the eigenvector. 

The eigenvalues, in general, are complex numbers. 

In our temporal stability analysis (where the 

wavenumber,  , is a real number) if the real part of 

an eigenvalue is positive, the disturbance grows 

exponentially with time and the mode corresponding 

to this eigenvalue is unstable. In practice, however, 

we only have to look for neutral instability curve for 

which the real part of the eigenvalue is equal to zero. 

In pseudo-spectral collocation method, for each 

wave number, a spectrum of eigenvalues is obtained 

from which we can find the one which lies on the 

neutral stability curve. After doing this over a wide 

range of wavenumbers, the neutral curve is obtained 

from which we can find the critical Reynolds number 

and critical wavenumber. To verify the MATLAB. 

code developed in this work, we have tried to recover 

the critical Reynolds number for classic plane 

Poiseuille flow of a single-phase Newtonian fluid. 

The critical Reynolds number and wave number 

found in this benchmark are 5772.2214 and 1.0054, 

respectively, are virtually the same as those reported 
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in the literature (Drazin, 1981). It is worth 

mentioning that to verify the code we had to use 150 

Chebyshev terms to ensure grid-independent results. 

6. RESULTS AND DISCUSSION 

In this section, we present our numerical results 

addressing the effect of core fluid’s rheology (as 

denoted by the thixotropy number and viscosity–

difference ratio) on the critical Reynolds number. 

We are also interested in the effect of cross-viscosity 

ratio and thickness of the wall layer on the instability 

picture. With no loss of generality, we fix G 1   

and 1  . Also, unless otherwise stated, the 

density ratio of the two fluids is set equal to one.  

Figure 8 shows the effect of the thixotropy number 

on the neutral stability curve. As can be seen in this 

figure, an increase in the thixotropy number from 0.5 

to 1.5 destabilizes the flow. As earlier mentioned, 

fluids with a smaller thixotropy number exhibit 

stronger thixotropic effects. In contrast, those having 

a larger thixotropy number exhibit stronger shear-

thinning effects. One can therefore conclude that 

thixotropy has a stabilizing effect on the interfacial 

stability with the effect of shear-thinning being 

destabilizing on the interfacial modes. The 

destabilizing effect of shear-thinning has previously 

been reported by Su and Khomami (1991). But, this 

is the first time that the stabilizing effect of 

thixotropy on core-annular flow is being reported. 

 

 
Fig. 8. Effect of the thixotropy number on the 

neutral stability curve (R 1, 1.5, C 1).     

 

The destabilizing effect of thixotropy number can 

better be seen in Fig. 9 which shows variation of the 

critical Reynolds number and wave number at two 

different thixotropy numbers over a broad range of 

cross-viscosity ratios. This figure shows that, for 

Moore fluids, there exists a threshold cross-viscosity 

at which the flow is at its most stable situation. This 

should be contrasted with Newtonian/Newtonian 

scenario where an increase in this ration has a 

monotonically destabilizing effect. The threshold is 

reduced when the thixotropy number is increased. 

Interestingly, the mode corresponding to the 

threshold has the smallest wavenumber (see Fig. 9). 

The results in this figure suggest that the interface 

can be stabilized if instead of water use can be made 

of more viscous Newtonian fluids although this 

increases the pressure drop. 
 

 
 

 

Fig. 9. Effect of the cross-viscosity ratio on the 

neutral stability curve ( R 1, 1.5)   . 

 
Figure 10 shows the effect of the viscosity-difference 

ratio ( ) on the neutral stability curve. This figure 

shows that an increase in  stabilizes the interface. 

This is because, for a given  , an increase in 

means an increase in 0 . An increase in makes 

the viscosity at the two sides of the interface closer 

to each other lowering the likelihood of the interface 

instability, and this explains why the interface 

becomes more stable when   is increased. 
 

 
Fig. 10. Effect of the viscosity-difference ratio on 

the neutral stability curve 

R 1, 0.5, C 1( ).     

 
Figure 11 shows the effect of cross-viscosity ratio on 

the variation of critical Reynolds number and critical 
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wavenumber at several viscosity-difference ratios. 

Again, a threshold cross-viscosity ratio appears to 

exist at which the flow is at its most stable situation.  
 

 
 

 
Fig. 11. Effect of the cross-viscosity ratio on the 

neutral stability curve (R 1, 0.5)   . 

 

The results presented in the Fig. 9 and Fig. 11 show 

that the critical wavenumber is very small (say, of the 

order of 10-1) which means that the wavelength of the 

unstable modes is, at least, of the same order as H. 

And this justifies ignoring the effect of surface 

tension from the analysis although that assumption 

was made right from beginning to screen out the 

complicating effects of surface tension from the 

analysis thereby enabling us to focus on just the role 

played by the rheology of the core fluid on the 

instability picture. (It can be shown that the critical 

wave numbers correspond to the interfacial modes, 

i.e., modes for which the perturbed velocities vary 

abruptly near y = 0.) To interpret the role played by 

the rheological properties of the Moore fluid on the 

stability of the interface, it should be noted that with 

the density ratio being equal to one in these figures 

(i.e., with no gravity effects involved) the instability 

of the interface is only due to the viscosity mismatch 

at the interface although the role played by the 

thixotropy number (say, b/a ratio) can complicate the 

picture. For example, for the case in which the 

viscosity of the annular flow is equal to the infinite-

shear viscosity of the core fluid (i.e., for C 1)  the 

viscosity mismatch at t = 0 at the interface (y = 0) is 

actually equal to 0    . But, depending on 

the b/a ratio in the Moore model, the viscosity of the 

core fluid is decreased at the early stages of 

instability (see Figs. 3 and4), and this lowers the 

viscosity mismatch giving rise to the stabilizing 

effect of the b/a ratio (i.e., the thixotropic time 

constant) of the fluid.   

At this stage, we would like to stress that although 

the main objective of the present work has been to 

investigate the effect of core fluid’s rheology on the 

instability of core-annular flow, for curiosity, we 

have decided to investigate the effect of thickness 

ratio (R) and also density ratio (Cr) on the instability 

picture. Figure 12 shows variation of the critical 

Reynolds number with thickness ratio for three 

different cross-viscosity ratios. Interestingly, for any 

cross-viscosity ratio, there appears to exist two 

extremum one corresponding to the most stable case 

and the other one to the least stable case although the 

wave numbers corresponding to these two cases are 

quite different (see Fig. 13). 
 

 
Fig. 12. Effect of the thickness ratio, R, on the 

critical Reynolds number ( 1.5, 0.5)    . 

 

 
Fig. 13. Effect of the thickness ratio, R, on the 

critical wavenumber ( 1.5, 0.5)    . 

 

Figure 14 shows the effect of density ratio (defined 

as 2 1rC   ) on the critical Reynolds number. An 

increase in the density of the Newtonian fluids has a 

destabilizing effect on the interface although its 

effect appears to asymptote to a limiting value. The 

wavenumbers are increased when the density of wall 

layer is increased. Since density plays no role on the 

fully-developed base-flow velocity profiles, its effect 

should be attributed to the inertial effects. 
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Fig. 14. Effect of the density ratio on the critical 

Reynolds number (R 1, 0.5, C 1).     
 

It needs to be mentioned that in real world, the 

density ratio of oil-to-water is often realized to be 

very close to one (usually less than one but for some 

extra-heavy oils it can be slightly above one). So, the 

results shown in this figure are of little consequence 

for true core-annular flows when transporting real 

waxy crude oils although such results can be very 

useful for cementing operation in drilling operation 

of oil wells. 

7. CONCLUDING REMARKS 

In this study, the interfacial stability of a thixotropic 

fluid squeezed between two Newtonian fluids of the 

same viscosity and the same thickness flowing in a 

triple-layered configuration has been numerically 

studied using normal mode, temporal stability 

analysis. Assuming that the core fluid obeys Moore 

model, the effects of different parameters in this fluid 

model (notably, the thixotropy number and its 

viscosity-difference ratio) have been investigated on 

the unstable modes having assumed that the 

eigenmodes are symmetric. The reason for focusing 

on symmetric modes is the notion that they have been 

realized to be more dangerous than the other modes 

in core-annular flow (Joseph et al. 1984; Hu and 

Patankar, 1995). The symmetry of such eigenmodes 

allowed us to consider only half of the channel as the 

computational domain (i.e., the lower half) which 

significantly lowered the run time.  

Based on the results obtained in this work, an 

increase in the thixotropy number (which is defined 

as the ratio of the fluid’s time constant to the flow’s 

time constant) lowers the critical Reynolds number. 

But, based on the definition of this dimensionless 

number, it can be concluded that the time constant 

introduced through thixotropic behavior of the 

Moore fluid has a stabilizing effect on the interface 

whereas the shear-thinning behavior of the Moore 

fluid has a destabilizing effect on the interface. An 

increase in the viscosity-difference ratio (which is 

attained by lowering the zero-shear viscosity of the 

Moore fluid or by increasing the viscosity of the wall 

layer) can stabilize or destabilize the interface 

depending on this ratio being smaller or larger than a 

threshold. 

We also would like to stress that although the results 

obtained in the present work can be used for 

designing operations leading to the production of 

multi-layered sheets, it should be conceded that the 

results can be extended to the cementing operation of 

boreholes in drilling industry (i.e., where the 

working fluids are slightly miscible) and also to the 

pipeline transport of waxy crude oils in core-annular 

flow provided a hydrocarbon such as a kerosene is 

used as the lubricant. Having said this, it must be 

stressed that, the present study is more of a 

fundamental nature rather than industrial. That is to 

say that, no specific sheet material, cement slurry, 

drilling mud, or waxy oil has been used or considered 

in this study. In fact, such complex fluids usually 

obey rheological models which are much more 

complicated than the Moore model. In spite of its 

apparent simplicity, however, this simplistic fluid 

model has enabled us to differentiate thixotropic 

effects from shear-thinning effects and that is all we 

were looking for in the present work. In fact, the 

prediction that the sole qualitative effect of 

thixotropy on the interfacial instability is a 

stabilizing effect is the main contribution of the 

present work. In real world, however, the stabilizing 

effect of thixotropy should simultaneously compete 

with the destabilizing effect of shear-thinning and 

also any stabilizing/destabilizing effect which might 

be introduced through the working fluids’ 

viscoelastic and/or viscoplastic effects. Such a 

thorough analysis requires more sophisticated 

rheological fluid models such as Dullaert-Mewis 

(Ahmadpour and Sadeghy, 2014) which should be 

done in future works.   

Another direction for extending the present work is  

to consider non-symmetric modes. Obviously, a 

random disturbance can be decomposed into both 

symmetric and non-symmetric (say, even and odd) 

Fourier modes. And, as is well established in the 

literature,  a base flow can be vulnerable to both 

types of modes. The fact is that, whenever a core-

annular flow becomes unstable the instability 

exhibits itself first in an axisymmetric fashion 

(Preziosi et al. 1990). This is the main reason why 

we have focused on symmetric modes in our 

instability analysis. But, we are aware that under 

certain flow conditions non-axisymmtric modes 

might also become unstable in such flows. 

Obviously, the prediction that a fluid’s thixotropic 

behavior can stabilize symmetric modes may not 

necessarily mean that thixotropy can also stabilize 

non-symmetric modes. So, future works should be 

directed towards addressing the stability of non-

symmetric modes on interfacial flows of thixotropic 

fluids, in general, and core-annular flows, in 

particular. The present work can be regarded as a 

good first step in that direction. 
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