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ABSTRACT 

This paper presents a new efficient and robust numerical model for morphological flow simulation in river 

bends. The hydrodynamic model is developed by solving the two dimensional (2D) shallow water equations 

using a total variation diminishing (TVD) MacCormack predictor corrector scheme. The present TVD method 

is very simple and provides accurate results free from numerical oscillations near sharp gradient. The effective 

stresses are modeled by using a constant eddy viscosity model. The sediment transport model solves the Exner 

equation using a simple forward time and central space (FTCS) finite difference algorithm. The sediment 

transport model incorporates the helical flow and the transverse bed slope effects on the sediment direction 

computation. These models are coupled using the semicoupled approach. The present semicoupled model is 

used to replicate two popular experimental test cases of both tight and loose channel bends. The obtained results 

in terms of bed level variation reveal that the model can accurately simulate several features of the bed changes 

such as oscillations of the transverse bed profile with the formation of point bars and pools along the banks. 

The values obtained for three widely used statistical parameters show the applicability of the present model for 

this type of complex scenarios.  

Keywords: Shallow water equations; Exner equation; TVD MacCormack scheme; FTCS scheme; Semi-
coupled model; Sediment transport model.  

NOMENCLATURE

C chezy coefficient  

Cr local courant number  

D50 median grain size 

fs sediment shape factor 

g gravitational acceleration  

h depth of flow  

J jacobian determinant  

K von karman constant 

𝐿𝑖,𝑗
𝑘  spatial and temporal grid level 

lξ finite difference operators in ξ direction 

lη finite difference operators in η direction  

n mannings roughness parameter 

nn number of grids 

qs total bed load discharge per unit width 

qsx bed load discharge/unit width in x 

direction  

qsy bed load discharge/unit width in y 

direction 

r cylindrical coordinates 

rc radius of curvature of streamlines  

S specific gravity of sediment  

u velocity components in x direction  

v velocity components in y direction  

Z bed elevation 

zexp experimental non dimensional relative bed 

variation znum experimental non 

dimensional relative bed variation 

 

α angle of sediment transport direction  

αt empirical coefficient  

υt eddy viscosity  

λ porosity of the bed material  

ξ computational domain in x direction 

η computational domain in y direction  

θ shields parameter 

δ direction of bed shear stress 

φ cylindrical coordinates of bed shear stress 
 

1. INTRODUCTION 

Flow in a river bend is a complex phenomenon as it 

involves several processes such as, secondary flow 

(or helical flow), turbulence, river bed form change, 

river plan form change, etc. In a river bend, scour 

generally occurs along the outer bank while the 

deposition occurs along the inner one, due to the 
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difference of centrifugal forces between the upper 

and the lower layer of flow (Kassem and Chaudhry 

2002). Erosion can undermine or destroy the river 

training structures, while deposition may obstruct 

water intakes or the navigations canals (Vasquez 
2005). 

Modelling can provide some prior idea regarding 

scouring, deposition, etc., which is of significant 

practical concern. Models may be classified into 

analytical (or theoretical), experimental or 

numerical, based on the approach used. El-Khudairy 

(1970) developed one of the pioneer analytical 

models for determining the steady state transverse 

bed profile in a channel bend. After that several 

analytical models (Engelund 1974; Kikkawa, Ikeda, 

and Kitagawa 1976; Zimmerman and Kennedy 1978; 

Odgaard 1981; Parker, Sawai, and Ikeda 1982; 

Seminara, Zolezzi, Tubino, and Zardi 2001) are 

reported in the literature for bend flow simulation. 

These models however, are applicable only for 

simple bends due to several assumptions associated 

with it. Moreover, they are also restricted to steady 

analysis due to the same reason. Experimental 

analysis can overcome these issues to a great extent. 

Hooke (1974) did one of the earliest experimental 

studies in the University of Uppsala, Sweden. He 

observed that the region of maximum bed shear 

stress and maximum sediment discharge is on the 

point bar in the upstream of the bend. It crosses the 

channel centerline in the middle part of the bend and 

follows the concave bank to the next point bar 

downstream. Sutmuller and Glerum (1980) 

conducted experiments in 180◦ channel bend and 

found out the point bar height and pool depth. 

Struiksma (1983) did similar experiments for 140◦ 

channel bend considering three different discharge 

values. For each discharge value, he found out the 

velocity and bed profiles at different cross sections 

throughout the channel length. Garcia and Ni ño 

(1993) tried to determine the height, wavelength, and 

celerity of alternate bars in an experimental channel 

bend. Rahman et al. (1996) performed experimental 

studies to analyze the morphological changes of 

meandering channel with special attention to bank 

erosion. Roca et al. (2007) developed physical 

models for simulating the bend scour and its 

prevention by outer bank footing. Abad and Garcia 

(2009) conducted experimental studies to examine 

the effect of bend orientation on river bed 

morphodynamics. Uddin and Rahman (2012) 

conducted an experimental study for observing the 

flow and scour pattern in a bend of River Yamuna, 

Bangladesh. In a more recent study, Lee and Dang 

(2018) did experimental studies to determine the 

degradation depth in a 90◦ channel bend. 

Even though experimental model can easily be used 

to analyze the scouring, deposition and all related 

phenomenon in a channel bend, it has some inherent 

limitations. Some of such are high investment and 

maintenance cost, scale issues, repetitive approach, 

etc. With the advent of computer powers in last few 

decades, researchers have started giving effort for 

numerical simulation of morphological processes in 

channel bend. The morphological process in a 

channel bend is truly a three dimensional (3D) 

process in nature and therefore it is advantageous to 

use 3D models in this regard. This has leads to 

development of many 3D models for this purpose. 

Wang and Adeff (1986) developed a 3D model for 

water flow and sediment transport using finite 

element method. Demuren (1991) proposed a 3D 

numerical model for morphological simulation in 

channel bend employing k-ε turbulence model. Wu 

et al. (2000) presented a 3D numerical model for 

hydrodynamic and morphological flow simulation of 

a channel bend. They solved the Reynolds-averaged 

Navier-Stokes equations using finite volume method 

for this purpose. Olesen (1985) developed 3D 

numerical model for computing the meander 

planform, meander wave-length and downstream 

meander migration in a meandering channel. 

Khosronejad et al. (2007) developed a 3D model for 

numerical simulation of flow and sediment transport 

in channel bend and observed that k-ω model 

performs better than k-ε model. Ramamurthy et al. 

(2012) proposed a 3D model for morphological flow 

simulation in sharp channel bend and observed that 

Volume of Fluid approach is excellent in this regard. 

Khosronejad et al. (2015) developed a 3D numerical 

model in curvilinear coordinates for studying the bed 

elevation changes in a channel bend equipped with 

in-stream rock structures. Khosronejad et al. (2018) 

extended the same model to determine the optimal 

location of rock-vane in channel bends. 

Despite the fact that 3D models are superior for 

morphological flow simulation in channel bends, the 

computational cost of 3D models is very high and 

often prohibitive for engineering analysis and design 

studies (Begnudelli, Valiani, and Sanders 2010). 

Under certain considerations and limitations, it is 

feasible to use 2D depth averaged models to conquer 

this problem, specifically for certain engineering 

applications (Lane and Ferguson 2005). This has 

motivated many researchers to develop 2D 

numerical models for flow and sediment transport in 

channel bends. Flokstra and Koch (1981) proposed 

one of the pioneer 2D numerical models for flow and 

sediment transport in channel bends. They applied 

their model to simulate the bed elevation changes in 

a 180◦ channel bend and found that their model could 

reproduce the point bar near the the inner bank and 

also the pool near the outer bank. However, their 

model could not replicate the asymmetry of the bed 

topography. In addition, their model is applicable 

only for steady flow. Struiksma et al. (1985) 

proposed a 2D steady numerical model for 

morpholgical simulation in channel bends. However, 

their model can only be applied for channel geometry 

which can be represented as a series of circular bends 

of constant width. Shimizu and Itakura (1989) 

developed another steady 2D morphological model 

in cylindrical coordinate sys-tem. However, it is 

valid only for definite geometry. In order to 

overcome this steady flow and specific geometry 

issues, Kassem and Chaudhry (2002), for the first 

time presented a 2D boundary fitted numerical model 

for simulation of bed deformation in channel bends. 

The problem with their model is that it is based on a 

numerical model, which is subjected to artificial 
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viscosity for stability. The model is very much 

sensitive to the artificial viscosity coefficient. 

Vasquez et al. (2008) developed a 2D depth averaged 

model for simulating the scour and the depsotion in 

a meandering channel. For this purpose, they solved 

the 2D shallow water equations using unstructured 

triangular elements. Abad et al. (2008) developed a 

numerical model for morphological flow simulation 

in channel bends using curvilinear coordinates and 

promising results are obtained. However, it is again 

restricted to steady flow and could not locate the 

point bar downstream of the curve when applied in a 

channel bend. Begnudelli et al. (2010) proposed 

another 2D model in the same regard by using 

Godunov-type finite volume method. Their model 

also could not replicate the point bar and the pool 

downstream of the curve, when applied to Sutmuller 

and Glerum (1980) test channel. 

The present work proposes a simple but effective 

numerical model for 2D simulation of hydrodynamic 

and morphological flow simulation in river bend. For 

the hydrodynamic portion, it solves the unsteady 

shallow water equations in a boundary fitted 

coordinate system using a TVD based MacCormack 

predictor corrector scheme. Therefore, it may be 

applied to complex river planform as well as for 

unsteady cases. The advantage of present TVD 

version is that it does not require any calculation of 

eigen values and eigen vectors. For the 

morphological modelling, the Exner sediment 

continuity equation is solved using a simple finite 

difference scheme. Finally, both the models are 

coupled using the simple semicoupled manner. 

2. NUMERICAL MODEL 

2.1 Hydrodynamic Equations and 

Numerical Solution 

Assuming a hydrostatic pressure distribution, the 2D 

shallow water equations can be derived by vertically 

integrating the Reynolds-Averaged Navier Stokes 

equations (Chaudhry 2007). Neglecting wind shear, 

ignoring Coriolis acceleration and for small bottom 

slope, these hydrodynamic governing equations can 

be written as (Alauddin and Tsujimoto 2012) 

( ) ( )
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                                                                               (3) 

where S is elevation of water surface, h is depth of 

flow, u, v are velocity components in x and y 

directions, respectively, g is gravitational 

aceleration, and n is Mannings roughness parameter. 

In the momentum equations (Eqs. 2 and 3), υt is the 

eddy viscocity due to turbulence and is calculated 

here using the depth averaged parabolic eddy 

viscosity model (Wu 2007) given as 

2
2 2

1

3

( )t t

gn
h u v

h

                                      (4) 

where αt is an empirical coefficient between 0.3 and 

1.0 (Elder 1959). This value is kept as 0.7 throughout 

the study. 

The planform of natural rivers is mostly irregualr in 

shape and application of the above governing 

equations in that case becomes very difficult. In 

order to overcome this issue, the equations are 

transformed from the physical domain (x, y) to a 

computational domain (ξ, η) and given as (Anderson 

et al. 1984) 
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where the diffusive terms D1, D2, D3 and D4 are 

given as 
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(11) 

In Eqs. 5-11, xξ,yξ,xη,yη are some coefficients 

obtained due to grid transformation and are 

determined here using central difference 

approximations. J is the Jacobian determinant of grid 

transformation and given as 

J x y x y                                                    (12) 

In matrix form, Eqs. 5-7 can be written as 
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The above hydrodynamic equations representing the 

2D unsteady open channel flow are a set of mixed 

hyperbolic partial differential equations. Therefore, 

it is very difficult to solve them analytically and 

mostly they are targeted with numerical approaches. 

MacCormack predictor corrector scheme 

(MacCormack 2003) is one of the excellent and 

widely used numerical techniques in this regard. 

Many researchers (Liang, Özgen, Hinkelmann, Xiao, 

and Chen 2015; Bellos and Tsakiris 2015; Bellos, 

Kourtis, Moreno-Rodenas, and Tsihrintzis 2017) 

have applied this technique for the shallow water 

equations in diverse situations. This second order 

accurate method is composed of two steps namely 

predictor and corrector steps. Even though the 

method is very simple and efficient, it faces the 

dispersion error (Anderson, Tannehill, and Pletcher 

2016) when applied to hyperbolic equations. A TVD 

approach is used here to remove the dispersion error. 

The TVD method proposed by Davis (1984) is 

utilized here due to its independency on 

characteristic transformation (Liang, Lin, and 

Falconer 2007). 

The 2D problem is splitted into a sequence of two 

one dimensional (1D) problems and is solved at each 

time step. Using the operator splitting given by 

Strang (1968), Eq. 13 maybe splitted to 
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The finite difference sequence followed for the 1D 

problems in Eqs. 15 -16 are given as 
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where lξ and lη are the finite difference operators 

along ξ and η directions, respectively. The subscript 

and superscript of L represents the spatial and 

temporal grid levels, respectively. It can be easily 

seen from Eq. 17 that values of the primitive flow 

variables are computed at next step by employing 

four consecutive sweeps. Equation 15 is solved first 

in ξ direction using the initial values of the flow 

parameters (sweep 1). After that Eq. 16 is solved in 

η direction using the latest updated values (sweep 2). 

After that Eq. 16 is again solved in η direction using 

the latest updated values (sweep 3). Finally, Eq. 15 

is solved in ξ direction using the latest updated 

values, to get the final values at next time step (sweep 

4). It may be mentioned here that sweep 1 and sweep 

4 are exactly same except that the initial values are 

different. Similarly, sweep 2 and sweep 3 are also 

similar to each other except the initial values. Only 

sweep 1 is discussed here in detail to save the space. 

Sweep 2 can easily be implementated by considering 

finite difference approximation in η direction (using 

index j). The first sweep of Eq. 17 in ξ direction can 

be written as 
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Equation 21 represents the TVD step added in ξ 

direction. ∆ξ and ∆t are the grid spacings in ξ and 

time directions, respectively. Superscripts p and c 

stands for predicted and corrected values, 

respectively. Subscript i is the index in ξ direction. 

In Eq. 21, 
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(24) 

The expression for G () in Eq. 21 is 

( ) 0.5 [1 ( )]G f c f                                  (25) 

where the flux limiter function φ( f ) is given by 

( ) max{0,min(2 ,1)}f f                                       (26) 

and the value of the variable c is given as 
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Where Cr is the local courant number given as 
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2.2 Sediment Transport Equation and 

Numerical Solution 

Neglecting grain sorting and considering only bed 

load transport, the 2D sediment continuity equation 

can be written as (Struiksma et al. 1985) 

1
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qqZ

t x y


  

   
                            (29) 

Where Z is the bed elevation, qsx and qsy are 

components of bed load discharges per unit width in 

x and y directions, respectively and λ is the porosity 

of the bed material (a default value of 0.4 is 

considered here). If α is the angle of sediment 

transport direction, the components of bed load 

transport can be calculated from 

cos( ),  sin( )   sx s sy sq q q q                      (30) 

in which qs is the total bed load discharge per unit 

width and is calculated here using the formula given 

by Engelund (1974) as 

52
3 2
500.05 (( 1) )  s

C
q S gD

g
                         (31) 

where S is specific gravity of sediment, D50 is 

median grain size, C is Chezy coefficient and θ is 

Shields parameter. The expression of Shields 

parameter is given as 

2 2

2

50

=
( 1)

u v

C S D





                                                  (32) 

Whenever flow takes place in channel bend, a 

secondary (or helical) flow is generated due to 

centrifugal acceleration. This leads to movement of 

bed sediment from the outer bank to the inner bank. 

Therefore, the bed changes in a channel bend is 

directly related to the helical intensity. This helical 

flow causes the direction of bed shear stress (δ) to 

deviate from the mean flow velocity. Employing a 

secondary flow correction (Struiksma, Olesen, 

Flokstra, and De Vriend 1985), δ can be found out 

from 

arctan( ) arctan( )
c

u Ah

v r
                                 (33) 

where rc is the radius of curvature of streamlines and 

is defined as 

3

2 2 2

2 2

( )
c

u v
r

u u v v
u u u

x y x y
  




   
   

   

          (34) 

Parameter A in Eq. 33 is considered here to vary with 

cases and is given as 

2

2
(1 )

g
A

KCK
                                            (35) 

in which K is Von Karman constant (=0.4). 

Whenever there is some lateral slope in the channel 

bed, the sediment transport direction deviates from 

the bed shear stress (δ) due to gravity force on the 

sediment particle. The sediment transport direction 

(α) is then calculated from the below equation 

(Flokstra and Koch 1981; Struiksma, Olesen, 

Flokstra, and De Vriend 1985): 
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1
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f y

Z

f x


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















                                             (36) 

where fs is the sediment shape factor, 
𝜕𝑍

𝜕𝑥
  and 

𝜕𝑍

𝜕𝑦
 are 

the bed slopes in x and y directions, respectively. 

In an alluvial channel bend starting from a flat bed, 

sediment is first transported from the outer bank to 

the inner bank by the secondary flow. This leads to 

scouring on the outer bank and deposition on the 

inner bank. It produces a transverse slope in the 

direction of flow. As the transverse slope grows, 

sediment starts to move towards the outer bank due 

to gravity. Finally, an equilibrium condition is 

reached between these two effects; when the 

maximum scouring and deposition is observed in the 

bend. 

In order to make the present model compatible with 

natural rivers, the sediment continuity equation is 

also transformed from the physical domain (x, y) to 

a computational domain (ξ, η) and is given as 

(Anderson, Tannehill, and Pletcher 2016) 

1
( ) ( )

1

1
( ) 0

1

sx sy

sy sx

JZ q y q x
t

q x q y

 

 

 

 

 
 

  


  

 

                (37) 

Equation 37 is solved here using a simple finite 

difference scheme where the time derivative is 

approximated by forward difference and the space 

derivatives are approximated by central difference 

operators (FTCS scheme). The difference equation 

after finite difference approximations is given as 

1

, , , 1 , 1 1, 1,

1, 1, 1, 1,

,

, 1 , 1 , 1

,

1
(1 )( )

4

[{( ) ( ) } {( ) ( ) }]
2 (1 )

[{( ) ( ) } {( ) (
2 (1 )

k k k k k k
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Z Z Z Z Z Z

t
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, 1) }]k

i j 

 (38) 

where ω is a diffusion factor and is added here to 

remove the oscillations during the numerical 

simulation (Tsakiris and Bellos 2014). A fixed value 

of 0.99 is used throughout the analysis. 

2.3   Initial and Boundary Conditions 

In order to numerically solve the above governing 

hydrodynamic and sediment continuity equations, 

proper initial and boundary conditions are 

required. Constant discharge values are used as 

initial condition in the hydrodynamic model. Initial 

bed elevation is used as initial condition in the 

morphological model. Initial value of sediment 

transport is calculated using the flow and sediment 

properties. Regarding boundary condition, two 

types of boundary conditions exist here namely, 

open and closed boundaries. A constant discharge 

value is used as upstream boundary and the 

corresponding uniform flow depth for that 

discharge is used at the down-stream boundary. 

The solid boundaries are simulated as free slip 

boundary (Anderson, Tannehill, and Pletcher 

2016), i.e. normal velocity component is set to zero 

and the transverse velocity component is 

extrapolated from interior domain. Regarding the 

morphological model, the sediment transport 

component to solid boundary is set to zero and the 

tangential component is extrapolated from the 

interior domain. The bed elevations on the banks 

are also extrapolated from the interior domain. 

2.4.   Semicoupled Approach 

The hydrodynamic and morphological models 

presented in the earlier section may be linked with 

two methodologies such as fully coupled and semi-

coupled approaches. As semicoupled approach has 

many advantages such as, computationally efficient, 

ease in incorporating different sediment transport 

formulas, etc. (Kassem and Chaudhry 2002), the 

present model uses semicoupled approach in this 

regard. 

Figure 1 shows the flow chart for the model. The 

model starts with setting the initial values for all 

the flow variables and sediment properties. The 

initial bed elevation is also specified. With these 

data, the hydrodynamic model runs and computes 

the flow variables h, u and v. These flow variables 

are then used to compute qsx and qsy. The 

morphological model is then run and subsequently 

the new bed elevation (Z) is computed. The model 

then checks one convergence criteria 

(Convergence-A in the flow chart). According to 

this convergence, two conditions are to be fulfilled 

such as (Soulis 2002), (a) the axial velocity 

component averaged over the flow field between 

two successive iterations drops below 0.0005 and 

(b) the axial sediment transport component 

averaged over the flow field between two 

successive iterations drops below 0.0005. If this 

convergence is not satisfied, the preceding 

iterations continue. Else, the model updates the bed 

elevation and accordingly new value of h is 

computed. These steps will run till Convergence-B 

is satisfied, if the upstream discharge is constant. 

The convergence-B is said to be fulfilled if the bed 

elevation change averaged over the flow field 

between two successive iterations drops below 

0.00005. In case of unsteady case, the model runs 

till the last time step is reached. If this condition of 

Convergence-B/last time step is reached, the 

model stops. Else, it again starts from 

hydrodynamic model. 

3. APPLICATION OF THE 

NUMERICAL MODEL 

In order to assess the applicability of the present 

model, it is applied to two experimental test cases of 

known bed deformation. Sutmuller and Glerum 

(1980) experimentally found out the bed deformation 

in a 180◦ channel bend at Laboratory of Fluid 

Mechanics (LFM) of the Delft University of 
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Technology. The experiment T6 of that study is 

considered here as the first test case. The second case 

considered here is the experiment (T2) done by 

Struiksma (1983) at the Delft Hydraulics Laboratory 

(DHL) in a 140◦ channel bend. Figure 2 shows the 

schematic diagram for both the channel bends. The 

details of experimental conditions for both the test 

cases are given in Table 1. 

 
Fig. 1. Flow chart for the present semicoupled 

model. 

 

Table 1Flow and sediment parameters 

Parameter Simbol LFM DHL 

Discharge Q(m3/s) 0.17 0.061 

Flume width B(m) 1.7 1.5 

Water depth h(m) 0.20 0.10 

Flow velocity u(m/s) 0.50 0.41 

Water slope S0 (%) 0.18 0.203 

Chezy’s 

co-efficient Q(𝑚
1

2/s) 26.4 28.8 

Median grain 

diameter 
D50(mm) 0.78 0.45 

Shields 

parameter 
θ 0.28 0.27 

Bend radius Rc(m) 4.25 12 

Bend length Lc(m) 13.35 29.32 

3.1   LFM Test Case 

Sutmuller and Glerum (1980) used uniform sediment 

in their experiment with standard deviation of σg = 

1.15. The specific gravity of the sediment particles is 

2.65. In numerical simulation, two straight reaches 

of length 15 m each are considered on the upstream 

and downstream of the bend, to nullify the 

boundary effect on the computed result. The whole 

domain is divided into 1179 finite difference grids. 

In the straight portions the grid spacings are ∆x = 

0.3335 m and ∆y = 0.2125 m. The grid spacings in 

the curved portion are ∆r = 0.2125 m and ∆φ = 4.50, 

where r and φ are cylindrical coordinates. The value 

of Mannings coefficient is calculated as 0.028 from 

the given Chezys coefficient. The value of Courant 

number is 0.91. The sediment shape factor is 

considered as 2. The upstream flow is considered to 

be 0.17 cumec and the downstream water depth is 

considered as 0.2 m. The bed elevation is kept 

constant at both the upstream and downstream 

boundaries. The simulation is started from the bed 

slope as given in Table table1 and run upto steady 

state. For this purpose, the time is considered as the 

iteration number. 

Figure 3 shows the relative bed (∆𝑍/𝐻0)variations 

with respect to initial water depth computed by the 

present model along with the experimental result. 

The same figure also shows the results of previous 

numerical models of Abad et al. (2008) and 

Begnudelli et al. (2010). The positive val ues 

indicate deposition and the negative values indicate 

scouring of the channel bed. The transverse bed slope 

generally oscillates along the bend and leads to a 

large point bar on the inner bank and a deep pool on 

the outer bank, downstream of the entrance (Vasquez 

2005). Around the centre of the bend these 

phenomenon reduce and again increase around the 

exit of the bend. This leads to formation of a point 

bar on the inner bank and a pool on the outer bank, 

around the exit of the bend. All these deformations 

are accurately reproduced in the results obtained 

from the present model (Fig. 3b). In the results 

reported by Abad et al. (2008)(Fig. 3c), size of the 

pools on the outer bank is observed to be smaller in 

compared to experimental one. Further, the height of 

the point bar on the inner bank is uniform throughout 

the curve. No point bar is visible around the 

downstream of the curve. The topographical plot of 

Begnudelli et al. (2010) (Fig. 3d) does not show any 

pool around the downstream of the curve. 

Eventhough their model could correctly reproduce 

the size of the bigger pool on the outer bank 

downstream of the entrance, it fails to mimic the 

bigger point bar at the same location on the inner 
bank. 

Apart from the contour plot of the domain, numerical 

bed topographies along six cross sections are also 

compared with the experimental result. Begnudelli et 

al. (2010) did similar comparisons and reported that 

their predictions are better than predictions of Abad 

et al. (2008). The present work therefore compares 

the result of the current model with the results of 
Begnudelli et al. (2010). 



K. Bora and H. M. Kalita / JAFM, Vol. 13, No. 5, pp. 1611-1622, 2020.  

 

 
1618 

 

 
Fig. 2. Schematic view of the test channels: a) LFM flow channel; b) DHL flow channel. 

 

 
 

 
Fig. 3. Relative bed variations with respect to initial water depth (∆Z/H0) for LFM test case: a) 

Experiment by Sutmuller and Glerum (1980); b) Prediction by the present model; c) Prediction by 

Abad et al. (2008); d) Prediction by Begnudelli et al. (2010). 

 
 

Figure 4 shows the comparison of transverse bed 

profiles along the cross sections with experimental 

results and the results obtained by Begnudelli et 

al.(2010). These figures clearly show that the present 

model can excellently predict the outer bank 

scouring, inner bank deposition and also the 

centreline bed height, for all the sections. The results 

are also found to be better than the results of 

Begnudelli et al. (2010). For additional quantitative 

analysis, two parameters namely, Index of 

Agreement (IA)(Willmott 1981) and Nash Indicator 

(NSE) (Nash and Sutcliffe 1970) are calculated here 

for all the sections. The expressions for these factors 
are as given below 

2

exp

1

2

exp exp exp

1

( )

1

( )

nn

num

i

nn

num

i

z z

IA

z z z z







 
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


        (39) 
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Fig. 4. Comparison by transverse bed profiles for LFM test case: measured (x), predictions by present 

model (solid line) and predictions by Begnudelli et al. (2010) (+). 
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Where nn is the number of grids in the considered 

cross section, znum is the computed non dimensional 

relative bed variation, zexp is the experimental non 

dimensional relative bed variation and zexp is the 

averaged experimental non dimensional relative bed 

variation. The numerical values obtained for these 

two parameters are shown in Table 2. The values 

clearly shows that the present model is appropriate 
for these type of tight curvature. 

 

Table 2 Performance indicators for the LFM test 

case 

Position IA NSE 

Section 8 0.995 0.980 

Section 10 0.954 0.796 

Section 12 0.980 0.916 

Section 14 0.951 0.798 

Section 16 0.963 0.845 

Section 18 0.961 0.853 

 

3.2   DHL Test Case 

Struiksma (1983) also considered uniform sediments 

with standard deviation of σg = 1.19 and specific 

gravity of 2.65 in his experiment. Two straight 

channel reaches of length 15 m each are also 

considered in the numerical simulation. The 

Mannings coefficient is calculated as 0.0237. The 

Courant number value is 0.94. The grid spacings 

considered in the straight portions are ∆x = 0.5236 m 

and ∆y = 0.1875 m. While in the bend portion these 

values are ∆r = 0.1875 m and ∆φ = 2.50. This has 

leads to 1035 grids for the whole flow domain. The 

sediment shape factor is considered as 2. The 

upstream discharge is 0.061 cumec and the 

downstream water depth is 0.1 m. The bed elevation 

is kept as constant at both the upstream and 

downstream boundaries. Starting from the initial bed 

the model is run upto steady state by considering 

time as the iteration parameter. 

 

 
Fig. 5. Computed relative bed variations with 

respect to initial water depth (∆Z/H0) for DHL 

test case. 
 

Figure 5 shows the relative bed change on 

imensionalized with initial water depth (∆Z/H0) . 

This figure clearly shows the bigger pool on the outer 

bank and the point bar on the inner bank, down-

stream of the bend entrance. The model can also 

replicate the smaller pool and the point bar around  
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Fig. 6. Comparison of bed level variations along two longitudinal sections for DHL test case. 

 

 

the exit of the bend. Moreover, the alternate bars on 

the downstream of the bend as observed in the 

experiment are exactly reproduced by the present 

model. For further analysis, numerical bed level 

variations along two longitudinal sections are also 

compared with the experimental results and are 

shown in Fig. 6. Figure 6 clearly shows that the 

present model compares satisfactorily with the 

experimental result. The point bar and the pool near 

the entrance of the bend are clearly reproduced. 

However, there is some discrepancy between the 

experimental and the numerical results for the pool 

around the exit of the bend. This discrepancy was 

also observed by Kassem and Chaudhry (2002). 

Kassem and Chaudhry (2002) claimed that it may be 

due to the uncertainties in the sediment discharge 

calculation and evaluation of sediment movement 

direction. The statistical parameter Brier Skill Score 

(BSS) (Davis 1984; Guan, Wright, Sleigh, Ahilan, 

and Lamb 2016) is used here for quantitative analysis 

of the numerical results. The BSS parameter is given 

by 

𝐵𝑆𝑆 = 1 −
∑ (𝑧𝑛𝑢𝑚(𝑡)−𝑧𝑒𝑥𝑝(𝑡))

2𝑛𝑛
𝑖=1

∑ (𝑧𝑛𝑢𝑚(𝑡)−𝑧𝑒𝑥𝑝̅̅ ̅̅ ̅̅ (0))
2𝑛𝑛

𝑖=1

                  

                                                                    (41) 

The BSS values are found to be 0.93 and 0.83 for the 

inner bank and the outer bank, respectively and are 

well within the excellent range (Guan, Wright, 

Sleigh, Ahilan, and Lamb 2016). In order to check 

the effect of grid size on the computed results, 

another grid is also considered. For this case the total 

number of grids is 1287. The numerical results for 

this grid size is also shown in Fig. 6. The results 

clearly show that both the grids are showing almost 

similar results. Therefore, it may be concluded that 

with further decrease in grid size will not provide any 

remarkable change in the results. 

4. CONCLUSION 

This study presents a 2D depth averaged unsteady 

numerical model for morphological flow simulation 

in river bend. For this purpose, a hydrodynamic 

model and a sediment transport model are coupled 

with the efficient semicoupled approach. The 

hydrodynamic model solves the shallow water 

equations in a boundary fitted coordinate system to 

make the model compatible with river bends. A 

simple but efficient TVD MacCormack scheme is 

used here for solution of the governing 

hydrodynamic equations. The sediment transport 

model is developed by solving the Exner equation in 

a boundary fitted coordinate system. The simple 

FTCS scheme is used for discretization of the 

governing sediment transport equation. The 

sediment transport model incorporates the secondary 

flow effects by a pseudo 3D model. The effects of 

transverse bed slope on the sediment transport 

direction are included by a simple bed slope 

correction formula. 

To verify the applicability of present model it is 

applied to replicate the bed level variations in two 

experimental channel bends. These experimental test 

cases include both tight and loose bends to affirm the 

potential of the model in diverse situations. The 

results show that the model can excellently simulate 

the point bars near the inner bank and the pools near 

the outer bank in the bend. The alternate bar 

formations downstream of the bend are also 

replicated accurately. Three popular statistical 

parameters are calculated for quantitative analysis of 

the results and the values obtained establish the 

potential of the present model for this type of 

complex river phenomenon. 

The present model assumes uniform sediment in the 

river and therefore cannot include the grain sorting 

as well as armoring effects of bed sediment. This 

may be a future work of the present model. The effect 

of suspended sediment on the bed level variation can 

also be included in the model and is considered as the 

future scope of the present work. Another scope of 

future work may be use of some advanced and 

complex turbulence models. 
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