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ABSTRACT 

The development of microfluidic media supporting blood flow is significant for many applications. Prefractal 

models have considerable potential for contributing to the study of flow in these media, since information 

about scale complexity is captured by a small number of parameters. Flows of power law fluids, Bingham 

fluids and described by the marginal zone theory are considered. In this study, physically based models for 

estimating the permeability of a microfluidic porous materials are presented. Models are derived assuming 

that media are represented by a bundle of tortuous capillary tubes with fractal pore-size distributions. They 

are expressed in terms of porosity, microstructural parameters and fluid characteristics. Expressions for the 

flow resistance through single tortuous tubes, and the relationship between fluid velocity through tortuous 

tubes and through straight tubes, in terms of fractal dimensions, are also obtained. 

 

Keywords: Tortuous capillaries; Flow resistance; Permeability; Blood flow; Fractal; Prefractal. 

NOMENCLATURE 

Dd fractal dimension for tubes diameter 

DL fractal dimension for tubes length 

K permeability of the porous material 

kBp consistency index Bingham plastic fluid 

kow consistency index power law fluid 

L0 straight-line length 

p pressure 

R flow resistance 

u fluid velocity 

 

c fluid viscosity at central region of the tube    

z plasma viscosity 

 shear stress 

o yield stress 

 volumetric flow rate 

 tube diameter 

c diameter of the marginal zone 

max maximum diameter 

min minimum diameter 

p diameter of the plug 

 fluid behavior index 

  

 
 

1. INTRODUCTION 

Blood flow supplies the body's cells with enough 

oxygen and nutrients required to operate. This 

essential function is accomplished by vessels with 

different sizes, some of them are straight and others 

are tortuous or twisted (Dougherty and Varro 2000; 

Fortier et al. 2014), forming a complex spatial 

organization. Blood vessels vary in size. For blood 

flow in larger vessels, where the typical shear rate 

exceeds 100 s-1, a Newtonian model constitute a 

good approximation for blood. In smaller vessels, 

the non-Newtonian behavior manifests and must be 

accounted (Fung 1993). The Fåhraeus-Lindqvist 

effect (Fåhræus and Lindqvist 1931) is associated 

with the concentration of red blood cells in the core 

region of small vessels surrounded by a cell-free 

marginal layer (i.e., the annular region is a cell-free 

layer).  Continuum fluid assumption may break 

down as the diameters of the vessels is of order of 

magnitude of red blood cells (Pries et al. 1992; 

Haynes 1960). 

Bodily blood flows are complex but seem to show a 

statistical scale-invariance. Therefore, some studies 

point to the fact that the complex organization of 

vessels can be studied based on the concept of 
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fractal (Bittner 1991; Sandau and Kurz 1997; 

Masters 2004). In fact, they are only fractal over a 

finite range of scales and should be called as 

prefractals. 

Blood vessel arrangement patterns can be likened 

to porous media (Bejan et al. 2004). Pore network 

controls the hydrodynamics characteristics of 

these media. Applying fractals to describe these 

configurations is very attractive because 

complexity, at different scales, is defined by a 

small number of parameters. Therefore, fractal 

geometry has a great potential to provide a 

convenient description of these media (e.g., Katz 

and Thompson 1985; Jacquin and Adler 1987; 

Krohn 1988; Adler 1996; Wei et al. 2015; Lei et 

al. 2019), including the analysis of flow 

properties. Permeability is a key property which 

expresses the ability of fluid to flow through the 

medium, and may be related to the fractal 

dimension (e.g., Hansen and Skjeltorp 1988; 

Miguel et al. 2000; Yu and Cheng 2002; Yun et 

al. 2010; Miguel 2010; Tana et al. 2014; Cai et al. 

2015; Tan et al. 2017).  

Microfluidic blood flow devices are composed of 

networks of tubes with sizes similar to blood 

vessels. These devices emulating body flows and 

have a potential to yield biomedical technologies 

(Park et al. 2005; Illa et al. 2014; Chen et al. 2016; 
Delalat et al. 2018). The development of these 

devices requires similar design to emulating fluid 

flow.  

This paper study the fundamental problem of blood 

flow through fractal media composed by bundles of 

tortuous tubes. As fluidic environments with 

different sizes restrict the fluid to a particular 

rheological regime, different rheological models for 

blood are considered and compared. 

2. LAMINAR BLOOD FLOW THROUGH 

CAPILLARY TUBES 

Many suspensions of solid particles or 

macromolecules are described by a power-law 

model. The Ostwald de Waele model expresses that 

ow

du p
k

d 4 L



   
    

 

               (1) 

where  is the shear stress, u is the fluid velocity, p 

is the pressure, kow is the consistency index, and ω 

is the fluid behaviour index. Integrating this 

equation with respect to , and defining the 

volumetric flow rate  as the product of the axial 

velocity and the cross-sectional area of the tube, 

yields (Miguel 2016) 

1
3 1

ow

1 p
( )

8(3 1) 4k L

 

  

     
  

             (2) 

It should be pointed out that for <1 the fluid 

exhibits shear-thinning properties, whereas for >1 

the fluid exhibits shear-thickening behavior. The 

constitutive equation of Newtonian fluid is 

recovered for =1. For blood  lies between 0.56 

and 0.75 (Fung 1993).  

Bingham plastic model accounts for a plug region 

in which the shear stress is less than the yield stress 

and the constitutive equation is 

o Bp

du
k

d
   


                     (3) 

where o is the yield stress, and kBp is the 

consistency index for the Bingham plastic fluid. 

Consider that the diameter of the plug (p) is much 

lower than the diameter of the tube (). According 

to the Buckingham-Reiner equation (Bird et al. 

1960), the volumetric flow rate is given by 

p4

Bp

p 4
( ) 1

128k L 3

  
     

 

                   (4) 

with 

o
p

4 L

p


 



 

Note that for a null yield stress, Eq. (4) reduces to 

the Hagen-Poiseuille equation.  

To account for the Fahraeus-Lindquist effect, the 

marginal zone theory (Haynes 1960) suggests that 

the blood flow through a tube is obtained by 

applying Hagen-Poiseuille law to the central and to 

the marginal zone of flow, and so the total 

volumetric flow rate is given by  

4

4 c

z

p
( ) 1 1

128 L

    
       

    

                   (5) 

with 

z

c

1
 

   
 

 

Here z is the plasma viscosity, c is the viscosity of 

the fluid in the central region of the tube, and c is 

diameter of the marginal zone. Equation (5) is used 

to blood flows through vessels with diameters 

ranging from 4 to 500 m. Note that the Hagen-

Poiseuille equation is recovered when =c or 

p=c. 

3. FRACTAL MODEL FOR BLOOD FLOW 

THROUGH CAPILLARY TUBES 

3.1 Fractal Bundle of Tortuous Capillary 

Tubes 

Consider a porous material composed by a bundle 

of N tortuous capillary tubes with variable cross-

sectional areas. Let  be the diameter of the 

capillary tubes, and L the length of the capillary 

tubes. Assuming that the length of tubes exhibits a 

fractal behaviour with respect to  (Pitchumani and 

Ramakrishnan 1999; Miguel et al. 2000) 
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L

L

D

0

D 1

L
L( )


 


                         (6) 

where L0 is the straight-line length, and DL is the 

fractal dimension for tubes lengths. 

The cumulative tube distribution follows the power 

law (Pitchumani and Ramakrishnan 1999; Miguel et 

al. 2000)  

dD

maxN(L )
  

    
 

                   (7) 

where max and Dd are the maximum diameter and 

the fractal dimension for tubes diameters, 

respectively.  

According to Eqs. (6) and (7), the variation of 

length of tubes and number of tubes, lying within 

the infinitesimal interval  to +d, is given by 

(Pitchumani and Ramakrishnan, 1999; Miguel et al. 

2000) 

LD 1

0
L 0

L
dL D dL



 
  

 

                (8) 

d

d

D

max
d D 1

dN(L ) D d



    


                  (9) 

Note that the length of the tubes decreases with , 

and since the fractal dimension DL=1 the porous 

material is made of straight capillary tubes (Eq. 6). 

In addition, the increase of size of the tubes 

decreases the number of tubes (Eq. 9). 

According to Eq. (7), the total number of tubes from 

min to max is given by 

 
dD

max
min

min

N(L )
 

    
 

                           (10) 

where max and min are the maximum and the 

minimum diameters, respectively. 

Taking into account Eqs. (9) and (10) yields 

d

d

D

min min
d D 1

min

dN(L )
D d

N(L )


  
  

  
                (11) 

Here d

d

D

min
d D 1

D






 is the probability of the pore diameter 

distribution. Integrating this distribution, the 

following condition must be satisfied 

d
d

max

d
min

D
D

min min
d D 1

max

D d 1 ~ 1




  
   

  
              (12) 

This condition holds for min/max≤10-2 (Yu and 

Cheng 2002). This means that this formulation 

should be applied for this condition.  

Besides, Eq. (6) allows us to relate the fluid velocity 

at the tortuous tube to fluid velocity at the straight 

tube, through the fractal dimension. Using the chain 

rule and Eq. (6), we obtain 

LD 1

0 0
L 0

0

dL LdL( ) dL( )
v( ) D v

dt dL dt



  
     

 

    (13) 

where v() is the fluid velocity at the tortuous tube 

and v0 is the fluid velocity at the straight tube. Note 

that since L0>, v()/v0 increases with increasing 

fractal dimension DL. 

3.2 Fractal Blood Flow Through 

Capillary Tubes 

Let a bundle of tubes be composed by a number of 

not straight of tubes. For fractal tortuous tubes, 

introducing Eq. (6), to express the relationship 

between fractal dimension, L and L0, into Eqs. (2), 

(4) and (5), the fluid flow through a single tube is 

given by 

L

ow L

1
3 D

k D

ow 0

1 p
( )

8(3 1) 4k L

 


  
     

  

          (14)  

L

Bp L

p3 D

k D

Bp 0

p 4
( ) 1

128k L 3


  

     
 

            (15) 

L

z L

4

3 D c

D

z 0

p
( ) 1 1

128 L





    
       

    

              (16) 

Here Eqs. (14) to (16) represent the volumetric flow 

rate through a tortuous tube for power-law, 

Bingham plastic and marginal zone fluid models, 

respectively. 

 

 
Fig. 1. Fractal porous material composed by 

capillary tubes. There are non-intersecting tubes 

which means no exchange of fluid between tubes. 
 

We now consider a fractal porous media composed 

by tortuous and non-intersecting capillary tubes 

(Fig. 1). The total fluid flow  over the entire range 

of pore sizes (Eq. 7) can be expressed as  

d
max max

d

D

max
d D 1min min

( ) dN(L ) D ( ) d
 

  


          

 
 (17) 

By inserting Eqs. (14) to (16) into Eq. (17) yields  

L dd
max

ow L
min

1
2 D DD

d max
k D

ow 0

D 1 p
d

8(3 1) 4k L

   




   
    

  


      (18) 

d
max

L d L d

Bp L
min

D
2 D D 1 D Dd max

k pD

Bp 0

D p 4
d

128k L 3


   



    
       

 


    (19) 
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d
max

L d

z L
min

4D
2 D Dd max c

D

z 0

D p
1 1 d

128 L


 




     
       

    


  (20) 

After integration, yields 

d

ow L

L d L d

1
D2

d max
k D

L d ow 0

3 D D 3 D D

max min

D 1 p

8(3 1)(3 D D ) 4k L



     

 

   
   

     

 
  
 

  (21) 

 

d

Bp

Bp L

L d L d

D

k d max

k D

Bp L d L d 0

3 D D 3 D D

max max

a D p

128k (3 D D )(2 D D ) L

   

  
 

   

 

        (22) 

with 

Bp

p

k L d L d

max

4
a (2 D D ) (3 D D )

3

 
      

 

 

and 

 L d L d
d

z L

L d L d

z

3 D D 3 D DD
max mind max

D

z 0 L d

D D 1 D D 1

max min

0 0

D p

128 L 3 D D

a
a a

   



   



    
  

  

  
  

 

         (23) 

with 

z

4 3 2 2 3 4

1 c 2 c min 3 c min 4 c min 5 mina a a a a a               

2 3

0 L d L d L d

4 5

L d L d

a 6(2 D D ) 5(2 D D ) 5(2 D D )

5(2 D D ) (2 D D )

         

    

 

4 3

1 L d L d

2

L d L d

a (2 D D ) 2(2 D D )

(2 D D ) 2(2 D D )

      

    

 

4 3

2 L d L d

2

L d L d

a 4(2 D D ) 12(2 D D )

4(2 D D ) 12(2 D D )

       

    

 

4 3

3 L d L d

2

L d L d

a 6(2 D D ) 24(2 D D )

6(2 D D ) 36(2 D D )

      

    

 

4 3

4 L d L d

2

L d L d

a 4(2 D D ) 20(2 D D )

20(2 D D ) 20(2 D D ) 24

       

     

 

4 3

5 L d L d

2

L d L d

a (2 D D ) 6(2 D D )

11(2 D D ) 6(2 D D )

      

    

 

The porosity of the bundle of capillary tubes can be 

expressed as 

max
2

3 min
0

1 L( )
dN(L )

L 4





 
               (24) 

Integrating Eq. (24) over the entire range of pore 

sizes, on the basis of Eqs. (6) and (9) yields 

 

max
d d LL

d L

d L d L

D 2 D DD

d max 03 min
0

D D 3
3 D D 3 D Dd max 0
max min

d L

D L d
4L

D L

12 4D 4D


 




   


     

 
 

 


           (25) 

Equation (25) shows how porosity is linked with the 

tube fractal dimensions Dd and DL. Fluid flow can 

be expressed in terms of porosity by applying this 

equation into the previous equations. Substituting 

Eq. (25) into Eq. (21), and re-arranging yields 

L

ow

ow L

L d

L d L

3 D

2

k d max

k D

L d 0

3 D D
3 D 3 D D

0 d L

max d

D

(3 1)(3 D D )L

L (12 4D 4D )
1 1

D







  
   

  
 

   

 
     
    

     
 

  (26) 

with 

ow

1

k

ow

p

8 4k

  
   

 

 

Inserting the Eq. (25) into Eq. (22), we obtain 

L

Bp

Bp L

L d

L d L

3 D

k d max

k D

L d L d 0

p

L d L d

max

3 D D
3 D 3 D D

0 d L

max d

D

(3 D D )(2 D D )L

4
(2 D D ) (3 D D )

3

L (12 4D 4D )
1 1

D



 
  

 
 

   

 
     

 

 
     
    

     
 

 (27) 

with 

Bpk

Bp

p

128k


   

Combining Eqs. 23 and 25, and rearranging, 

provides 

L dL

z d L

z zL

L d L d

d L d L

z z

L d

d L

z

3 D D3 D

d max 3 D D

D

0 L d

4 3D D 1 D D

3 D D 3 D Dc c
1 2

0 max max

2 1 D D

3 D Dc c
3 4

max

D 1
1

L 3 D D

a 1 a 1
a

a 1 a

 

  

 

  

   

 

 

 



    
         

        
                     

   
        

L d

d L

z

L d

d L

z

2 D D

3 D D

max

3 D D

3 D D

5

1

a 1

 

 



 

 



  
      

  
    

 (28) 

with 

z

z

z

p
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



 
 


 

L

z

3 D

0
6

max

L
1 a





 
    

 

 



A. F. Miguel / JAFM, Vol. 13, No. 6, pp. 1675-1682, 2020.  

 

 

1679 

 

and 

d L
6

d

(12 4D 4D )
a

D

  




 

Equations (26) to (28) describe the flow in terms of 

fluid properties (µ,k,), size of tubes (max,L0), and 

fractal dimensions (DL,Dd). 

3.3 Permeability of a Fractal Porous 

Material 

The Darcy equation is the standard approach to 

characterize flows through porous materials, in 

which the inertial forces can be neglected with 

respect to the viscous forces. In this equation a 

global index (i.e., the permeability that represents 

the ability of the material to transmit the fluid 

through it), relates the fluid flow with the pressure 

drop through the material (Larson 1981) 

 

ow/Bp/

K p

A k L





  
 

 

                 (29) 

Here K is the permeability of the porous material, 

and its usage is restricted to the occurrence of 

viscous forces, that are the relevant forces for flows 

described by Eqs. (26) to (28). So, comparing Eq. 
(29) to Eqs. (26) to (28) yields 

ow

L d

L d L

2
* d
k 3 2

L d

3 D D
3 D 3 D D

0 d L
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D
K

2 (3 1)(3 D D )
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
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   

 
 

 
     

 
     
    

     
 

(30) 
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 (31) 
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(32) 
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ow

ow L

L

k*

k 3 D

max

2 D 1

0

K
K

L



 


 
 
 

 

Bp

Bp L

L

k*

k 3 D

max

1 D

0

K
K

L






 
 
 

 

z

z L

L

k*

k 3 D

max

1 D

0

K
K

L



 




 
 
 

 

where 
ow

*

kK , 
Bp

*

kK  and 
z

*

kK


are the dimensionless 

permeabilities for power-law fluids, Bingham 

plastic fluids, and marginal zone models, 

respectively. These equations reveal that the 

dimensionless permeability depends not only on the 

porosity and fractal dimensions Dd and DL, but also 

on the specific characteristics of the fluid model 

that is adopted. 

4. RESULTS AND DISCUSSION 

In order to understand the interplay between porous 

material and fluid flow, the effect of porosity, 

fractal dimensions, and other geometry parameters 

are examined. 

The resistance to fluid flow can be defined as 
1

p

LR
( )

 
 
 

 

 . Resistances of tortuous capillary tubes 

defined according to Eqs. (14) to (16) are depicted 

at Figs. 2a to 2c. For power-law fluid (Fig. 2a), the 

flow resistance increases with the ko,w and DL but 

decreases with  and . In thermodynamic terms, 

higher consistency index and fractal dimension 

means higher energy dissipation, and higher fluid 

behavior index and tube diameter less energy 

dissipation. This result is in line with general theory 

for fluid flow through tubes (Miguel 2019). 

According to Fig. 2b, resistance to Bingham plastic 

fluid flow increases with kBp, p/ and DL but 

decreases with . This result agrees with the trend 

observed for the power law fluid. Notice that the 

flow resistance is only slightly dependent on ratio 

between the plug diameter and the tube diameter 

(p/). This can be explained due to the fact that 

diameter of the plug is much lower than the 

diameter of the tube. 

Flow resistance with Fåhræus–Lindqvist effect (Fig. 

2c) increases with the µz,  and DL but decreases 

both with c/ and the size of tube . This can be 

explained due to the fact that diameter of the 

marginal zone is much lower than the diameter of 

the tube. Note that a higher c means concentration 

of red blood cells scattered over the tube diameter, 

and less energy dissipation. 

According to Eq. 14, both Newtonian and power 

law fluid flows have the same flow resistance when 

the ratio between tube dimensions is  

L
L L

1
1 3 D

D D

N N

ow

16

(3 1) 4k


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





 
         

  

              (33) 
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Fig. 2a. Flow resistance of a tortuous capillary 

tube for power-law fluids. 
 

 
Fig. 2b. Flow resistance of a tortuous capillary 

tube for Bingham plastic fluids. 
 

 
Fig. 2c. Flow resistance of a tortuous capillary 

tube considering the marginal zone model. 
 

The same resistance occurs in tubes with flows of 

Newtonian and Bingham plastic fluids (Eqs. 14 and 

15) and flows of Newtonian and marginal zone 

models (Eqs. 14 and 16) when the ratio between 

tube dimensions are  

L

1

3 D
pN N

Bp Bp Bp

4
1

k 3

   
        

              (34) 

L

1

4 3 D

N N c

z z z

1 1

      
     

       

                           (35) 

Here the subscripts N, , Bp and z mean 

Newtonian, power-law, Bingham plastic and 

marginal zone models, respectively. These results 

allow us to compare the size of the tube diameters 

to have the same conditions for energy dissipation. 

 

 
Fig. 3a. Dimensionless permeability of prefractal 

tube bundle for flows of power-law fluids. 

 
Figures 3a to 3c plot the dimensionless permeability 

based on models presented at section 3.3. For flows 

of power-law fluids (Fig. 3a) the dimensionless 

permeability increases with Dd but decreases with 

DL and . Notice Lo/max has a minor effect on 
*

kowK . 

   

 
Fig. 3b. Dimensionless permeability of prefractal 

tube bundle for flows of Bingham plastic fluids. 

 
For flows of Bingham plastic fluids (Fig. 3b) we 

can see that  

- p/max≥0.4: *

kBpK increases with , Dd and 

Lo/max. For p/max≥0.47, *

kBpK increases with 

DL but for 0.4<p/max<0.47, *

kBpK increases 

with DL until DL=2, and subsequently 

decreases with DL, 

-  p/max<0.4: *

kBpK increases with , Dd and 

Lo/max but decreases with DL.  
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Fig. 3c. Dimensionless permeability of prefractal 

tube bundle considering the marginal zone of 

model. 

Figure 3c shows that the *

k zK 
 increases with , Dd 

and Lo/max but decreases with DL. There is a minor 

influence of c/max and  on the dimensionless 

permeability *

k zK 
. 

5. CONCLUSION 

Evaluation of permeability of a prefractal bundle of 

capillary tubes is significant for many applications, 

and thus of importance in multi-disciplinary fields. 

Here, fractal dimensions for pore size distribution 

and capillary tortuosity are accounted to 

characterize the pore-scale structure. The porosity 

in terms of fractal dimensions for pore size 

distribution is obtained. 

For blood flow in larger vessels, a Newtonian 

model constitute a good approximation for blood, 

but in smaller vessels, the non-Newtonian behavior 

manifests and must be accounted. Models for flows 

of power law fluid, Bingham plastic fluid and 

marginal zone theory model are considered.  

Generalized models for porous media composed by 

prefractal tube bundles are rigorously obtained. In 

addition, models for flow resistances through single 

tortuous tubes, and the relationship between fluid 

velocity through tortuous tubes and through straight 

tubes, in terms of fractal dimensions are also 

presented. All the parameters in these models have 

a clear physical meaning, and capture 

microstructure characteristics and essential physical 

features that occur within the capillary tubes.   
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