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ABSTRACT 

Most of the biological ducts which considered to be elastic in nature are layered and possess different fluid 

properties from that of pumped fluids Best & Taylor (1958). A mathematical model is presented according to 

the two-layered blood flow in an artery. Such flow demands a two-fluid model with elastic boundary. In 

addition, biofluids such as blood can be described well using two-fluid models rather than single fluid model. 

In the present paper, the flow of a Jeffrey fluid in contact with a Newtonian fluid is considered. The 

expressions for velocity of core and peripheral fluids and the flux flow rate are derived. The effect of the 

peripheral layer on the fluid motion and pumping characteristics is presented. The core and peripheral fluid 

velocities along with interface velocity are obtained in terms of inlet, outlet and external pressure; Jeffrey 

parameter, ratio of viscosity and elastic properties. The results obtained from the present analytical study of 

flux variation considering elastic properties are in good comparison with the published literature. It is 

concluded that the elastic parameters  1 2&t t significantly affect velocity and flux. Further, it is also found 

that flux reduces with increase in viscosity ratio. The analysis of the interface velocity on various physical 

parameters may be useful in understanding the behavior of the blood flow in normal and pathological states.   

Keywords: Jeffrey fluid; Non-Newtonian fluid; Elastic tube; Blood flow. 

NOMENCLATURE 

L  length of the tube 

2p outlet pressure 

P pressure gradient 

p pressure of the fluid 

0p external pressure 

1p inlet pressure 

r radial coordinate 

( )T a  tension of the tube 

1 2,t t  elastic parameters 

U average velocity 

1 2,u u  the fluid velocities in core and peripheral 

regions 

0u interface velocity 

z axial coordinate 

1 2,   core and peripheral layer viscosities 

1  Jeffrey parameter 

  azimuthal angle 

  conductivity of the tube  

0a radius of the inelastic tube 

( )a z  radius of the tube 

2

1





 ratio of shear stresses 

1 2,   stream functions in core and peripheral 

regions 

1 2,a a  core and peripheral radius of the tube 

  the ratio of viscosity of peripheral layer to 

the core layer  

Q total volume flux 

1 2,Q Q  volumetric flow rate in the core and 

peripheral regions 
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1. INTRODUCTION 

Most of the earlier works on biofluid flow in 

physiological systems were modelled as viscous 

flow in rigid tubes. The present study deals with the 

biofluid flow in a flexible tube incorporating the 

elastic effects of the bounding wall. Newtonian and 

non-Newtonian fluids are considered for the study 

in biofluid transport problems for various 

conditions of the biological system. The 

constitution of biofluids such as blood demands a 

two-fluid model rather than a single fluid model. 

The blood vessel being elastic further signifies the 

rheological behavior of blood flow. These fluids are 

modelled as Newtonian/ non-Newtonian fluids. 

Some of biofluids like water, air, chyme etc. can 

modelled as a single component fluid. When the 

stress in the biofluid is not proportional to rate of 

strain (may be pathological state), it requires 

modelling through non-Newtonian fluid. There 

exists resistance to flow of blood in large and small 

arteries and is dependent on Reynolds number. In 

capillary blood vessels, Re is of order 10-2 or 

smaller. Hence the flow is controlled mainly by the 

viscous force and pressure. Apparent coefficient of 

viscosity of fluid is take into account due to the 

interaction of blood cells, plasma with the vessel 

wall. This coefficient of viscosity increases because 

leucocytes adhere to the wall of the blood vessel 

and thereby increasing resistance to blood flow. 

Also, the thrombocytes may be activated, causing 

clotting and hence increasing resistance. In such 

cases, single fluid model cannot describe the 

physical nature of the blood flow. In addition, some 

of the biological ducts are coated with a different 

fluid during biofluid pumping. These physiological 

aspects demand a two-fluid model for the study of 

biofluid flow (for example blood) in biological 

systems. 

Guyton (1971) noticed the existence of a mucus 

layer in the intestinal flow and similar peripheral 

layers in biofluid systems. Bugliarello and Sevilla 

(1970) and Cokelet (1972) concluded that blood 

flow in small vessels is a two layered model due to 

the experimental finding signifies core layer which 

is non-Newtonian containing suspension of 

erythrocytes and the peripheral layer with plasma is 

a Newtonian fluid. Chaturani and Kaloni (1976) 

investigated a two layered Poiseuille model for 

blood flow in arteries with couple stress fluid as a 

special case. Srivastava and Srivastava (1982) 

studied the peristaltic transport of a two fluid model 

in a non-uniform channels and tubes. Brasseur et al. 

(1987) investigated the peristaltic transport in two 

immiscible viscous fluids in a channel. Srivastava 

and Saxena (1994) investigated two-layered Casson 

fluid flow through the artery with mild stenosis. It 

has been found that the wall shear stress and flow 

resistance decreases as the peripheral layer viscosity 

decreases. Also, the unsteady flow of two 

immiscible conducting fluids between two 

permeable beds is examined by Vajravelu et al. 

(1995). The pulsatile unsteady two layered blood 

flow in a stenosed flexible artery due to peripheral 

layer viscosity is numerically studied by 

Chakravarty et al. (2004).  Srivastava (2007) 

observed the simultaneous effects of hematocrit and 

the peripheral layer on the flow characteristics in 

small blood vessels. Santhosh and 

Radhakrishnamacharya (2016) analyzed a two fluid 

model in which the peripheral region consists of 

Newtonian fluid and Core region with Herschel-

Bulkley fluid and noticed that the flow exhibits the 

anomalous Fahraeus - Lindvist effect. Buradi and 

Mahalingam (2018) were made investigations on 

two layered model of blood flow through stenosed 

arteries. Several researchers (see Haldar and 

Anderson (1996), Ponalagusamy (2007), Rekha and 

Usha (2011), Sankar (2012), Hazarika and Sharma 

(2014), presented the two phase model with central 

core containing suspended erythrocyte and cell free 

layer surrounding the core in the presence of 

magnetic field. It is reported that an appropriate 

values of magnetic field regulates axial velocities 

and effective viscosity. Ramachandra Rao and Usha 

(1995) investigated the studies on a circular tube. 

They reported that the reflux occurs in the entire 

pumping range for all viscosity ratios and it is 

absent in the entire range of copumping. 

The earlier studies deal with the biofluid flow in a 

flexible tube incorporating the elastic effects of the 

bounding wall. Roach and Burton (1957) 

experimentally measured the static pressure - 

volume curve as tension versus elongation of 

human external iliac artery. It is clearly mentioned 

that the distensibility of shape of arteries is 

attributed due to its elastic nature. Rubinow and 

Keller (1972) analyzed the viscous fluid flow 

through elastic tubes by considering blood flow 

applications. Several models were proposed by 

Kapur (1985) to explain the above said 

phenomenon. Further, Vajravelu et al. (2011b) 

presented model for Herschel- Bulkley fluid 

through an elastic tube with uniform cross section. 

Sreenadh and Devaki (2012) focused the behavior 

of peristaltic pumping of viscous fluid in an elastic 

tube. Vajravelu et al. (2016) studied the peristaltic 

transport of a Casson fluid in an elastic tube. The 

effect of variation in tube radius and wave 

amplitudes were studied and found to be better 

using Rubinow and Keller method as compared that 

of Mazumdar method for yield stress and the 

amplitude ratio. Srinivas et al. (2017) adopted 

perturbation technique and studied the effects of 

Carreau fluid in an elastic tube. A good comparison 

for volumetric flow rate using Rubinow and Keller, 

Mazumdar model were found.  

The Jeffrey model is the simplest model involving 

time derivatives which exhibits the characteristics 

of non-Newtonian fluid and is accepted as a model 

for blood by many investigators (See Akbar et al. 

(2013), Kothandapani and Srinivas (2008), 

Vajravelu et al. (2016), Sreenadh et al. (2017), 

Hayat et al. (2017), Elbanhawy et al. (2019)). 

According to the available literature most of the 

researchers dealt with two layered fluid flows in 

inelastic tubes. The two-layered model enables 

various combinations of choosing the core and 

peripheral regions through the viscosity ratios of the 

fluids. In view of these facts the authors study the 

flow of two immiscible fluids through an elastic 
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tube. The core region is filled with Jeffrey fluid 

whereas the peripheral region is occupied by 

Newtonian fluid. Analytical expressions for flux, 

velocity, interface and stream functions are derived 

and discussed in detail through graphs. The 

interface velocity is obtained to understand the 

behavior of blood flow in an artery. 

2. MATHEMATICAL FORMULATION 

The constitutive equations for an incompressible 

Jeffrey fluid are (Vajravelu et al. (2016a)) 

pI S                                                              (1) 

 1
2

11
S


  


 


                                               (2) 

where   and S  represent Cauchy stress tensor and 

extra stress tensor respectively, p is the pressure, I  

is the identity tensor, 
1 is the ratio of relaxation to 

retardation times, 
2 is the retardation time,  is 

shear rate, and a dot over the quantities indicates 

differentiation with respect to time. 

Consider the steady, laminar, incompressible 

axisymmetric flow of two immiscible biofluids in 

an elastic tube of length L . The core region consists 

of Jeffrey fluid and the peripheral region consists of 

a Newtonian fluid. The radius of the undeformable 

tube is taken as
0a . Let the radii and viscosities of 

the core and peripheral regions be 
1 2,a a and 

1 2,  respectively. The flow is axisymmetric. The 

cylindrical polar coordinates  , ,r z  are chosen, 

where r and z  denote the radial and axial 

coordinates and  is the azimuthal angle. Let 

 1u r and  2u r be the fluid velocities in core and 

peripheral regions respectively.  

 

 
Fig. 1. Physical Model. 

 

The basic equations governing the motion are as 

follows: 

Core region (Jeffrey fluid):  

1 1

1

1

1

u p
r

r r r z





   
 

    
 ,  10 r a                     (3) 

Peripheral region (Newtonian fluid): 

2
2

1 u p
r

r r r z


   
    

 ,   
1 2a r a                        (4) 

where p is the pressure. 

The boundary conditions are  

 

 

1 1 2 1 2

2 2

2 2

1 1 2

at : , ,

at : 0,

at : ,
2

at : .

r a u u

r a z u

Q
r a z

r a

 



 

  

 

 

 

                                  (5) 

3. SOLUTION OF THE PROBLEM 

The following non-dimensional quantities are used 

to determine the solution for Eq. (3) and Eq. (4) 

considering the boundary conditions given in Eq. 

(5). 

 

1 2 1 2
1 2 1 2

0 0 0

2

0

1 0 0

1 2
1 2

1 1

0 0

1

2
1 2

1

, , , , ,

, , , ,

, ,

1, 0

,

i
i

r u u a a
r u u a a

a U U a a

a z Q
p p z Q

L U L a U a U

U U
a a

r a

a r a z






 
 

 

 




    

   

 
   
   
   

 


  
   
 

               (6) 

After non-dimensionalization Eq. (3) and Eq. (4) 

becomes (dropping the bars) 

1

1

1 1

1

u p
r

r r r z

   
 

    
 ,  

10 r a                     (7) 

21 u p
r

r r r z


   
    

 ,   
1 2a r a                          (8) 

The corresponding boundary conditions are  

at  2 2: 0r a z u                                            (9a) 

at 1 1 2 1 2: ,r a u u                                        (9b)                          

at  2 2:
2

Q
r a z                                            (9c) 

at 1 1 2:r a                                                   (9d) 

After solving the Eqs. (7) and (8) with the help of 

boundary conditions in Eqs. (9a) and (9b), we get  

    2 2 2 2

1 1 1 2 1

1

1
1 ,

4

0

P
u a r a a

r a




 
     

 

 

         (10) 

2 2

2 2 1 2,
4

P
u a r a r a


                                  (11) 

Here 
dp

P
dz

  is the pressure gradient. 

The volumetric flow rate in the core and peripheral 

regions are denoted by 1Q  and 2Q  respectively and 

are given as 
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 
4 2 2

4

2 1 1 1
1 1

2 2 2

2
1 1

8

Pa a a a
Q

a a a




        
          
         

(12) 

2
2

4

2 1
2

2

1
8

Pa a
Q

a

  
    
   

                                      (13) 

The combined flux Q is given by 

1 2Q Q Q                                                           (14) 

  
4

4

2 1
1

2

1 1 1
8

Pa a
Q

a
 



  
     
   

                  (15) 

Using the expressions for 
1  and

2 , obtain the 

following relation between ratio of shear stresses 

and radii at the tube wall and interface of the two 

fluids. 

 1 1

2 2

, 0 1
a

a


 


                                         (16) 

In view of the above relation Eq. (15) becomes 

  
4

42
11 1 1 ,0 1

8

Pa
Q    


                  (17) 

Taking 
1 0   in Eq. (17) one can get the total flux 

for two immiscible Newtonian fluids in the tube.   

The observed flux by taking 
11, 0    and  

1 2a a is exactly coincide with the results of 

Hagen-Poiseuille flow in a circular tube by Kapur 

(1985). 

The flux given in Eq. (17) varies with the radius of 

the tube due to the elastic nature of the tube wall.  

Hence it is assumed that the Poiseuille law holds for 

two immiscible fluid flow in an elastic tube which 

will be discussed in the next section. 

3. THEORETICAL FLUX 

In this section, the authors calculated the theoretical 

flux Q for the flow of two immiscible Jeffrey and 

Newtonian fluids flow in an elastic tube of variable 

radius  2a z and length L . Since the fluid flow 

fallows Poiseuille law at each cross section, Q  is 

related to the pressure gradient by the following 

relation: 

 0
Q p p P                                                  (18) 

where 
dp

P
dz

  ,  

  4

0 2p p Fa      and  

  4

1

1
1 1 1

8
F   


                                 (19)      

The expression given in Eq. (19) is similar to that of 

expression derived by Vajravelu et al. (2011) in the 

case of Newtonian fluid. 

Here   is the conductivity of the tube which is a 

function of the pressure difference   0 0,p z p p  is 

the pressure outside the tube. 

Integrating Eq. (18) from 0z  at the inlet pressure  

  10p p , we have 

1 0

0

p

p(z)

( )

p

p

Qz p dp





   where    0p p z p         (20) 

 For 1z   and   21p p , Eq. (20) reduces to  

1 0

2 0

p

p

( )

p

p

Q p dp





                                                  (21) 

Since the radius of the tube 
2a is a function 

of
0p p , Eq. (21) can be written as 

1 0

2 0

p

4

2

p

p

p

Q F a dp





                                                  (22) 

Eq. (22) can be solved by considering the form of 

the function  2 0a p p .  If the stress or tension 

 2T a  in the tube wall is known as a function of
2a , 

then  2 0a p p is found using the equilibrium 

condition 

2
0

2

( )T a
p p

a
                                                     (23) 

Now it is necessary to know how the radius of a 

tube varies with pressure. The static pressure – 

volume relation is determined by Roach and Burton 

(1959) which is converted in to a tension versus 

length curve. This relation is represented by the 

following equation using Rubinow and Keller 

model (1972) 

5

2 1 2 2 2( ) ( 1) ( 1)T a t a t a                                (24) 

where 1 213, 300t t   

From Eqs. (23) and (24), we obtain 

3 21
2 2 2 2 22 2

2 2

1
(4 15 20 10 )

t
dp t a a a da

a a

 
       

 
 

(25) 

Substituting Eq. (25) in Eq. (22), we get  

1 0

2 0

3 2
p 2 2 2

4 1
2 2 22

2p 2

2

4 15 20

1
10

p

p

a a a
t

Q F a t da
a

a





   
  

      
  

 

(26) 

(26) reduces to  Eq.1 and  11, 0  For   

 

1 0

2 0

3 2
p 2 2 2

4 1
2 2 22

2p 2

2

4 15 20
1

1
108

p

p

a a a
t

Q a t da
a

a





   
  

      
  



   (27) 

This is same as the expression derived by Vajravelu 

et al. (2011) for the case of Newtonian fluid. 
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The flux for immiscible fluids can be calculated by 

integrating Eq. (26).  

 21 22( ) ( )Q F g a g a                                        (28) 

Where 

8 7

2 2
3

2
2 1 2 6 5 3

2 2 2

21 2 1 0

22 2 2 0

4 15
8 7

( )
3

20 10
6 5 3

(p )

(p )

a a

a
g a t t

a a a

a a p

a a p

 
 

  
 
   
 

 

 

         (29) 

The expressions given in Eq. (29) is same as the 

expression derived by Rubinow and Keller (1972) 

for the case of Newtonian fluid (single fluid) in an 

elastic tube. 

By using the boundary conditions (9c) and (9d), we 

get the stream functions as 

 

     
  

2 2 2 2 2 2

1 1 2 1

1 4 4

2 1 1

1

1 2 2
,

2 1 1

0

r a r r a aQ

a a

r a

 


 

    
 

    

 

 

(30) 

   

  
  

4 2 2 2

1 1 1 2 1

2 2 2 2 2

1 2 1

2 4 4

2 1 1

1 2

1 2

2
,

2 1 1

a a a a

r a a r aQ

a a

a r a

 


 

       
       
   
 
 
 

 

      (31)                                                                                   

When
1 0  , the above expressions are similar to 

the expressions obtained by Ramachandra Rao and 

Usha (1995) for the flow of two immiscible viscous 

fluids in a circular tube in the absence of peristalsis. 

Now the new expressions for the velocities of two 

fluids in terms of elastic parameters are obtained as 

    
 

2 2 2 2

1 1 2 1

1 4 4

2 1 1

2 1

1 1

Q a r a a
u

a a

 

 

    
 

     
         (32) 

 

2 2

2

2 4 4

2 1 1

2

1 1

Q a r
u

a a  

  
     

                              (33) 

Let 0u u  be the interface velocity at 1r a  and is 

given by 

 

2 2

2 1

0 4 4

2 1 1

2

1 1

Q a a
u

a a  

  
     

                              (34) 

5. RESULTS AND DISCUSSION 

The results of the present study have interesting 

applications in understanding the fluid mechanics of 

biofluids such as blood behaves a two-fluid model 

rather than a single fluid model. The two-layered 

model facilitates various combinations of choosing 

the core and peripheral fluids through the viscosity 

ratio of the fluids and the non-Newtonian Jeffrey 

parameter. Two significant features are observed, 

one is change in interface velocity and other 

elasticity of the tube wall. In order to assess the 

quantitative effects of the various parameters 

involved in the problem, the numerical 

computations are carried out by using the software’s 

Matlab and Mathematica. 

5.1 Variation of flux (Jeffrey –Newtonian 

fluids) 

The effect of elastic parameters 
1t and

2t , ratio of 

viscosities  , ratio of radii , Jeffrey parameter
1 , 

inlet and outlet pressures on flux Q  have been 

numerically calculated from the Eq. (28) and the 

results are presented graphically in Figs. 2(a) - 2(g). 

In the present study, the choice of parameters for 

elastic parameters is considered from Rubinow and 

Keller (1972). From Fig. 2(a) and 2(b), it is noticed 

that the flux increases with the increasing values of 

elastic parameters. Figure 2(c) shows that the flux 

decreases with the ratio of viscosities. From Figs. 

2(d) and 2(e), it is evident that the flux increases 

with Jeffrey parameter and ratio of radii. Figures 

2(f) - 2(g) shows the variation in flux for different 

inlet and outlet pressures. Flux increases with the 

deceasing values of outlet pressure which is shown 

in Fig 2(f). A reverse trend is observed in the case 

increasing values of inlet pressure which is evident 

from Fig. 2(g). 

5.2 Variation of Flux (Two Newtonian 

Fluids) 

By taking 
1 0   in Eq. (28), we get the flux of two 

Newtonian fluids of different viscosities. The effect 

of above said parameters on the flux of two 

Newtonian fluids of different viscosities are 

computed numerically and illustrated through 

graphs from Figs. 3(a) - 3(f). The effect of above 

mentioned parameters on the flux of two Newtonian 

fluids are similar to that of Jeffrey-Newtonian case. 

It is also observed that the flux is more in the case 

of Jeffrey-Newtonian case. 
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Fig. 3(a). Variation of Flux with Radius for 
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Fig. 3(c). Variation of Flux with Radius for 
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Fig. 3(d). Variation of Flux with Radius for 
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Fig. 3(e). Variation of Flux with inlet pressure 

for 
1 2

13, 300, 0.3, 0.5t t      . 
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Fig. 3(f). Variation of Flux with outlet pressure 

for
1 2

13, 300, 0.3, 0.5t t      . 

 

5.3 Velocity Profiles (Jeffrey –Newtonian 

Fluids) 

The effect of elastic parameters 
1t  and

2t , ratio of 

viscosities  , ratio of radii , Jeffrey parameter
1 , 

on velocity of two fluids in core and peripheral 

regions at an inlet pressure 
1 0 10p p   are 

evaluated from Eqs. (32) and (33) and are depicted 

in Figs. 4(a) - 4(e). In this case, the regions 

0 0.125r   and 0.125 0.25r  represent the 

core and peripheral regions respectively. Velocity 

of the two layered fluid increases with increasing 

elastic parameters which is evident from Figs. 4(a) - 

4(b) whereas opposite behaviour is observed in the 

case of increase of ratio of viscosities which is clear 

from Fig. 4(c). This may be due to the increase of 

viscosity of the peripheral layer. From Fig. 4(d), it 

is observed that velocity increases with Jeffrey 

parameter. Similar behaviour is noticed by 

Vajravelu et al. (2017) for two fluids flow in a 

channel under peristalsis. Since the peripheral 

region contains Newtonian fluid, there is no 

influence of 
1 on velocity in the peripheral region.  

5.4 Velocity profiles (Two Newtonian 

fluids) 

 By substituting 
1 0   in Eqs. (32) and (33), we 

get the velocity of two Newtonian fluids and 

variation in velocity profiles regarding two 

Newtonian fluids for the parameters discussed in 

the above section 5.3 are displayed through Figs. 

5(a) - 5(c).   Same trends are observed as in the case 

of Jeffrey-Newtonian model and comparing the 

results with the previous section 5.3 higher 

velocities observed for Jeffrey-Newtonian fluids 

when compared with two Newtonian fluids. 
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5.5 Shape of the Boundary of the Elastic 

Tube 

In this section, the shape of the boundary of the 

elastic tube for different elastic parameters is 

discussed. From Eq. (18) and Eq. (23), we get a 

relation for the shape of tube in terms of 2a and 

z as follows:  
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Fig. 4(c). Variation of Velocity with Radius for 
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Fig. 4(d). Variation of Velocity with Radius for 

1 2
13, 300, 0.5, 0.5t t      . 
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Fig. 5(a). Variation of Velocity with Radius for 

2
300, 0.5, 0.5t     . 

 

From Figs. 6(a) - 6(b), as z increases from 0 to 1, it 

is seen that the boundary of tube is slanted towards 

the line 1z  . This phenomenon is observed due to 

the elasticity in the walls of the tube. More variation 

is observed in the case of elastic parameter
1t . 
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Fig. 5(b). Variation of Velocity with Radius for 
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13, 0.5, 0.5t     . 
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Fig. 5(c). Variation of Velocity with Radius for 

1 2
13, 300, 0.5t t    . 
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Fig. 6(a). Variation of radius of the tube 

2a with z  for
2

300, 0.5, 0.5t     . 

 

 

5.6 Velocity Profiles at the Interface 

To the best of literature survey, so far no discussion 

is made on the interface velocity of two immiscible 

fluids. The velocity profiles at the interface are 

represented through the Fig. 7(a) - 7(c). Interface 

velocity variation along elastic parameters 
1t  and

2t  

for different values of Jeffrey parameter 
1  are 

shown in Figs. 7(a) and 7(b) respectively. It is 
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observed that the interface velocity increases as 

Jeffrey parameter increases. Figure 7(c) illustrates 

the interface velocity variation along flow rate Q  

for different values of Jeffrey parameter
1 . It is 

noticed that velocity at interface enhances as Jeffrey 

parameter increases. Because, when comparing 

from Newtonian case the increase in Jeffery 

parameter reduces the viscosity effect which causes 

increase in velocities in an elastic tube. 
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Fig. 6(b). Variation of radius of the tube 

2a with z  for
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5.7 Validation of the Present Work 

Comparison result for flux of single phase 

Newtonian model (Vajravelu et al. (2011)) and two-

phase Newtonian model (present work with
1 0  ) 

of fluid flow in an elastic tube have been displayed 

in Fig. 8. It is noticed that the flux is more in the 

case of two fluid model when compare to single 

fluid model.  

Table I represents the comparison of flux for 

different values of
1t . The observed values are in 

good agreement with those of Vajravelu et al. 

(2011) and Rubinow and Keller (1972) for the flow 

of viscous fluid in an elastic tube. 

6. CONCLUSIONS 

The present work deals with the flow of a Jeffrey 

fluid in contact with a Newtonian fluid in an elastic 

tube. Analytical expressions for velocities of core 

and peripheral fluids along with flux flow rate are 

derived. Rubinow and Keller model was used to 

study the effects of various physical parameters on 

volume flow and velocity. The interesting facts are 

noticed as follows: 

1. The flux increases for increasing values of 

elastic parameters, Jeffrey parameter and 

decreases with the values of ratio of 

viscosities for both the models i.e., Jeffrey 

Newtonian model and two Newtonian fluid 

model.  

2. It is observed that the flux variation is more 

for Jeffrey Newtonian model when compare 

to two Newtonian fluids model. 

3. Inlet and outlet pressures have opposite 

behaviour on the flux. 

4. The velocity enhances with increasing values 

of elastic parameter, Jeffrey parameter and 

decreases with the values of ratio of 

viscosities. The same trends are observed in 

case of two Newtonian fluids model. It is 

noticed that there is no remarkable difference 

in the velocity variation for both the models.  

5. The interface velocity increases with 

increasing the Jeffrey parameter in an elastic 

tube. 
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Table 1 Effect of elastic parameter
1

t on 

volumetric flow rate Q for fixed values of 

2 1
300, 0, 1t       and 1d   

1t  Q  

Vajravelu et al. 

(2011) 

(for case of single 

Newtonian fluid) 

Rubinow and 

Keller (1972) 

10 0.154480 0.154480 0.154480 

30 0.167501 0.167501 0.167501 

50 0.180521 0.180521 0.180521 
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