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ABSTRACT 

In viscous micropumps one of the main reasons for a flow rate reduction is vortices which are located at the top 
of the rotating rotor. In this paper, we have tried to add proper additional walls in the micropump channel, to 
eliminate or decrease the size of these vortices. Among the all investigated new models, only one, the I-Shaped 
micropump with an extra step above the rotor, could reduce the size of the vortices and also increase the outlet 
flow rate. In this paper, the numerical simulations were conducted by using the Lattice Boltzmann Method and 
by exploiting the Immersed Boundary method and the Blocking technique in order to overcome the LBM 
drawbacks. The results show that at the channel height ܪ∗ ൌ 3.7, this new model can produce a flow rate of 
150% more than the normal I-Shaped micropumps. Also, one can tune the maximum produced pressure by 
adjusting the height of this step and micropump with higher channel height can be much more efficient and 
usable. In addition, by using this new structure for micropump, the designers can also use bigger channel heights 
which were not efficient in the original design. 
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1. INTRODUCTION 

The scientific advancement in the miniaturization of 
electromechanical devices necessitates 
miniaturization of all systems associated with these 
devices. One of these systems is the fluid transfer 
system, and it is the most important part, which is a 
pump.  

Micropumps perform the fluid transfer in the micro 
dimensions. This fluid transfer may be exploited to 
cool a microchip, a fuel cell, or a micro-reactor, or to 
transfer, combine, react, or analyze the reactants in a 
micro total analysis system. Practically, it has been 
proven that the application of some micropumps, 
compared to their macro-sized peers, is along with 
some advantages including reduction in the use of 
samples and reactants, automating processes, and 
improving the quality of the experiments. 

The surface-to-volume ratio in micro dimensions is 
much larger than that on the macro scale, hence 
surface effects will be prominent than the volumetric 
ones. When the Reynolds number has a small value 
due to the small flow cross-section or velocity, the 
viscous forces dominate the inertial ones. Therefore, 
micropumps using inertial forces as the pumping 
mechanism have low efficiency. A lot of 

investigations have been carried out to find new 
mechanisms that no longer have this problem, 
leading to the creation of pumping mechanisms 
including positive displacement using a piezoelectric 
actuator, phase change, pumping using viscous 
forces, etc. (Iverson and Garimella 2008). 

Among micropumps, positive-displacement 
micropumps are of higher popularity and are used in 
various devices, particularly those needing to 
transfer a specific amount of fluid (for instance, 
automatic insulin-injection devices). Despite the 
high popularity, these micropumps require precise 
fasteners and seals which will make their design 
complex and therefore, this will make the process of 
fabrication more difficult.  

Electro-hydrodynamic (EHD) pumps are another 
class of micropumps. In this model, dielectric fluid 
is exposed to an electric field. This electric field is 
created by several electrodes located inside the 
channel, and the fluid is displaced due to induced 
charges and creates a flow rate inside the channel. 
Electro-chemical pumps and bubble pumps transfer 
fluids by utilizing the volume changes from phase 
transition to displace fluid. Bubble pumps consist of 
a micro-channel with several independent heaters on 
its surface. These micro-pumps operate as follows: 



A. Alimoradi and S. Ali Mirbozorgi / JAFM, Vol. 13, No. 6, pp. 1847-1858, 2020.  
 

 
1848 

 

the first heater works enough to form a bubble of 
fluid’s vapor on the surface with the same size as the 
width of the channel. When the second heater is 
activated, the bubble expands. Then, by turning on 
the third heater and turning off the first heater, the 
vapor bubble starts moving due to the pressure 
difference in its sides and pushes the fluid forward, 
toward the micropump outlet. This sequential 
process continues until the bubble exits the channel, 
and by that, the process will restart from the 
beginning. The electrochemical pumps consist of a 
pair of electrodes located inside a water tank which 
is connected to a channel filled with fluid. By turning 
on the pump, the electrodes split the water and create 
bubbles of oxygen and hydrogen. These bubbles are 
then transferred to the channel and the fluid inside 
the channel is driven forwards by these bubbles, 
creating a flow of fluid. 

In viscous micropumps, as the name suggests, the 
viscosity is utilized as the pumping mechanism. The 
geometric structure of this class of micropumps 
includes a cylindrical or disk rotor (a low-height 
cylinder) placed in a micro-channel in different 
shapes. In the case of using a disk rotor, the transfer 
of momentum to the fluid is performed through the 
base surface of the rotating disk. This category of 
micropumps can be divided into disk and spiral 
micropumps. However, when the cylindrical rotor is 
used, the momentum transfer to the fluid is 
conducted through the lateral surface of the rotating 
cylinder. This category can include various types, 
such as I-shaped, L-shaped, and U-shaped 
micropumps. All of these micropumps consist of a 
rotating cylinder asymmetrically located inside the 
channel. Due to the asymmetry in the rotor position 
inside the channel, unequal shear forces are created 
on the top and bottom sides of the rotor during its 
rotation which causes the fluid to displace. The very 
simple structure and the lack of need for seals and 
fasteners are of the advantages of viscous 
micropumps over other types of micropumps. 
Moreover, this category of micropumps can be used 
for all fluids, and energy consumption, compared to 
other types, is rather low.  

I-shaped micropumps were first introduced (Sen et 
al. 1996). In their experimental study, they observed 
that the average velocity of the fluid in the 
micropump outlet was about 10% of the rotor linear 
velocity. Besides, they showed that the average 
velocity and flow rate first increased and then 
decreased by increasing the channel width at a fixed 
linear velocity of the rotor. (Sharatchandra et al. 
1997) analyzed this micropump numerically and 
examined the impact of parameters such as the 
distance of the rotor from the wall, Reynolds 
number, and pressure difference at the two ends of 
the micropump on the output flow rate. Moreover, 
they pointed out in their investigation that two 
vortices formed above the rotor blocking the flow 
path and as the channel width increases, vortices will 
become larger and they start to merge into a single 
vortex, and as a result, the width of the channel, 
which flow can pass, will also decrease. In 2004, 
(Abdelgawad et al. 2004) numerically analyzed the 

I-shaped micropump using the Fluent software. Their 
analysis was carried out unsteadily from t=0, i.e. 
when the rotor was off until the flow reached the 
steady-state. In this study, they assessed the effect of 
geometrical parameters on the micropump 
efficiency, as well as the impact of the Reynolds 
number, channel width, and the rotor-wall distance 
on the stability time of the flow and found that the 
Reynolds number had a higher impact on the stability 
time that the other parameters. In the same year, 
(Phutthavong and Hassan 2004)selected different 
shapes of rotors for an I-shaped micropump and 
analyzed the flow through the micropump using the 
Fluent software. One of the findings of their work 
indicated that the circular rotor was capable of 
producing more flow rate in comparison to the 
polygon models. While introducing two novels L-
shaped and U-shaped models (Da Silva et al. 2007) 
obtained optimal values of geometric dimensions for 
all three models of micropumps. They performed 
their simulation with the help of the Comsol 
software. 

The aforementioned studies revealed that although in 
all cases, the effect of geometric parameters, rotor 
speed, pressure differences, and rotor shape have 
been investigated, the effect of the channel geometric 
shape and the vortex formed above the rotor on the 
flow rate and maximum pressure difference has been 
neglected. It seems that the position of the vortex or 
vortices, and eventually the pump flow rate and head 
can be influenced by changing the flow geometry 
using additional walls. 

In this study, the impact of the additional walls inside 
the channel on the size of the vortex above the rotor 
was investigated numerically. From all the 
investigated cases, only one case could reduce the 
size of the vortex above the rotor, so that the passage 
width of the main flow increased and ultimately 
increased the outlet flow rate. Besides, these new 
walls enabled us to control the output pressure which 
micropump produces. In the following, the 
configuration of these micropumps and the problem 
geometry are introduced first. The Lattice Boltzmann 
Method (LBM) and the immersed boundary method 
(IBM) were used to numerically analyze the flow and 
define the rotor, respectively. Moreover, the 
blocking method and the Zou-He model were used to 
define the additional walls. Finally, the findings will 
be compared with those reported in previous studies. 

2. PROBLEM GEOMETRY 

The configuration of a simple I-shaped micropump 
has been depicted in Fig. 1. As shown in this figure, 
the flow paths are aligned in the inlet and outlet and 
indicate the letter I (straight line). It should be noted 
that the naming of the L-shaped and U-shaped 
micropumps, in which the flow path in the outlet 
relative to the inlet, changes 90 and 180 degrees, 
respectively, has been performed in this way. Figure 
2 demonstrates the model of an I-shaped micropump 
with an additional wall (step). The first goal of the 
selection of this additional wall is to interfere with 
the flow pattern around the rotor. Furthermore, the 
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reason why this configuration has been chosen, in 
addition to the simplicity of the final geometry, is: 
based on the definition of the I-shaped micropumps, 
the flow direction in the inlet and the outlet of the 
micropump remains the same and fixed. In these 
figures, D, Lu and Ld, H, Hs, and Ls respectively 
designate the rotor diameter, the inlet and outlet 
distance to the center of the rotor, the channel height, 
the step height, and the step length which is used only 
in the model presented in Fig. 2. 

 

 
Fig. 1. Simple I-Shaped Viscous Micropump. 

 

 
Fig. 2. I-Shaped Viscous Micropump with a step 

above the rotor. 

 
݀ is the rotor distance from the bottom wall, with the 
negative values meaning that part of the rotor is 
placed within the wall. ω is the rotor rotational speed 
in the clockwise direction and PL and PH are the 
micropump inlet and outlet pressures, respectively. It 
is worth noting that the distance of the rotor from the 
upper wall is not equal to ݀ in Fig. 2, and the vertical 
position of the upper wall depends only on the value 
of Hs measured from the upper wall. 

By choosing D as the reference length, the geometric 
dimensions can be nondimensionalized as relations 
(1). 
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Assuming a Newtonian fluid and a laminar, steady, 
and incompressible flow, the velocity and pressure 
can be nondimensionalized using (2) and (3), 
respectively. 
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In the current research, the Reynolds number is 
written as (4) based on the rotational speed of the 
rotor. 

2

Re
2

D


   (4)

Where ν is the fluid kinematic viscosity. The 
boundary conditions of the walls in the channel and 
rotor areas are as the non-slip boundary condition 
and the inlet boundary condition as ܲ∗ ൌ ௅ܲ

∗ ൌ 0, 
moreover, the outlet boundary condition is as ܲ∗ ൌ
ுܲ
∗ , in which ுܲ

∗  can vary from zero to the 
maximum pressure of that model of the 
micropump. In addition to these conditions, the 
derivative of the velocity perpendicular to the 
boundary at the inlet and outlet boundaries is 

considered to be zero (
డ௨

డ௫
ൌ 0). The linear velocity 

of the rotor is considered to be fixed as ܷ ൌ
 The Lu and Ld values are assumed to be .2/ܦ߱
equal to 8D so that a fully developed flow can be 
obtained in the inlet and the outlet and the selected 
boundary conditions don’t harm the simulation. 
Also, the length of the LS has chosen to be 3D. 

The power consumption per rotor length can be 
specified based on the (5). 

W F R    (5)

In this relation, the rotor force per unit of length ܨ′ 
can be obtained using the following relation. 

2

Wall0
dF R


      (6)

The shear stress on the rotor surface is calculated as 
(7). 
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If the rotor starts to rotate at the zero moment, its 
power consumption will be the maximum, and the 
power consumption will reduce as the fluid 
accelerates and will ultimately reach a fixed value. 
To nondimensionalize the power consumption, the 
maximum power consumed by the rotor can be 
selected as the reference power. Assuming ܷఏ

ி௟௨௜ௗ ൌ
0, the maximum rotor power per unit length can be 
obtained by simplifying the above relations, as (8). 

3 2
MaxW

D
Re

r

 


    (8)

Therefore, by dividing the power consumption by the 
maximum power consumption, the dimensionless 
power consumption will be obtained as the following 
relation. 
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  (9)

3. NUMERICAL SOLUTION METHOD 

3.1   LBM 

The LBM is one of computational fluid dynamics 
methods in which, instead of solving Navier-Stokes 
equations, the discrete Boltzmann equation 
governing the particle distribution function, f, is 
solved. The values of the distribution functions f, in 
addition to dependence on the discrete locations x 
and time t, they are also dependent on the directions, 
as each direction is defined by its different particle 

velocity ic . Due to this dependence, the distribution 

functions f are represented as ௜݂ . Selection of the 
number of directions and the velocity of the particles 
in each direction leads to different models, with the 
D2Q9 model often used in the two-dimensional 
problems; there are 9 particle velocities in this two-
dimensional model. In the case of using the 
Bhatnagar–Gross–Krook (BGK) operator, the LBM 
can be written as (10). The numerical solution of this 
relation consists of two stages of the collision and 
propagation of particles. 
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 (10)

In this relation  , if , and 
eq

if   are the relaxation 

time constant, discrete force term, and equilibrium 
distribution functions, respectively. 

The value of the equilibrium distribution functions 
are calculated through relation (11), in which the 
local density ρ and local velocity u have been used. 
In this relation, we have ݑሬԦ ൌ ݅ݑ ൅ and Ԧܿ ݆ݒ ൌ ܿ௜௫݅ ൅
ܿ௜௬݆. 
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 (11)

The particle transfer velocities ܿ௜  and weighting 
coefficients ݓ௜ for this model are given in table 1. In 
this relation, ܿ௦ is the sound speed in the fluid and is 

equal to ܿ௦ ൌ
ଵ

√ଷ
ܿ, where c is the particle speed in 

horizontal and vertical directions in the mesh being 

ܿ ൌ
∆௫

∆௬
ൌ 1. 

The force term can be written as follows in which 
Ԧܨ ൌ ௫݅ܨ ൅  ௬݆ is the force per unit of volume definedܨ
in the macroscopic space. 

 

Table 1 Weighting coefficient and particle 
velocities for ܦଶܳଽ Model 

i  w i  ixc  iyc  

0 4/9 0 0 

1 1/9 +1 0 

2 1/9 0 +1 

3 1/9 -1 0 

4 1/9 0 -1 

5 1/36 +1 +1 

6 1/36 -1 +1 

7 1/36 -1 -1 

8 1/36 +1 -1 
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(12)

Since the LBM is utilized to analyze flow in the 
mesoscopic space, the moments of the distribution 
functions must be used to calculate macroscopic 
quantities such as density and velocity. For instance, 
the local density and velocity are obtained through 
relations (13) and (14), respectively. 

 
8

0
i

i

f


   (13)

 
8

0

8

0

u
2

v
2 y

i ix x
i

i iy
i

c

c

t
f F

t
f F










 

    





  
(14)

In the LBM, the pressure is obtained from relation 
(15), and the relaxation time is related to the 
kinematic viscosity through relation (16). 

2
sP c    (15)

2
0.5

sc

     (16)

The BGK collision operator depends only on the 
parameter τ, which itself is related only to the 
kinematic viscosity υ. If the value of τ is close to 0.5 
or it is higher than 1, then using this operator will 
cause some problems, for example it can reduce the 
simulation accuracy, increase simulation time or 
sometimes it can make the simulation unstable. To 
solve these problems, the TRT operator has been 
used for simulation in this study. This operator is 
dependent on two relaxation times and there is no 
limitation to determine the relaxation time anymore. 
Same as BGK operator, one of these relaxation times 
are obtained from the kinematic viscosity, and 
another constant is obtained based on the relation 
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(17) using a magic number called Λ. In this 

simulation, Λ ൌ
ଵ

ଵଶ
 is assumed. 

2
0.5

0.5
0.5

sc



















  

(17)

   

    

    

, ,

, ,

, ,

eq
i i

e

i i i

q
i

i

i

f x c f x t

f x t f x t

f x t f x

t t t

t

t

t

t

F





 

 




   





 

 







       

 (18)

2

2

i

eq eq
eq i

i

i

i

i

f f
f

f f
f











  
(19)

The collision function with the presence of this 
operator can be observed in relation (18). The 
procedure of determination of the new distribution 
functions has been indicated in relation (19); in these 
relations, ଓ ̅is the distribution function opposite of the 
function i. 

3.2   Immersed-Boundary Method (IBM) 

Since an orthogonal mesh is often used with uniform 
distances in rectangular geometries in the LBM, the 
geometry analysis of the complex flows, such as the 
flow passing over objects, has always been 
challenging in this method. For the simulation of the 
complex flow geometry using the LBM, secondary 
methods can be used. The immersed boundary 
method, the ghost fluid method, and the blocking 
method are among these methods. In this paper, the 
two methods of blocking and immersed boundary 
methods have been exploited. It is worth noting that 
due to the specific features of LBM, the blocking 
technique can be conveniently used. 

The immersed-boundary method is based on the 
simulation of the flow around the objects (the 
immersed boundary) introducing the virtual 
volumetric forces F in the equations governing the 
fluid flow field. Different models of this method are 
based on the procedure of calculation of this force. 
This method was first proposed by (Peskin 1972) to 
simulate the flow around the heart valve. The 
integration of the two methods of LBM and the 
immersed-boundary method (LB-IBM) was first 
suggested by (Feng and Michaelides 2004). From 
that year on, investigations have been conducted to 
solve this method problems and to improve it. For 
instance, (Feng and Michaelides 2004) proposed a 
penalty method to calculate the force, and (Wu and 
Shu 2009) introduced the implicit velocity correction 
method. This method can simulate an object 

precisely without the fluid penetrating it, however, 
due to the implicit nature of this method and the need 
for solving the equations at all points simultaneously, 
the simulation of this method is costly and very time-
consuming. In 2011, (Kang and Hassan 2011) 
removed the problems associated with the velocity 
correction method and introduced the Multi-Direct-
Forcing method. In this method, construction and 
inversion of the matrix of coefficients are no longer 
necessary and the process of solving the equations is 
performed iteratively. While requiring less time to 
simulate, this method can produce the results of the 
implicit velocity correction method accurately. 

In the IBM, two series of points are used: Eulerian 
points and Lagrangian points. In the Eulerian points, 
in which the location, velocity, and the force is 
defined respectively as  ௜ܺ,௝ ൌ ௜,௝ଓԦ൅ݔ ௜,௝ଔԦ, ௜ܷ,௝ݕ ൌ
௜,௝ଓԦݑ ൅ ௜,௝ଔԦݒ , and ܨ௜,௝ ൌ ௜,௝ଓԦ൅ݔܨ ௜,௝ଔԦݕܨ , the main 
flow equations are solved. It worth mentioning that, 
௜,௝ܨ  and ௜ܷ,௝  replace ܨԦ  and ݑሬԦ in relation (7) and the 
LBM, respectively. 

In the Lagrangian points specifying the boundary of 
the object and their location, velocity, and force 
with ܺ௞ ൌ ௞ଓԦ൅ݔ ௞ଔԦݕ , ܷ௞ ൌ ௞ଓԦ൅ݑ ௞ଔԦݒ , and ܨ௞ ൌ
௞ଓԦ൅ݔܨ  ௞ଔԦ, respectively, the specific equations ofݕܨ
this method, such as the equation for determining the 
virtual force, are solved. In the case of the rigidity of 
the object, the distances of these points remain the 
same and fixed during the solution process. Since 
Eulerian and Lagrangian points do not necessarily 
have a direct relationship with each other, a mutual 
relation must be introduced between these two series 
of points so that the fluid and boundary of the virtual 
body feel each other presence. Peskin introduced this 
relationship using the Dirac delta function so that this 
function has already become a cornerstone for all 
IBMs. In this method, first, the velocity of the 
Lagrangian points is calculated using the velocity 
interpolation from Eulerian points by the Dirac delta 
function. Having the velocity at the Lagrangian 
points, and after calculating the partial forces at these 
points, these forces are distributed at the Eulerian 
points to create the required force field to simulate 
the boundary of the object in the fluid flow. The 
relation between velocity interpolation and force 
distribution is written respectively as relations (20) 
and (21).  
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In these relations, Δ is indicative of the Dirac delta 
function, written as relations (22) and (23) for the 
two-dimensional problems. 
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In the IBM method, the Lagrangian force ܨ௞  is 
calculated in different ways, each being the origin of 
a particular method. In the current study, the Multi-
Direct-Forcing method proposed by Kang and 
Hassan has been used to calculate this force, in which 
the force is calculated according to the following 
algorithm. 

1. Set iteration counter ݉ ൌ 0  

2. Finding the uncorrected velocity from relation 
(24) and interpolating the Lagrangian 
velocities from Eulerian points 
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3. ݉ ൌ ݉ ൅ 1 

4. Calculating the Lagrangian forces from 
relation (25) 
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5. Spreading the Lagrangian forces to obtain the 
Eulerian ones. 

6. Correct Eulerian velocity with relation (26) 
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(26)

7. Repeat steps 3-7 until m reaches a pre-defined 
value ݉ெ௔௫ 

8. Calculate the total correction force with relation 
(27) 
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As previously stated, the blocking technique is 
another technique helping the LBM to analyze flow; 
this technique is often used to model fixed rigid 
bodies in the flow path. In this method, the body is 
modeled as an object with boundaries coinciding 
with the mesh points and introduced with the Zou-
He boundary condition model, besides, the velocity 
values of the points inside this block -in the section 
regarding the computation of macroscopic 
quantities- are set to be zero. In this paper, as shown 
in Fig. 6, the step added in the channel of the 
micropumps have been modeled using this method 
and the rotor modeled using the IBM. 

 

 
Fig. 3. A sample of generated mesh and 

Blocking and IB techniques 

4. VALIDATION RESULTS 

To validate the results, first, the problem of the flow 
around a cylinder and then the simulation results of 
an I-shaped micropump are compared with the 
results of the studies carried out by Abdelgawad et 
al. 2004 and Da Silva et al. 2007 The solution 
domain for the problem of the flow around a cylinder 
can be observed in Fig. 4. The streamlines and 
vortices behind the cylinder have been demonstrated 
for a flow with Re = 40 in Fig. 5. 

Due to the use of the Multi-Direct-Forcing method, 
penetration towards inside the fixed cylinder can be 
witnessed, however, as illustrated in table 2, the 
vortex length obtained is sufficiently consistent with 
the results reported by other researchers. Taking into 
account these results, and as mentioned in reference 
(Kang and Hassan 2011), it can be claimed that the 
Multi-Direct-Forcing method (MDF) can produce 
results similar to those of the Implicit-Direct-Forcing 
method (IDF), but by spending less time. This time 
difference in simulation is noticeable, especially for 
problems with moving or rotating objects. For 
example, for the current simulation with stationary 
boundary (for the IDF the process of building and 
reversing the coefficient matrix was done only once 
out of the main loop), the simulation for the MDF 
method required about 1152 seconds while for the 
IDF, simulation time was about 1030 seconds. In this 
situation, where the matrix is built only once, the 
required computation time for the IDF method is 
about 100 seconds slower than the MDF method. 
However, if there is a moving or a flexible boundary 
where you need to rebuild and reverse the matrix for 
each step of the time, the IDF method will require 
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much more time and resources to produce the similar 
results that the MDF method can produce in a much 
shorter time. 

Once the problem of the flow around a fixed cylinder 
was investigated, the numerical analysis of the flow 
in the micropump shown in Fig. 1 was performed and 
the results were compared with the findings of other 
studies. Figure 6 illustrates the streamlines around 
the rotor of this micropump. Given the rotor direction 
and its proximity to the bottom wall, finally a pure 
flow has been created to the right with the rotation of 
the rotor. This is while two relatively large vortex 
flows have been formed above the rotor. 
 
 

 
Fig. 4. Geometry of flow past a circular cylinder 

problem. 
 
 

Fig. 5. Geometry of flow past a circular 
cylinder problem. 

 
 

Table 2 Comparison between vortex length in 
present work and other studies 

   

Wu & Shu (Wu and 
Shu 2009) 

1.86 4.62 

Shu et al. (Shu, Liu et 
al. 2007) 

1.8 4.4 

Dennis & Chang 
(Dennis and Chang 

1970) 
1.88 4.69 

Fornberg (Fornberg 
1980) 

1.82 4.48 

He & Doolen (He and 
Doolen 1997) 

1.84 4.49 

Present Work 1.84 4.57 

 

 
Fig. 6. Streamlines in a simple I-Shaped viscous 

micropump. 
 
Regarding the interpretation of the cause of the 
vortices, it should be said that if the length of the 
channel of this micropump is divided into three zones 
of the inlet boundary before the vortex flow, the 
vortex flow zone, and the zone after the vortex flow to 
the outlet boundary, the negative pressure gradient is 
the agent for the fluid motion in the first and third 
zones, and rotation of the moving wall (rotor) in the 
second zone is the fluid motion factor, As shown in 
Fig. 7. This is while the presence of a negative 
pressure gradient in the first and second zones causes 
a positive pressure gradient in the vortex region. 
When the fluid moves to the right from the top of the 
rotor due to the rotor rotation, it cannot continue its 
way to the right easily in the presence of a positive 
pressure gradient, and thus diverges to the upper wall. 
After the collision with the upper wall, part of it 
deviates to the right and the other part to the left, so 
that a stagnation point is formed on the upper wall at 
the right side of the rotor. The backflow near the upper 
wall cannot continue to the left, as it collides with the 
main flow and deviates towards the center of the 
channel to satisfy the principle of mass conservation 
so that another stagnation point is formed beside the 
upper wall and before the rotor. The backflow beside 
the two stagnation points eventually leads to the 
formation of a vortex region as shown in the figure. 
However, the flow diverged from the vicinity of the 
stagnation point before the rotor cannot completely 
pass over the rotor, and therefore part of it creates a 
vortex center before the rotor. Accordingly, the 
diverging flow near the stagnation point after the rotor 
cannot completely pass near the upper wall, hence 
creating another vortex center at the right side of the 
rotor. If the distance between the rotor and the upper 
wall increase, the flow through this distance is 
facilitated and the two vortex centers unify and only 
one vortex is formed above the rotor. 
 

 
Fig. 7. Pressure change in centerline of an I-

shaped viscous micropump. 
 

Re 20 Re 40
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Figure 8 depicts the variations in the outlet 
dimensionless average velocity ݑ∗  relative to the 
channel width	ܪ∗, and the average velocity can be 
obtained through relation (28).  

 
0

*

1 H
u u y dy

H
u

u
U



    
(28)

These results have been obtained with values 
of 	ܴ݁ ൌ 0.5	, ∆ܲ∗ ൌ 0.5	, ߝ ൌ 0.9 ߝ .  is a number 
between 0 and 1 and a controlling parameter for ݀, 

which are linked by the relation  ݀ ൌ
ଵ

ଶ
ሺܪ െ ሻܦ ൈ

ሺ1 െ  decreases with ݀ ,ܦ	and ܪ ሻ. With a constantߝ
an increase in ߝ . Following these results, the 
maximum average velocity occurs in a width of 
∗ܪ ൌ 1.53. It should be noted that in this case, ݀∗ 
also increases with increasing	ܪ∗. 
 

Fig. 8. Comparison of average fluid velocity 
based on channel height in this work and 

(Abdelgawad et al. 2004). 
 

Figure 9 illustrates the comparison of variations of 
the maximum flow rate ሶܳ

ெ௔௫
∗  in terms of distance 

from the wall ݀∗  with the corresponding results in 
the study by Da Silva et al., in which the flow rate is 
calculated using relation (29).  

* * *Q u H    (29)

 
Fig. 9. Comparison of maximum average fluid 
velocity and maximum flow rate based on rotor 
distance in this work and (Da Silva et al. 2007). 

 
Fig. 10.  Comparison of optimum channel height 
based on rotor distance from bottom wall in this 

work and (Da Silva et al. 2007). 
 
Based on these results, the flow rate is maximized 
when ݀∗ ൌ 0.025 . It should be noted that in 
calculating the maximum flow rate, the optimum 
channel width associated with each ݀∗  is always 
used. It can be seen in Fig. 10 that the optimum 
channel width increases with increasing ݀∗ . The 
optimum channel width is a width in which the outlet 
flow rate is maximum. In this simulation, the values 
of the Reynolds number and pressure are assumed to 
be ܴ݁஽ ൌ 1 and ∆ܲ∗ ൌ 1, respectively. 

As shown in Figs. 8 to 10, the results of the numerical 
analysis of the present study are highly consistent 
with the results of other studies. 

5. RESULTS 

The vortex flow above the rotor is one of the main 
barriers against passing the flow from a viscous 
micropump, as the width of the main flow decreases 
with increasing the size of this vortex, ultimately 
leading to the reduced amount of fluid transferred 
and the decreased outlet flow rate. 

The primary idea in this research was to reduce the 
negative effect of the vortex flows by adding a wall 
in the channel. For example, two vortices formed on 
the rotor of an I-shaped micropump can be observed 
in Fig. 6, in which ܴ݁ ൌ 1	, ∆ܲ ൌ 1, and	݀∗ ൌ
0.025. 

In the I-Shaped viscous micropump with a step 
above the rotor, which is shown in Fig. 2, the step 
is located above the rotor and its height is measured 
relative to the upper wall. As demonstrated in Fig. 
10, the added wall can affect the flow behavior at 
the site of the two stagnation points by controlling 
the flow and reduce the size of the vortices above 
the rotor and eventually increase the flow passage 
width. It is worth mentioning that the height of the 
added wall is only a small part of the channel 
width, however, it affects the flow width in such a 
way that it easily compensates for the decrease in 
channel width at the rotor site. These changes can 
be observed in streamlines by comparing Figs. 6 
and 11. 
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Fig. 11.  Streamlines in a viscous micropump of 

Fig. 2. 
 
If the graph of the effect of the step height on the flow 
rate is plotted for this micropump, Fig. 12 will be 
obtained; this figure shows the positive effect of 
adding the step in the channel on the outlet flow rate, 
and as shown in this figure, in case of having a 
certain height, it can increase the outlet flow rate. 
 

 
Fig. 12. Effect of height of step in flowrate of 

viscous micropump of Fig 2. 
 
If the outlet flow rate of this micropump in the step-
free mode and in the optimal mode, in which the flow 
rate is maximum, is plotted in different channel 
widths, Fig. 13 will be obtained. As indicated in this 
figure, in the step-free mode (simple I-shaped 
micropump), the outlet flow will be maximum, and 
then will start to decrease due to the reduction of the 
flow passage width by the vortex flow, however, by 
adjusting the step in the second micropump, an 
optimum size can be found for which the formed 
vortices will have the minimum size and as a result, 
the flow passage width will increase and this will 
increase the outlet flow rate. The plot of optimal step 
height to obtain maximum flow rate based on 
channel width can be observed in Fig. 14. 
According to this graph, it can be seen that up to the 
channel width of ܪ∗ ൌ 1.6, the optimal step height is 
zero, making the output flow rate be the same in two 
cases of with and without a step. However, with 
increasing the channel width, an increase in the step 
height can be useful to reduce the vortex flow size in 
addition to increasing the outlet flow rate. This 
increase in the outlet flow rate is such that in the 
channel width of ܪ∗ ൌ 3.7, the outlet flow rate of the 
micropump with an optimum height, has an increase 
of 150% relative to the outlet flow rate in the step-
free state.  

Figure 15 has been obtained by plotting the power 
consumption diagram of the simple I-shaped 
micropump and its peer in the presence of an 

optimum step. 

 
Fig. 13.  Comparison of maximum and primary 

flow rate in a viscous micropump of Fig. 2. 

 

 
Fig. 14.  Optimal step height for maximum flow 

rate based on channel height in a viscous 
micropump of Fig. 2. 

 
As can be seen in this figure, surprisingly, the power 
consumption for both micro-pumps is almost the 
same, so that they vary by a maximum of 0.15% in 
high values of the channel width. Thus, it can be 
concluded that the step addition does not affect the 
fluid velocity right around the rotor, and only by 
controlling the volume of fluid in the vortices (by 
reducing it), it can increase the flow passage width 
between the rotor wall and the step wall, so that a 
higher flow rate is achieved at the same power 
consumption rate. 

If the pressure difference of the two ends of the 
micropump is equal to zero, i.e. ∆ܲ∗ ൌ 0 , the 
micropump will transfer the maximum flow rate that 
it can produce. If the graph of the maximum flow rate 
of the micropumps of Figs. 1 and 2 is plotted, Fig. 16 
will be obtained. As can be observed, the maximum 
flow rate can be increased by adjusting the step 
height. 

A comparison can be observed in Fig. 17 between the 
maximum pressure differences produced by the 
micropumps of Figs. 1 and 2. As it is clear, in the 
simple I-shaped micropump, the maximum pressure 
difference is maximized with a channel width 
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increase, and then the maximum pressure difference 
has a downward trend. However, in the micropump 
of Fig. 2, by adjusting the step height, the maximum 

 

 
Fig. 15. Comparison between the dimensionless 
rotor power that viscous micropump Fig. 1 and 

Fig. 2 need to generate flow. 

 

 
Fig. 16. Comparison of the maximum flow rate 
that viscous micropumps of Fig 1 and Fig. 2 can 

produce in the absence of counter pressure. 

pressure difference can be produced in all widths of 
the channel. In Fig. 18, the height of the optimal step 
height to produce the maximum pressure difference 
can be observed. 

If the free width ܪி
∗ ൌ ∗ܪ െ ௌܪ

∗ at the rotor section 
(the width between the lower and upper walls at the 
rotor section in this micropump) is calculated, it 
can be observed that the free width will be equal to 
ிܪ
∗ ൌ 1.2. This means that the free width should be 

1.2 to produce the maximum pressure difference. 
Regarding this result, Fig. 19 has been obtained 
plotting the maximum pressure difference 
produced taking into account several channel 
widths based on the free width; the values of this 
graph are the same as Fig. 17 for the simple I-
shaped micro-pump. 

According to this graph, it can be claimed that the 
maximum pressure difference produced in this 
micro-pump depends only on the free width value in 

case of a fixed Reynolds number and the distance 
from the wall, and this graph can be used to easily 
specify the maximum pressure difference for all the 
different channel widths. 
 

Fig. 17. Comparison of the maximum outlet 
pressure that viscous micropump of Fig. 1 and 

Fig. 2 can produce. 

 

 
Fig. 18. Optimal step height for maximizing the 
outlet pressure that a viscous micropump of Fig. 

2 can produce based on channel height. 
 

As mentioned before, this can be categorized as a 
new type of I-Shape viscous micropumps. Therefore, 
as same as other new pumps, it is necessary to 
include 2 sets of graphs which are the P-Q graph or 
“The Pump Performance Curve” and W-Q graph or 
“The Power Curve”. According to the Fig. 20 which 
is the P-Q curve, this new micropump can withstand 
more outlet pressure while producing the same flow 
rate as the normal I-Shape micropump. One can see 
that at the end of the graph, where there is no outlet 
pressure, both types of micropump can produce 
nearly the same flow rate. This can be explained by 
the absence of the counter-pressure which will 
reduce the maximum pressure at the right side of the 
rotor, that micropump will produce to overcome the 
outlet pressure, and by doing that more fluid can flow 
at this area which ultimately will reduce the size of 
the vortex that will develop over the rotor. So, when 
there is no outlet pressure, the vortex is smaller than 
there is some outlet pressure, but it still can be 
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smaller with adjusting the step height. On the other 
hand, because it’s a small vortex, it has minimum 
influence over the flow geometry, so the difference 
between the normal I-Shape and the I-Shape with 
step micropump flow production is low. 

 
Fig. 19. Maximum Pressure that a viscous 

micropump of Fig. 2 can produce based on the 
gap between its bottom and top channel walls at 

the location of the rotor. 
 

 
Fig. 20. Comparison between performance 

curves of Normal I-Shape and I-Shape with step 
viscous micropump. 

 

 
Fig. 21. Comparison between Power 

requirement curves of Normal I-Shape (N) and 
I-Shape with step (WS) viscous micropump. 

Figure 21 shows the W-Q curve. As it can be 
observed in this graph, the normal I-Shape 
micropump requires more power than the I-Shape 
with step micropump while producing the same flow 
rate. This can be explained with the help of Fig. 13 
and 15. According to these graphs by increasing the 
channel height, power consumption by rotor will 
decrease, and the flow rate in the new viscous 
micropump increases while in the normal one, this 
increase will decrease the outlet flow rate. Therefore, 
in the new micropump, by increasing channel height, 
one can adjust the flow rate to be the same as the 
normal one, while the rotor requires less power. 

6. CONCLUSION 

In this paper, by exploiting the blocking technic and 
immersed boundary method, two I-Shape viscous 
micropump –a normal I-Shape micropump and a new 
I-Shape micropump with an additional step in the 
micropump channel- were simulated by using the 
Lattice Boltzmann Method. 

In this novel model, by adjusting the step height, the 
micropump can manipulate the flow in such a way 
that it can reduce the size of vortices, which are 
located at the top of the rotor, and as a result, it can 
increase the main flow pass width and this will 
increase the outlet flow rate. Besides, by adjusting 
the step height, one can manipulate the maximum 
pressure which the micropump can produce. The 
results show that the extra step doesn’t change the 
fluid velocity which is located in the vicinity of the 
rotor. Therefore the extra step doesn’t change the 
rotor energy consumption, but by increasing the 
main flow pass width it can transfer more fluids than 
before. For example, by setting the channel height 
∗ܪ ൌ 3.7  and embedding a step with a height of 
∗௦ܪ ൌ 1.5, this novel micropump can produce a 150% 
more flow rate than the normal I-Shape viscous 
micropump.  

The results show that by knowing the free width, one 
can find the maximum pressure which the 
micropump can produce, or one can adjust this 
maximum pressure by adjusting the free pass width. 

Besides, by using this new structure for micropump, 
the designers can also use bigger channel heights 
which were not efficient in the original design. 
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