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ABSTRACT 

This paper presents a comparative assessment of low Reynolds number k- models against standard k- 

model in an Eulerian framework. Three different low-Re number k- models: Launder-Sharma (LS), Yang-

Shih (YS) and AbeKondoh-Nagano (AKN) have been used for the description of bubble plume behaviour in 

stratified water. The contribution of the gas phase movement into the liquid phase turbulence has been 

achieved by using the Dispersed with Bubble Induced Turbulence approach (DIS+BIT).The results reveal that 

the oscillation frequency of gas-liquid flow are correctly reproduced by standard k- and LS models. In fact, 

we found for standard K- and LS a clear dominant peak at a frequency equal to 0.1 Hz. On the other hand, 

YS and AKN models have predicted chaotic oscillations. The oscillation amplitude of the bubble plume 

predicted from LS model seems to be in good agreement with the PIV measurements of Besbes et al. (2015). 

However, for the standard K- model the oscillation amplitude is low. The air-water interface shows that the 

bubble plume mixing with the stratified water is predicted to be stronger compared to standard k- model.  

Keywords: Bubble plume; Computational fluid dynamics; Euler-Euler modeling; Hydrodynamics; Low 

Reynolds number models; Two-phase flow. 

 

 

1. INTRODUCTION 

Bubble columns are reactors with low energy 

consumption implementing liquid absorption from a 

species initially present in the gas phase by 

dispersing the gas phase within the liquid phase in 

the form of bubbles. The mass transfer at the gas-

liquid interface is strongly linked to the turbulence 

induced by the bubbles (Kawamura and Kodama, 

2002; Roghair et al. 2011), to the bubble plume 

frequency oscillations and to the interfacial area of 

exchange. To understand the complex dynamics of 

dispersed bubbly flows computational fluid 

dynamics is being increasingly used, however 

reliable prediction depends on the application of 

suitable turbulence models. Furthermore, turbulence 

modeling is one of the main unresolved problems in 

the simulation of gas-liquid flows and the key to its 

development lies in a detailed representation of the 

motion of gas bubbles, and their interaction with the 

liquid phase (Lixing et al. 2006; Zhaoshun et al. 

2002). Several alternatives have been proposed to 

estimate the apparent viscosity of the turbulent 

liquid phase in gas-liquid flows (Fu et al. 2003). 

However, in bubble-liquid flows there are 

inevitably regions where the local Reynolds number 

of turbulence is so small that viscous effects 

predominate over turbulent ones. There are two 

methods to account for these regions in numerical 

computing of turbulent flows: the wall function 

method and the low Reynolds number modeling 

method. The wall function method proposed by 

Launder and Spalding (1972, 1974) has been most 

widely used because it economizes computer time 

and storage and allows the introduction of 

additional empirical information when the wall is 

rough. The low Reynolds number models have no 

wall functions as they compute the entire boundary 

layer including the viscous-sub layer and provide a 

damping function fµ for the eddy viscosity. Some 

models use fµ functions based on Ret (Launder-

Sharma (LS)) while others (Yang-Shih (YS) use fµ 

functions based on Rex (near wall treatment) and 

some (Abe-Kondoh-Nagano (AKN)) use a 

combination of both. 

http://www.jafmonline.net/
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In the majority of publications on numerical 

simulations of two-phase flows, the standard k- 

model developed for single-phase flows appears to 

perform satisfactorily for transient simulations of 

gas-liquid flow (Sokolichin and Eigenberger, 1994; 

Sokolichin et al. 1997). The turbulence of the 

continuous phase in bubble columns has been 

investigated by Ekambara and Dhotre, 2010 to 

assess the performance and applicability of different 

turbulence models namely standard k-, RNG k-, 

Reynolds stress model (RSM) and large eddy 

simulation (LES). Recently, direct numerical 

simulations (DNS) data of dispersed turbulent 

bubbly flows have become available. This data can 

be used as a basis to test the model assumptions of 

Euler-Euler RANS. Experimentally, it is difficult to 

obtain the terms in the turbulent kinetic energy 

equation of the liquid phase. However, DNS, on 

sufficiently fine grids, can provide such data. 

Otherwise, the data can also be used to develop 

more elaborate closing approximations for bubble 

induced turbulence (BIT) terms. Several works of 

this type have been accomplished (Santarelli et al. 

2016; Ma et al. 2017, 2020; Du Cluzeau et al. 2019) 

to develop a complete BIT closure in the framework 

of Euler-Euler two-equation RANS modelling. 

The review of literature indicates that the low-Re 

number models are not fully explored for the 

description of flow pattern in bubble columns. 

However, these models have been widely used to 

predict the flow behavior of steady/unsteady single-

phase flows (Patel et al. 1985; Cotton and Jackson, 

1990; Hrenya et al. 1995; Chang et al. 1995; 

Mathur and He, 2013; Rathore and Das, 2013; Gorji 

et al. 2014). 

This paper presents a comparative study of the 

performance and applicability of low-Re number k-

 models: Launder-Sharma (LS), Yang-Shih (YS) 

and Abe-Kondoh-Nagano (AKN) against the 

standard k- model, which is a high-Reynolds 

number model. An attempt was made to predict the 

detailed flow characteristics of gas-liquid flow in 

bubble column operating at low gas flow rates in 

homogenous regime, using an Eulerian-Eulerian 

formulation for the two-phase flow. For this 

purpose, a three-dimensional unsteady 

computational model elaborated with the aid of the 

software ANSYS Fluent was performed and the 

results were compared with experimental data of 

Besbes et al. 2015. 

2. COMPUTATIONAL MODEL  

2.1 Hydrodynamic Model  

The numerical simulations presented are based on 

the two-fluid Euler-Euler approach, which is based 

on ensemble averaged mass and momentum 

transport equations for each phase. The two phases 

are treated mathematically as interpenetrating 

continua, the mass and momentum conservation 

equations of which, without mass transfer, can be 

written as follows (over bars that are frequently 

used to indicate ensemble averaged quantities are 

not used, for simplicity):  

0 )  )( 

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qqqqq Uρα(ρα

t                              

(1)  
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In the above equations, q = g or l represents the gas or 
liquid phase, q, q respectively denote the volume 

fraction and density, Uq is the local velocity, P is the 

pressure, q is the Reynolds-averaged viscous stress 

tensor, Re,q is the Reynolds stress tensor, g is the 

gravity constant and Fqm (m = g, l) accounts for the 

interfacial forces that include the drag force FD, lift 

force FL, virtual mass force FVM, wall force FWL and 

turbulent dispersion force FTD (for the RANS 

approach).   

2.2 Interfacial Momentum Transfer  

All Closure relations are required for estimating the 

interfacial momentum transfer and the Reynolds 

stress tensor. Lastly, assumptions have to be made 

regarding bubble size, since this parameter has an 

impact on turbulence modeling and on the 

interfacial interaction forces. Since we operated in 

the homogenous regime, which is characterized by 

low gas velocities (Vg = 0.08 cm/s) and small 

spherical bubbles, relatively simple mathematical 

model can be capable of providing a good 

representation of the flow field, even in the sparger 

region (Silva et al. 2012). Indeed, in the case of 

dilute flows with spherical particles, it is possible to 

simplify the general particle momentum equation 

and consider only the gravity-buoyancy, pressure, 

drag and virtual mass forces. Furthermore, the drag 

force is the predominant interfacial interaction force 

with a significant higher magnitude than virtual 

mass, lift and turbulent dispersion forces which 

represents the dispersion of particles due to 

transport by turbulent fluid motion (Simonin, 1990). 

Mandar et al. (2008) have found, at low superficial 

gas velocity (Vg =1.2 cm/s), that the lift and 

turbulent dispersion forces have not significant 

effect on the flow pattern in comparison with high 

superficial velocities of different bubble sizes. 

Further, the virtual mass force has no significant 

effect on results. Since the Superficial gas velocity 

in this study is very low (Vg = 0.08 cm/s) we have 

neglected the effect of lift and turbulent dispersion 

forces. Thus, the inter-phase momentum transfer 

between gas and liquid due to drag force is given 

by: 

)UU(F lgglD                                                  (3) 

Where Kgl is the exchange coefficient and can be 

expressed as follows:  

lg

g

llg

Dgl UU
d

ραα
C

4

3
                              (4) 

Where CD and dg represent the drag coefficient and 

the gas bubble diameter, respectively. The drag model 
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employed has a significant effect on the aerated flow, 

as it is related directly to the bubble size and terminal 

velocity. The model of Morsi and Alexander, 1972 is 

employed in this work, where the drag coefficient is 

expressed as a function of the bubble Reynolds 

number:  

2

32
1D

Re

a

Re

a
aC                                              (5) 

l

l  
  e

μ

dUUρ
R

glg 
                                                (6)                                 

Here a1 = 0.3664; a2 = 98.33 and a3 = -2778 are 

constants that apply to smooth spherical particles for 

100 < Re < 1000. 

2.3 Turbulence Models  

The turbulence in the continuous phase was 

modeled using k- model supplemented with extra 

terms that include the inter-phase momentum 

transfer while that in the dispersed phase was 

modeled using Tchen’s theory of dispersion of 

discrete particles by homogeneous turbulence 

(Hinze, 1975). To account for two-way turbulence 

coupling we used the dispersed k- model, which is 

suitable when the secondary phase is dilute and the 

primary phase is clearly continuous. This model 

accounts only for turbulence in the continuous 

phase and neglects the Reynolds stress tensor for 

the dispersed phase. Closure relations for the 

Reynolds stress tensor of the liquid phase are 

provided by the k- model as: 
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where Ul is the Reynolds-averaged velocity, the 

turbulent viscosity for the liquid phase is written as: 

l

2
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fCρμ                                                     (8)  

The general form of the transport equations for the 

turbulent kinetic energy and turbulent dissipation rate 

for the continuous phase are obtained from the 

modified k- model: 
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Where Gk,l is the production of turbulent kinetic 

energy and it has a similar form to the one applied for 

single phase flow. Dεε~ ll   is a modified 

dissipation rate of kl. The damping functions fµ , f1 and 

f2 and the extra source terms D and E are only active 

close to solid walls and allow to solve kl and l down 

to the viscous sub layer. Please note that the 

expressions provided above for turbulence modelling 

(Eqs. (8-10)) are general in so far that they can 

represent any of the above-mentioned four different 

turbulence models by an adequate choice of the 

corresponding terms, as summarized in Tables 1- 3. 

The model constants, dumping functions and 

boundary conditions are presented in Tables 1- 3.  

 

Table 1 Models constants 

k- model Cµ C1 C2 k  

Standard 0.09 1.44 1.92 1.0 1.3 

LS 0.09 1.44 1.92 1.0 1.3 

YS 0.09 1.44 1.92 1.0 1.3 

AKN 0.09 1.50 1.90 1.4 1.4 

 
The ability to dissipate and generate turbulence due 

to relative velocity between the phases (turbulent 

two-way coupling) was taken in to account by 

incorporation of additional source terms for 

transport equations of kinetic energy and its 

dissipation rate (Simonin and Viollet, 1990).  

The turbulence effects on the dispersed phase are 

achieved by an extension of Tchen's theory 

(Simonin, 1990).  

2.4   Numerical Details   

The dimensions of the simulated column 267 mm 

(width) x 600 mm (height) x 15 mm (depth) are the 

same as the experimental apparatus of Besbes et al. 

(2015). The lateral dimensions in the horizontal 

direction exceed 3-4 times the initial bubble 

diameter. Therefore, the terminal rise velocities 

were not affected by the size of the computational 

domain (Van Sint Annaland et al. 2005).The 

column was initially filled with water up to a height 

of HL= 500 mm. To select a proper grid size, we 

simulate the problem on different meshes of which 

we will increase the number of cells by decreasing 

the step x and y. A non-uniform grid was used to 

guarantee that the smaller control volumes are 

presented where variables are steeper. The mesh 

sizes are in geometric progression ratio of 0.95 in 

the horizontal direction with mesh concentration 

towards the column walls and are in symmetrical 

geometric progression in the axial direction. We 

have found that the refinement of the grid size from 

9300 (coarse) to 18 600 (medium) produces a 

change in the axial velocity profiles. Whereas the 

grid sizes of 18 600 and 36 600 (fine) gives 

practically the same results. Based on the 

considerations of accuracy and computational time, 

the grid size of 18 600 for which the results are grid 

independent was employed in this work.  

Starting at t = 0.0 s gas was fed to the column 

through a needle of 0.4 mm diameter, numerically 

the needle orifice was modeled as a velocity inlet. It 

has been assumed that all the bubbles are spherical 

and for a flow rate of 0.2 l/min their average 

diameter is equal to 2.5 mm (experimental 

conditions of Besbes et al. 2015). No slip boundary  
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Table 2 Functions in the turbulence models 
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Table 3 D and E terms along with the boundary conditions 
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Note: x local coordinate normal to the wall 
 

 

conditions were used at all the impermeable walls

for both the continuous phase and the dispersed 

phase. The top surface of the column was specified 

as a pressure outlet where the atmospheric pressure 

is imposed on the top of the column. 

The resulting set of Equations for the liquid phase  

was solved using the commercial solver Fluent 

based on a finite volume method. The phase 

coupled simple algorithm was used for the pressure 

velocity coupling in the momentum equation. The 

time derivatives were discretized using a second 

order implicit method, while the diffusive and 

convective terms for velocities, volume fraction, 

kinetic energy (k) and its dissipation rate () were 

discretized using the higher-order Quick 

discretization scheme. An Eulerian time step of 10-2  

s was used in all simulations except for the case 

with virtual mass force the time step was refined to 

5x10-3 s. The convergence criterion 1x10-5 was used 

in the present work. 

 

3. RESULTS AND DISCUSSION  

The dynamic flow structure, which consists of 

several large-scale vortices, continuously changing 

their location in time at low frequencies, governs 

the mixing process of both phases. The realistic 

description of these large-scale dynamics is 

therefore an important requirement for the proper 

modeling of gas-liquid reactors. Simulations are 

used to assess the performance of low Reynolds 

number turbulence models. For this purpose, 

standard k- model is used to reproduce and 

compare with simulations of low Reynolds number 

turbulence models: LS, YS and AKN. In addition, 

simulations are compared with our previous PIV 

measurements (Besbes et al. 2015). 

3.1 Assessment of Low-Re Number Models 

against Standard K- Model 

The turbulent predictions of the dispersed phase are  
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Fig. 1. Standard k- simulations of mean liquid velocity vectors at the mid-depth plane of the column. 

 

 

 
Fig. 2. Low Reynolds number turbulence simulations of mean liquid velocity vectors (a) LS, (b) YS and 

(c) AKN. 
 

 

achieved by using the Dispersed with Bubble 

Induced Turbulence approach (DIS+BIT : 
 1.2  C 3 ε
) which takes into account the 

contribution of the gas phase movement into the 

liquid phase turbulence. The snapshot of the mean 

liquid velocity vectors at the mid depth plane of the 

column are represented in Figs. 1 and 2. The time 

averaged flow regime characterized by a strong up-

flow in the central part of the column and 

downward flow in the wall region can be observed. 

From this flow field, two separate circulation cells 

can be seen to dominate the flow pattern, which still 

resembles the "cooling tower" mode of circulation, 

despite the dynamic behavior of the bubble plume 

(Fig. 1). These "cooling tower" flow pattern still 

prevails for the predictions of low Reynolds number 

turbulence models (LS, YS and AKN) as can be 

derived from Fig. 2. 

In view of unavailability of transient experimental 

data at spatial locations, long time average is taken 

and compared with the experimental data. The 

performance of all models can be discussed in 

context of Figs. 3 and 4 which show the comparison 

of computed and measured averaged vertical liquid 

velocity profiles at two positions above the needle 

Y*= 0.25 (Fig. 3) and 0.75 (Fig. 4). Here Y* is a 

dimensionless axial coordinate with respect to the 

liquid height (Y* = Y/HL) and X* is dimensioned  

 T = 487 

s 

 

(a)  T = 487 

s 

 

(b)  T = 487 

s 

 

(c)  T = 487 

s 
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Fig. 3. Time-averaged vertical liquid velocity 

profiles for Q = 0.2 l/min, at Y*= 0.25. 

 

 
Fig. 4. Time-averaged vertical liquid velocity 

profiles for Q = 0.2 l/min, at Y*= 0.75. 

 

 

with respect to the column width (W) (X*=X/W). 

As can be seen from these figures, for all models 

there is a discrepancy between the numerical results 

and experiment near the core region showing an 

enlargement of the rising liquid area which was not 

well reproduced by the simulations. In fact, all 

models cannot reproduce the radial dispersion in the 

gas phase and the spread of the bubble plume is 

much smaller than that observed experimentally. 

This shows that the different size vortices of the 

computed flow field do not disperse the bubble flow 

sufficiently. Instead the dispersion is caused by 

numerous small vortices and flow variations caused 

by the liquid flow around individual bubbles or 

bubble clusters. So, all models cannot resolve these 

small scale phenomena. We can observe from Fig. 

3, at Y* = 0.25 (near the wall region) that, LS, YS 

and AKN models, as a modified version of standard 

K- model by the inclusion of damping functions in 

order to account for the viscous and wall effects, 

reveal satisfying agreement with the experimental 

data better than the standard K- model. Reason for 

the better agreement is a more realistic value of the 

eddy viscosity of the liquid phase. However, at the 

core region the standard k- model performs better 

than the low Reynolds number models. On the other 

hand, at Y* = 0.75, Fig. 4 shows that, at the core 

region the LS model shows the best prediction of 

experimental results. 

3.2   Transient Phenomena 

The calculation of the power spectra should allow 

characterizing some important features of the 

typical flow regimes taking place in a bubble 

column and determining the existence of periodic 

structures and yield their specific frequencies. The 

vertical velocity signal and the power spectra at 

point (X* = 0, Y* = 0.5), for different turbulence 

models are shown in Fig. 5 at the mid-depth plane 

of the column. We can identify for standard K- and 

LS a clear dominant peak at a frequency equal to 

0.1 Hz, which puts into evidence the appearance of 

liquid macrostructures, and can be related to the 

experimentally observed oscillation of a central 

plume of bubbles (Besbes et al. 2015). However, 

for LS model a second peak at a frequency of 0.2 

Hz can be distinguished, corresponding to the 

destruction of the preceding structure, also observed 

by Chen et al. 1994 and indicating the strong 

unstationarity of the system. In addition, 

quantitative agreement of the evolution of the 

vertical velocity between standard K- and LS 

models can be observed until 50 s, after that the 

solutions tend to deviate more and more from each 

other as time proceeds. On the other hand, Fig. 5 

shows chaotic oscillations of vertical liquid velocity 

profiles predicted by the YS and AKN models.  

From the above results, besides the standard K- 

model only the LS model can reproduce the 

oscillatory movement of the bubble plume. Thus, a 

qualitative comparison of the instantaneous PIV 

images of the oscillating bubble plume from Besbes 

et al. 2015 and from numerical simulations of 

standard K- and LS models is represented in Figs. 

6 and 7. As seen from Fig. 6, the direction of the 

lower part of the bubble plume is stable however, 

the upper part changes its appearance and location 

corresponding to the transient liquid circulation 

flows. Figure 7 shows that the oscillation amplitude 

of the bubble plume is low for the standard K- 

model. However, for LS model, the oscillation 

amplitude is in accordance with the results of 

Besbes et al. 2015. This can be attributed to a more 

realistic value of the eddy viscosity of liquid phase 

for LS model. In addition, the plume seems to be 

wider from LS model; however, for standard K- 

model, the bubble plume width is lower.  

Indeed, the dynamic behavior of the air-water 

interface has an impact on the oscillating bubble 

plume. So, to analyze the free surface dynamics 

induced by the rising bubbles a close-up of the time 

averaged air-water interface predicted from 

standard K- and LS simulations is represented in 

Fig. 8. This figure shows that for LS model air 

bubble plume mix with the stratified water largely. 

However, future work from this study should 

be done to dig in to the enlargement and the 

behavior of the oscillating bubbles plume.   
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Fig. 5. Simulations of time series of vertical liquid velocities and corresponding spectral density, at gas 

flow rate Q = 0.2 l/min, at point (X* = 0, Y* = 0.5) and at the mid-depth plane of the column. 

 

 

4. CONCLUSION 

The performance of three low Reynolds number k- 

models in predicting unsteady dynamic 

characteristics of the oscillating bubble plume in a 

needle sparger rectangular bubble column is 

evaluated against standard k- model. The 

contribution of the gas phase movement into the  
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Fig.6. PIV images of oscillating bubble plume at gas flow rate Q = 0.2 l/mn (Besbes et al. 2015).  

 

           
Fig. 7. Simulations of bubble plume oscillations: (a,b) Standard DIS-BIT; (c,d) LS DIS-BIT. 

 

 

liquid phase turbulence (DIS+BIT) has been 

considered. The cooling tower flow pattern 

characterized by a strong up-flow in the central part 

of the column and downward flow in the wall 

region still prevails for the predictions of the low 

Reynolds number turbulence models. However, no 

models can reproduce the radial dispersion in the 

gaz phase and the spread of the bubble plume is 

much smaller than that observed experimentally. 

This shows that the different size vortices of the 

computed flow field do not disperse the bubble flow 

sufficiently.  

We have found that near the wall region, at Y* = 

0.25, LS, YS and AKN models as a modified 

version of standard K- model by the inclusion of 

damping functions in order to account for the 

viscous and wall effects reveal satisfying agreement 

with the experimental data of Besbes et al. 2015 

slightly better than the standard K- model. 

However, at the core region the standard k- model 

performs the best. Near the column top (Y* =0.75), 

at the core region the LS model shows the best 

prediction of experimental results. So, none of the 

low Reynolds number k- models tested are capable 

of predicting the local liquid velocity profiles in 

good agreement with experimental results over the 

hole domain. 

The analysis of the power spectra for different 

turbulence models shows a clear dominant peak at a 

frequency equal to 0.1 Hz for standard k- and LS, 

which is close to the value obtained by Besbes et al. 

2015. However, LS model shows a second peak at a 

frequency of 0.2 Hz. Thus, the detailed 

characteristics of gas-liquid flow are correctly 

reproduced by the standard K- and LS models. On 

the other hand, the oscillation amplitude of the 

bubble plume predicted from LS model seems to be 

qualitatively in good agreement with PIV  

(a) T = 245 s (b) T = 255 s  (c) T = 170 s (d) T = 180 s  
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(a) Mean flow at T = 492 s                                                  (b) Mean flow at T = 260 s 

Fig. 8. Close up of air-water interface: (a) Standard DIS-BIT; (b) LS DIS-BIT. 

 

 

measurements of Besbes et al. 2015. This may be 

related to a more realistic value of the eddy 

viscosity of liquid phase for LS model.  

Besides standard k- model, among the low-

Reynolds turbulence models examined, only the LS 

model can reproduce the oscillatory movement of 

the bubble plume, through an appropriately 

designed damping function. However, the 

comparison of the performance of the low-Reynolds 

turbulence models should be validated against more 

detailed turbulent parameter measurements such as 

Reynolds stress. Therefore, at this stage of 

comparison, limited to a liquid velocity profiles, we 

cannot say that the LS model is the only suitable 

model for such unsteady flows. This work will be 

pursued in future, if a larger number of detailed 

experimental measurements are available. 

The time averaged air-water interface predicted 

from standard K- and LS simulations shows that 

for LS model air bubble plume mix with the 

stratified water largely. Consequently, the bubble 

plume from LS simulations seems to be wider than 

that from standard K- simulations. However, more 

research should be done to study the phenomenon 

of enlargement and oscillations of the bubbles 

plume, which is very important in the mixing 

process in the column. Perhaps, study of the effect 

of turbulence kinetic energy source on the velocity 

fluctuations could emphasize the understanding of 

the behavior of the bubbles plume, and thus help in 

better prediction of the enlargement. 
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