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ABSTRACT 

The Buoyancy-driven flow of two immiscible liquids having varying density and viscosity is studied in a three-

dimensional inclined confined channel. Initially, the heavier/lighter liquids occupy the upper/lower parts of the 

channel, respectively, which is an unstable configuration. The numerical simulations are performed using a 

multiphase lattice Boltzmann method (LBM) that is further implemented on the graphics processing unit 

(GPU). The three-dimensional flow dynamics and the associated physics are studied based on various 

parameters such as viscosity ratios (m), Atwood numbers (At) and Reynolds numbers (Re). The results were 

presented in the form of iso-surface/contour plots, average density profiles, and lengths of interpenetration. It 

is observed that larger interpenetration occurs with iso-viscous liquids having higher density gradients (higher 

At). The Reynolds number had a non-monotonic effect on the axial lengths of interpenetration (Lp∗); Lp∗ 

increases till Re = 500 and then decreases for Re = 1000. At larger Re, due to the development of Kelvin-

Helmholtz instabilities higher transverse interpenetration is observed. 

Keywords: Buoyancy-driven flow; Length of interpenetration; Immiscible fluids; Kelvin-Helmholtz 

instabilities; Lattice Boltzmann method. 

 

 

1. INTRODUCTION 

Two fluids, heavier/lighter, situated in a confined 

channel interpenetrate into each other when 

subjected to gravitational constraint. Initially, the 

fluids were separated by an obstruction which then 

is suddenly removed allowing the fluids to mix. Such 

a flow is referred as buoyancy-driven/gravitydriven 

or lock-exchange flow Benjamin (1968), Wood 

(1970), Séon et al. (2004). The investigation of this 

kind of flow is useful in understanding the physics 

and dynamics in various fields of science such as 

ocean and atmospheric science modeling, 

geophysical flows (example, avalanches) as well as 

many chemical engineering unit operations and 

processes. Thus, this problem had attracted wide 

researchers to perform experimental as well as 

numerical studies over wide parametric conditions 

Debacq et al. (2001), Séon et al.(2004), Séon et al. 

(2005), Hallez and Magnaudet (2008), Birman et al. 

(2007) Redapangu et al. (2012a), Sahu and Vanka 

(2011), Redapangu and Sahu (2013). The present 

paper presents an investigation on the 

mixing/interpenetration characteristics of the 

buoyancy-driven flow of two immiscible liquids in a 

three-dimensional tilted channel. 

Most experiments carried out by various research 

groups to study the mixing characteristics in the 

lock-exchange flows were done by mainly 

considering miscible fluids of different densities 

Debacq et al. (2001), Fernandez et al. (2002), 

Debacq et al. (2003), Séon et al. (2004) , Séon et al. 

(2005), Séon et al. (2007a). Studies of Debacq et al. 

(2001) provided three regimes of flow behavior for 

a wide range of Atwood numbers. Experiments of 

Séon et al. (2004), Séon et al. (2005), Séon et al. 

(2006), Séon et al. (2007a), Séon et al. (2007b), also 

provided mixing characteristics and three flow 

regimes based on the tilt angle, θ, being measured 

with the vertical. 

The interpenetration of the two fluids was observed 

to be characterized by a diffusive process when the 

confined geometry is oriented closer towards 

vertical (θ < 65◦). In a tilted geomtery where the 

gravitational force has two non-zero components, 

the axial component induces mixing and the 

interface becomes unstable that gives rise to Kelvin-
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Helmholtz instabilities. The mixing also depends on 

the properties of the fluids, some flows involve low 

density ratios and some high density ratios. For a 

near horizontal pipe (θ > 85◦), the fluids move 

oppositely as Poiseulle flows, in which the front 

velocities and the mixing are resultant of the balance 

of buoyancy and wall friction. In the intermediate 

region, the front velocity of the flow was observed 

to be constant and depends on fluid viscosity. 

Constant front velocity in the intermediate range of 

tilt angles was also observed by Hallez and 

Magnaudet (2008) for various Atwood and Reynolds 

numbers. 

Computational studies related to the present topic of 

interest were also carried out by many investigators 

using various computational approaches. Birman et 

al. (2005), Birman et al. (2007) solved the Navier-

Stokes equations using spectral and finite difference 

methods by considering the fluids with high density 

contrast. Using finite volume method, Hallez and 

Magnaudet (2008), Hallez and Magnaudet (2009) 

studied the mixing characteristics based on various 

parameters. They also compared the mixing 

characteristics in various geometries involving two-

dimensional (2-D) and three-dimensional (3-D) 

flows. They stated that the flow and the behavior of 

instabilities are different in 2-D to that of 3-D flows. 

In a non-isothermal field, Wakale et al. (2015) 

solved Navier-Stokes equations to study the effects 

of Bond number, Marangoni number, Reynolds 

number, density ratio and viscosity ratio. The 

authors compared the flow dynamics and 

instabilities in isothermal and non-isothermal 

systems. Lee and Kim (2013) considered the 

buoyancy-driven flow of multiple immiscible fluids 

in a titled channel and investigated how the interface 

dynamics behave in such a configuration. 

A new and promising numerical approach for 

simulation of interfacial flows, the lattice Boltzmann 

method (LBM), has been developed and used by 

many researchers in wide areas of interests Succi et 

al. (1991), Shan and Chen (1993), Shan and Doolen 

(1995), Chen et al. (1996), Premnath and Abraham 

(2005), Fakhari and Rahimian (2009), Fakhari and 

Rahimian (2010), Chang and Alexander (2006), 

Redapangu et al. (2013), Redapangu et al. (2012b), 

Rahmati et al. (2014), Rahmati and Najjarnezami 

(2016), Li et al. (2020). With respect to the current 

field of investigation, Sahu and Vanka (2011) 

developed the multiphase LBM for simulating 

immiscible fluids based on the multiphase approach 

proposed by He et al. (1999a), He et al. (1999b), 

Zhang et al. (2000) and used it to study the 

buoyancy-driven flow of two immiscible fluids of 

same viscosities with wide density ratios. This LBM 

solver was validated with both finite volume Ding et 

al. (2007) and experimental results S é on et al. 

(2004). Major investigations carried in their work 

were on the change of front velocities with respect to 

Atwood number, Reynolds number, tilt angles and 

surface-tension. Based on this solver, Redapangu et 

al. (2012a) then investigated the problem further by 

considering the immiscible fluids of different 

viscosities and densities. The main investigations of 

this study were to find out the effects of viscosity 

gradients on flow structures and corresponding front 

velocities. Comparitive studies of 2-D and 3-D of 

these flows are performed by Redapangu and Sahu 

(2013) to find the similarities or the contrasts in the 

dynamics and behavior of instabilities in such flows. 

Their observations regarding 2-D and 3-D 

instabilities were found in good agreement with 

Oliveira and Meiburg (2011) who performed 

Navier-Stokes simulations to study miscible 

displacements in Hele-Shaw cells. 

As discussed above, most of the studies on 

buoyancy-driven flows are carried out on 2-D 

geometries. Therefore the present study focuses on 

the 3-D investigations of buoyancy-driven flow of 

two immiscible liquids using lattice Boltzmann 

method. The two immiscible liquids considered in 

this study are of varying viscosity and density. The 

present study is considerably different from our 

previous works, where 2-D simulations of the 

buoyancy-driven flows Redapangu et al. (2012a) 

and 3-D simulations of the displacement flows 

Redapangu and Sahu (2013) are studied using 

various parametric conditions. In displacement 

flows, the flow is a resultant of the induced pressure-

gradient at the inlet. In the present study, the main 

objective is to investigate the 

mixing/interpenetration dynamics of lock-exchange 

flow in a three-dimensional channel. The study is 

carried out based on mainly three parameters, the 

viscosity ratio (m), Atwood number (At), and 

Reynolds number (Re), while considering tilt angle 

(θ) to be constant. Three-dimensional simulations 

were performed to study and compare the dynamics 

for the no viscosity differential case (m = 1) and a 

moderately high viscosity differential case (m = 5), 

while varying the other parameters. Also as we use 

single-relaxation time (SRT) based LBM, we 

investigate the problem at low to moderate Reynolds 

numbers. However, to operate the simulations at 

very high Reynolds numbers, one can use multiple-

relaxation time (MRT) LBM which is more stable 

and accurate for high density ratios and high 

Reynolds nunbers Rahmati et al. (2014), Fakhari and 

Lee (2013). The findings are presented in the form 

of iso-surface/contour plots, axial/transverse 

variation of density and viscosity concentration and 

lengths of penetration. 

The present LBM solver is implemented on graphics 

processing unit (GPU) to enhance the computational 

performance of LBM solver. Many researchers have 

developed and reported the implementation of LBM 

on single as well as multi- GPUs Kuznik et al. 

(2010), Vanka et al. (2011), Obrecht et al. (2013). 

As the implementation of LBM on GPU is easier and 

effective, it has become more popular since the last 

decade. It is a powerful tool that can executive 

massive parallel computations. 

Thus the combination of this external hardware tool 

with the LBM solver produces dramatically high 

speed parallel simulations when compared to the 

CPU based LBM solver. In the present investigation, 

we perform GPU based LBM 3-D simulations to get 

a high computational speed up and a speed up of 25 

times has been achieved over the corresponding fully 

CPU based LBM solver. We direct the readers to 
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Redapangu and Sahu (2013) for a detailed report on 

implementation of GPU on LBM using Nvidia 

CUDA programing and speed-up comparisons. 

The rest of the following sections of the paper is 

organized as follows: A brief description of the 

present problem of consideration and the numerical 

method used are discussed in section 2. The results 

are presented and discussed in section 3. and section 

4. provides the conclusions remarks. 

2. PROBLEM FORMULATION 

To study the 3-D flow dynamics of buoyancy-

induced flow of two immiscible fluids, a three-

dimensional rectangular coordinate system (X, Y, Z) 

is considered that represents the 3-D confined 

channel, with dimensions, L (length), H (height) and 

W (width), respectively. Here the height, H and the 

width, W are considered to be the same, i.e., H = W 

and the aspect ratio is L/H = 32. The 3-D channel 

considered here is inclined at a fixed angle θ = 60◦, 

measured with the horizontal. The grid size 

considered is (1856 × 58 × 58) which is found to be 

an optimum grid size as evident from the discussions 

in section 3. of this paper. 

The initial configuration of the system is shown in 

Fig. 1, where the upper part is filled with the heavier 

liquid (‘1’) whose density and viscosity are ρ1 and 

µ1, respectively. The lower part is occupied by a 

lighter liquid (‘2’) with density and viscosity, ρ2 and 

µ2, respectively. The interface separating the liquids 

is initially at the mid-length (X=L/2). 

In this configuration, the flow behavior is due to the 

resultant of the inertial and the gravity forces. Here, 

as the geometry is inclined at an angle θ, the 

gravitational force vector has two non-zero 

components, gX (= gsinθ) and gY (= gcosθ) that act in 

the negative axial and negative transverse directions, 

respectively. The dimensionless model parameters 

mainly considered in this study are: 

1. Visocity ratio (m = µ1/µ2), that refers to the 

viscosity differential between the two liquids; 

2. Atwood number (At (≡ (ρ2−ρ1)/(ρ2+ρ1))), 

which represents the density differential; 

3. Reynolds number Re(≡VHρ1/µ1). 

Here, V is the characteristic velocity, 𝑉 =  √𝑔𝐻  =

 0.08 . The effect of these parameters are 

investigated and presented in section 3., for a fixed 

tilt angle of θ = 60◦. The other dimensionless 

parameters such as the Froude number (Fr) is 

defined as 𝐹𝑟 =  𝑉/ √𝐴𝑡𝑔𝐻. In this study, it is a 

function of Atwood number only. Thus the 

investigation on Froude number has not been 

separately carried out in this work. Also, the surface 

tension force have been considered to be negligible 

in the present study, hence, the dimensionless 

Capillary number is not studied. 

2.1 Numerical Method 

The present problem is studied numerically using a 

two-phase lattice Boltzmann method (LBM), similar 

to that proposed and developed by Zhang et al. 

(2000). The method is explicit and second order 

accurate. It uses discrete lattice on which the 

simulations are performed. The current formulation 

is developed using D3Q15 (three-dimensional-

fifteen velocity) lattice model (see Fig. 2). The 

evolution equations in the formulation contains two 

distribution functions (index distribution function 

(fα) and the pressure distribution function (gα)) 

which are used for tracking the interface and 

estimating the macroscopic properties of the fluids. 

( )

eq
α α

α α α

α
α2

s

f ( , t) f ( , t)
f ( δt, t δt) f ( , t)

τ

( ). ψ( )2τ 1
Γ δt

2τ c

−
+ + − = −

− − 
−

x x
x e x

e u
u

(1) 

eq
α α

α α α

α

g ( , t) g ( , t)
g ( δt, t δt) g ( , t)

τ

2τ 1
( ).

2τ

−
+ + − = − +

−
−

x x
x e x

e u

( )( ) ( ) ( )( ) ( )α s α αΓ F Γ Γ 0 ψ ρ δt + − − 
 

u G u       (2) 

 

 

 
Fig. 1. 3-D confined inclined channel showing 

the initial configuration of the fluids separated 

by the initial interface at X = L/2. 

 

 
Fig. 2. D3Q15 lattice model showing 15 lattice 

directions. 

 

Here x =(X,Y,Z) is the space vector, u =(u,v,w) 
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represents the three-dimensional velocity vector 

field; δt is the time step; , τ is the relaxation time, 

which is related to kinematic viscosity, ν as, 
2
sν (τ 1 / 2)δtc= −  , where.

2
sc 1 / 3=   

For each lattice direction (a), the functions (fa) and 

(ga) at each position of space (vector x) and time (t) 

are to be estimated. The readers are referred to our 

previous article Redapangu et al. (2013) for the 

lattice velocities and the weighing coefficients of the 

D3Q15 model. 

The Eqs. (1) and (2) are analogous to the 

macroscopic Navier-Stokes equations, continuity 

and volume fractions in the framework similar to the 

diffuse interface flow for interfacial flows. By 

Chapman-Enskog expansion Zhang et al. (2000), it 

can be shown that equations (1) and (2) are 

analogous to Eqs. (3), (4) and (5), as shown below. 

( ) ( ) ( ). τ . p ρ p
t ρ

 


 
+ = −   − 

 



u               (3) 

1 p
. 0

ρ t


+ =


u                                                       (4) 

( ) ( ) s

u
ρ . p . μ F

t

 
+  = − +  + +  

u u u G         (5) 

The function Γα(u), in Eqs. (1 and 2) relates the 

weighing coefficients, lattice velocities and the 

macroscopic velocities as: 

( )
( )

2 2
αα

α α 2 4 2
s s s

..
Γ t 1

c 2c 2c

 
 = + + −
 
 

e ue u u
u                  (6) 

The equilibrium distribution functions, 
eq
αf and 

eq
αg  

can be estimated as: 

( )
2 2

αeq α
α α 2 4 2

s s s

..
f t 1

c 2c 2c

 
 = + + −
 
 


e ue u u

 and           (7) 

( )
2 2

αeq 2 α
α α s 2 4 2

s s s

..
g t p ρc ,

c 2c 2c

  
  = + + −
  
   

e ue u u
          (8) 

The term ψ(  ) in Eq. (1) represents an equation that 

is responsible for phase segregation and incorporates 

intermolecular interactions for non-ideal gases or 

dense fluids. The Carnahan-Starling equation of 

state for ψ(  ), which describes non-ideal gases and 

fluids Carnahan and Starling (1969), Premnath and 

Abraham (2005) is given as: 

( )

2 3
2 2
s 3

1
ψ( ) c 1 a ,

1

 
+ + −

 = − −
 − 

  
  


                  (9) 

Here, the parameter a represents the strength of 

molecular interactions. For an optimum value of a > 

ac, (ac = 3.53374, the critical value of Carnahan-

Starling equation of state), the phase separation can 

be achieved. Therefore in the present study, a = 4 is 

chosen. The term ψ(ρ) in Eq. (2) is given by 
2
sp ρc−  

. The terms ∇ψ(  ) and ∇ψ(ρ) in Eq. (1) and Eq. (2), 

resepectively, are both descritzed using fourth-order 

compact scheme. 

The evolution equations incorporates two force 

terms (Eq. (2), Fs, the surface tension force and G, 

the gravitational force. These can be estimated as 

below: 

2
sF κ ,=    and ( )mρ ρ g,= −G                     (10) 

κ is a parameter that gives the magnitude of surface 

tension and ρm ≡ (ρ1+ρ2)/2. In the present study, only 

the gravitational forces are considered and the 

surface tension forces neglected. 

Using the estimated distribution functions, the index 

function (  ), pressure (p) and the velocity field (u) 

can then be determined as: 

αf , =                                                            (11) 

( )α

1
p g . ψ ρ δt,

2
= −  u                                    (12) 

( )
2

2 s
s α α s

c
ρ c g δt.

2
= + +u e F G                          (13) 

Now, the macroscopic properties, i.e., the density 

and the kinematic viscosity of the liquids at any in- 

stant can be estimated from the index function using 

the following equations: 

( ) ( )2
2 1 2

1 2

ρ ρ ρ ρ ,


−
= +




−

−


                             (14) 

( ) ( )2
2 1 2

1 2

ν ν ν ν ,


−
= +




−

−


                              (15) 

Here, ν1 and ν2 represents the kinematic viscosities 

of the respective liquids. 1  = 0.02381 and 2  = 

0.2508, which are the minimum and maximum 

values of the index function as shown by Zhang et 

al. (2000). 

2.2 Implementation of Boundary Conditions. 
Acccurate implementation of boundary conditions is 

the main important issue in LBM. While there are 

many proposals on the implementation of boundary 

conditions, in the present work, the hydrodynamic 

boundary conditions based on the ghost fluid 

approach Sahu and Vanka (2011) are applied to 

simulate the boundaries and the equilibrium 

distribution functions. Although the bounce back 

boundary condition can be applied directly for this 

geometry, it is to be noted that it is only first-order 

accurate. While improvements have also been 

available to make the bounce back boundary 

conditions more accurate, the author prefers to apply 

the hydrodynamic boundary conditions, the 

approach first proposed by Noble et al. (1995). With 

hydrodynamic boundary conditions, one could 

achieve 2-order accuracy while using the simple no-

slip conditions to find the missing particle 

distributions. In the present formulation, the most 
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straightforward hydrodynamic boundary conditions 

are implementated as proposed by He et al. (1999a), 

Guo et al. (2002). In this approach, streaming 

components are not used and all the distribution 

functions are first set to the equilibrium values, 

which can be obtained by using the velocities and 

densities at the walls. The non-equilibrium values 

are then extrapolated and added to get the 

instantaneous distribution functions. No-slip and no-

penetration conditions are applied for velocities, 

zero derivative boundary conditions are used for 

index-function, pressure and density calculation. 

Mathematically, these conditions can be written as 

below: 

Index function  : Zero-derivative boundary 

condition. The wall is placed between the lattice 

points. Here, the subscript ‘wall’ stands for the wall 

node for all X,Y,Z planes as shown in Fig.3. 

wall wall 1,=                                                     (16) 

 

 
Fig. 3. Grid near the wall. 

 
That means, for all the 3-spacial directions, 

 i 1,nx; j 1: ny; and k 1: nz;= = =for              

we can write as;  

1, j,k 2, j,k nx, j,k nx 1, j,k

i,1,k i,2,k i,ny,k i,ny 1,k

i, j,1 i, j,2 i, j,nz i, j,nz 1

;    ;

;    ;

;    ;

−

−

−

 =   = 

 =   = 

 =   = 

 

 where nx, ny and nz are number of lattice points in 

the X, Y and Z directions, respectively. 

Velocities: Velocities are mirror reflected to impose 

no slip and no penetration conditions. 

Mathematically, we can write as;  

wall 1 wall 1
wall

u u
u ;

2

+ −+
=                                        (17) 

wall 1 wall 1
wall

v v
v

2

+ −+
=                                         (18) 

wall 1 wall 1
wall

w w
w

2

+ −+
=                                      (19) 

uwall, vwall, wwall represents the respective velocity 

components at the walls. Here, uwall = vwall = wwall=0, 

Thus, for i = 1,nx;  j = 1,ny and k = 1,nz; we can write 

as; 

u1,j,k = −u2,j,k; unx,j,k = −unx−1,j,k; 

v1,j,k = −v2,j,k; vnx,j,k = −vnx−1,j,k; 

w1,j,k = −w2,j,k;wnx,j,k = −wnx−1,j,k 

Index distribution function (f): The non-

equilibrium values are extrapolated and added to get 

the instantaneous distribution functions. 

eq eq
wall wall wall 1f f f = +                                            (20) 

Thus, for i = 1,nx; j = 1,ny and k = 1,nz; we can 

write as; 

eq neq eq neq
1, j,k nx, j,k1, j,k 2, j,k nx, j,k nx 1, j,kf f f ; f f f ,−= + = +   

eq neq eq neq
i,1,k i,ny,ki,1,k i,2,k i,ny,k i,ny 1,kf f f ; f f f ,−= + = +   

eq neq eq neq
i, j,1 i, j,nzi, j,1 i, j,2 i, j,nz i, j,nz 1f f f ; f f f ,−= + = +   

Pressure and pressure function (g): Pressure is 

extrapolated with zero derivative boundary 

condition. Thus at walls, 

wall wall 1ρ ρ ,=                                                       (21) 

Thus, fori = 1,nx; j = 1,ny and k = 1,nz; we can write 

as; 

p1,j,k = p2,j,k; pnx,j,k = pnx−1,j,k, 

pi,1,k = pi,2,k; pi,ny,k = pi,ny−1,k, 

pi,j,1 = pi,j,2; pi,j,nz = pi,j,nz−1. 

 

The pressure calculated here is used to evaluate the 

equilibrium pressure distribution function ‘g’. 

Density and ψ: The density is evaluated from the 

value of  , which is extrapolated with zero 

derivative condition. ψ(≡ p−ρRT) is evaluated at all 

the lattice points including the boundary points using 

appropriate boundary values of p. 

The present LBM solver is further implemented on a 

graphics processing unit (GPU) to accelerate the 

computational efficiency. Performing simulations 

on GPU is very helpful mainly for three-dimensional 

simulations involving immiscible fluids as they 

demand high domains and thus are computationally 

highly expensive. With the implementation of LBM 

on GPU, a significantly considerable speedup has 

been achieved (25 times). For GPU implementation 

and speed-up comparisons, the readers are referred 

to our previous work Redapangu and Sahu (2013). 

All the 3-D simulations presented here were 

performed on the NVIDIA Tesla Kepler K10 

graphics card that features two Kepler GPUs each of 

8GB onboard memory. The present 2-phase LBM 

solver is validated and verified with the benchmark 

single phase 2D Rayleigh-Taylor problem which is 

more approriately related to the present 

investigation. Thus, we refer the readers to Sahu and 

Vanka (2011) for detailed validation of the LBM 

code. 

3. RESULTS AND DISCUSSION 

3.1 Grid Convergence Test: 

To check the grid convergence of the present GPU 
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based LBM code, different grid sizes are considered 

and the physical behavior of the fluid flow are 

compared with respect to each grid size. The grid 

points used in this study are (1600×50×50), (1856 × 

58 × 58) and (2112 × 66 × 66) in the (X, Y, Z) planes, 

respectively, with an aspect ratio L/H = 32. To show 

the grid independence, the spatio-temporal diagrams 

of
H

0
dY  in time versus X−plane are compared for 

different grid points as shown in Fig. 4. Rest of the 

common parameter values are At = 0.05, m = 1 and 

Re = 500. The spatio-temporal diagram of
H

0
dY  

in time versus X−plane contains two regions, red and 

blue, indicating the regions of the heavier liquid and 

the lighter liquid, respectively, that are separated by 

a sharp interface (green region). Qualitative 

comparison of Fig. 4(a), (b) and (c) shows that the 

three contour plots look identical; that means the 

flow behavior on each of the considered grids is 

identical. To estimate the grid convergence 

quantitatively, the average velocity of the upper 

heavier liquid (V1) and the bottom lighter liquid (V2) 

are measured as they move into the regions of one 

another. The slope of the dashed line represents the 

velocity of each of the liquids. These velocities are 

tabulated in Table 1 for the three grids considered. It 

can be seen that the values are in good agreement 

and are within a tolerance of less than 0.1 %. 

Therefore, it can be concluded that the grid 

convergence is achieved and the rest of the 

simulations are performed using (1856×58×58) grid, 

treating it as an optimum grid size. 

 

Fig. 4. Spatio-temporal diagram of
H

0
dY  in 

time versus X−plane for different grid points 

where (a) (1600 × 50 × 50),(b) (1856 × 58 × 58) 

and (c) (2112×66×66) for At =0.05, m=1 and 

Re=500. 

 

3.2   Effect of Parameters on flow Dynamics: 

The spatio-temporal evolution of the isosurface of 

the index function (  ) at the interface of the two  

Table 1 Velocities of the heavier liquid (V1) and 

the lighter liquid (V2) for different grid densities 

for the parameters same as those of Fig. 4 

Grid V1 V2 

1600×50×50 7.1715 7.6112 

1856×58×58 7.1709 7.6126 

2112×66×66 7.1704 7.614 

 

liquids is shown in Fig. 5 for the simulation domain of 

(1856×58×58) grid. The rest of the parameters are the 

same as those of Fig. 4. This set of parameters 

represents a situation of the lock-exchange flow of two 

iso-viscous liquids, wherein the upper liquid is heavier 

than the lower liquid. Here, the flow is the resultant of 

the gravitational and the inertial forces. Mainly, as the 

channel is tilted, the gravitational force contains two 

non-zero components; the axial component of gravity, 

gX(= gsinθ) and the transverse component of gravity, 

gY(= gcosθ), both acting in the negative X and Y 

directions, respectively. The axial component of 

gravity causes the downward motion of the heavier 

liquid, whereas the transverse component of gravity 

induces the segregation of the liquids. Therefore, as 

the time progresses, the upper heavier liquid because 

of the axial component of gravity moves downward 

into the region of the lighter liquid, while displacing it 

to move towards the upper region. Likewise, the two 

liquids try to interpenetrate into the regions of one 

another as seen in the Fig. 5. This movement makes 

the interface between the two liquids to become 

unstable leading to the formation of Kelvin-Helmholtz 

(KH) instabilities. The movement of the fingers and 

the formation of KH instabilities can be more clearly 

seen in Fig. 6, wherein the spatio-temporal evolution 

of the contours of the index function   in the X −Y 

plane of the three dimensional channel at Z = W/2 is 

presented for the same parameters as those of Fig. 5. 

As the time progresses, the two fluids penetrate into 

the regions of one another. The formation and the 

development of the KH instabilities can be seen at the 

earlier simulation times. However, these instabilities 

become weaker at later times and the flow seems to 

become more stabilized. 
 

Fig. 5. Evolution of the isosurface of   at the 

interface at different simulation times, t = 5, 10, 

20, 30, 40, and 50, respectively, from left to right. 

The parameters are At = 0.05, m = 1, and 

Re=500. 
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For the same parameters of Fig. 5, 2-D simulations 

are carried out and are compared with the   

contours obtained in X −Y plane of the 3-D channel 

as shown in Fig. 6. For the same set of parameters, 

the contours of index function obtained in 2-D 

counterpart are shown in Fig. 7. Similar comparison 

is presented in our previous work Redapangu and 

Sahu (2013). Upon comparison of Fig. 6 and Fig. 7, 

it can be observed that more small scale structures 

are clearly seen in two-dimensional simulation 

which are not evident in the 3D counterpart. 

Whereas, for the same parametric values, more 

stable mixing with different structure of instabilities 

is identified in 3D as evident from Fig. 6. Also, the 

instabilities appear more at the central portion of the 

3D channel and smooth long fingers are seen 

towards both the ends of the channel. We also 

observe that the three-dimensional instabilities are 

more coherent than that of the two-dimensional 

counterparts. Close inspection of the coutours in 

both 2D and 3D studies concludes that for the same 

set of parameters, more stable and long fingers can 

be achieved in 3-D which were proved in agreement 

with the findings of Hallez and Magnaudet (2008), 

Oliveira and Meiburg (2011). Thus, it is necessary to 

investigate three-dimensional simulations for new 

insights as different structural behavior is observed. 

Therefore, in the sections below, we present the 

effect of different parameters on flow dynamics in 

the 3D channel. 

 

Fig. 6. Spatio-temporal evolution of the contours 

of the index function   at different times in the 

X − Y plane at Z =W/2 for the parameters same 

as that of Fig. 5. The panel shown below are the 

velocity vector directions. 

 

To study the effect of viscosity ratio on flow 

dynamics in 3D channel, two cases are considered, 

m = 1 and m = 5. m = 1 represents the situation of 

iso-viscous fluids penetrating into the regions of one 

another. Whereas m = 5, indicates the situation 

where upper fluid is more viscous than the lower 

fluid. That means more viscous fluid penetrates into 

the region of less viscous fluid. Figure 8 shows the 

the contours of   in the X −Y plane for m = 5, rest of 

the parameters being the same as that of Fig. 6. The 

velocity vector directions are also shown in the panel 

below the contours. Comparison of Fig. 6 and Fig. 8 

reveals that the interpenetration of the heavier and 

lighter fluids is slow when a higher viscosity 

differential exists between the fluids. That means the 

front velocities are lower for higher viscosity ratios. 

Further, the KH instabilities becomes weaker as the 

viscosity ratio increases as seen in Fig. 8 that more 

stable fingers are observed for m = 5. But by 

intuition, it can be expected that as the viscosity ratio 

increases, the instabilities increases and hence, the 

interpenetration increases. However, this is true only 

for m < 1, which represents the case of less viscous 

upper fluid penetrates into the more viscous lower 

fluid. This situation is an unstable configuration that 

leads to the formation of viscous instabilities more 

commonly known as viscous fingering Homsy 

(1987), Sahu et al. (2009). In such a situation, the 

formation of instabilities enhances the axial velocity 

of the two fluids and hence the interpenetration. But 

the situation considered here (m = 5) is 

fundamentally opposite to this, i.e; m > 1, where 

more viscous fluid penetrates into the region of less 

viscous fluid. This is a stable configuration. In such 

a case, the flow becomes more stable with increase 

in viscosity ratio, hence the interpenetration is 

slower. The same effect had been observed in case 

of 2-D simulations of lock-exchange flow of 

immiscible fluids carried out by Redapangu et al. 

(2012a). 

 

Fig. 7. Spatio-temporal evolution of the contours 

of the index function   obtained in the two-

dimensional simulation for the same parameters 

as that of Fig. 6. 

 

To see the effect of Atwood number on flow 

dynamics, the spatio-temporal evolution of the con-

tours of the index function   in the X −Y plane along 

with the velocity vectors are plotted for two different 

Atwood numbers. Figure 9 and Fig. 8 shows this for 

At = 0.01 and At = 0.05, respectively for m = 5 and 

Re = 500. It can be clearly observed from Fig. 9 and 

Fig. 8 that when the Atwood number is increased 
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from 0.01 to 0.05, the front velocities of the fingers 

increased because of the increase in the density 

contrast. Close inspection of Fig. 9 and Fig. 8 also 

reveals that the KH instabilities increases as the 

Atwood number increases. This effect is also true in 

2-D simulations of the same problem Sahu and 

Vanka (2011). 

 

Fig. 8. Spatio-temporal evolution of the contours 

of the index function   along with the velocity 

vectors at different times in the X −Y plane at 

Z=W/2 for the parameters same as that of Fig. 5 

but for m = 5. 

 
 

Fig. 9. Spatio-temporal evolution of the contours 

of the index function   along with the velocity 

vectors at different times in the X −Y plane at Z 

=W/2 for the parameters same as that of Fig.8 

but for At = 0.01. 

Next, we present the axial and the transverse variation 

of average density concentration across the channel 

for different parameters. The density concentration 

can be defined as C ≡ (ρ − ρ2)/(ρ1 − ρ2). Figure 10 

shows the evolution of the axial variation of depth-

averaged concentration, 
W H

YZ
0 0

1
C CdYdZ

HW
=  

and the transverse variation axially-averaged 

concentration, 
W L

XZ
0 0

1
C CdXdZ

LW
=   for two 

different viscosity ratios (m). The other common 

parameters are At = 0.05 and Re = 500. Figure 10((a), 

(b)) corresponds to m = 1 and Fig. 10 ((c), (d)) 

corresponds to m = 5. The comparison of Fig. 10 (a), 

(c) which shows the variation of YZC along the axial 

direction for m = 1 and m = 5, respectively, reveals 

that the YZC  profiles become more complex when a 

high viscosity gradient exists between the liquids. 

This complexity indicates the appearance of 

instabilities which are seen for iso-viscous liquids 

only at the initial times. In the studies of Redapangu 

et al. (2012a), the axial variation of depth-averaged 

concentration was observed to be more complex in 2-

D simulations. Figure 10 (a), (c) also reveals that the 

interpenetration of fingers in the axial direction is 

more strong for m = 1 than that for m = 5. However, 

XZC profiles are more coherent and slightly 

asymmetric due to the segregation effect of the 

transverse gravitational component. 

Figure 10 is compared to Fig. 11 where a smaller 

Atwood number is used (At = 0.01), the rest of the 

parameters being the same. YZC profiles reveal that 

for a smaller Atwood number, the axial 

interpenetration is lesser than that for both m = 1 (Fig. 

11 (a)) and m = 5 (Fig. 11 (c)) when compared to Fig. 

10 (a), (c). Also the small scale structures which are 

found to develop at earlier time levels are found to 

decrease as the At decreases. Hence this is also in 

agreement with the observations in Fig. 9 and Fig. 8 

that with the decrease in Atwood number the intensity 

of instabilities decreases and also the axial 

interpenetration decreases. Also, Fig. 11 (a),(b) are 

comparable with Fig.16 (c,d) of Sahu and Vanka 

(2011). This comparison also reveals that the intensity 

of instabilities is high in 2-D flows than that of 3-D 

flows. This is because, the 2D currents create more 

coherent vortices and are stronger than their 3D 

counterparts. These coherent Kelvin-Helmholtz 

vortices become highly intense and live longer in 2D 

flows. While in 3D flows, the geometrical 

confinement created by the azhimuthal walls 

stabilizes the disturbances of smaller wavelenghts, 

thereby breaking the 2D coherent structures. Thus, the 

3D instabilities are less intense and enable larger front 

velocities than 2D vortices as observed previously by 

many reasearchers Hallez and Magnaudet (2008), 

Oliveira and Meiburg (2011), Redapangu and Sahu 

(2013), Redapangu et al. (2013). 

3.3 Effect of Parameters on Mixing 

Characteristics: 

The interpenetration and the mixing characteristics  
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Fig. 10. Evolution of the axial variation of depthaveraged concentration ( YZC ) and the transverse 

variation axially-averaged concentration ( XZC ) for m = 1 ((a), (b)) and m=5 ((c), (d)), respectively. The 

other parameters are At = 0.05 and Re = 500. 

 

 

Fig. 11. Evolution of the axial variation of depth-averaged concentration ( YZC ) and the transverse 

variation axially-averaged concentration ( XZC ) for m = 1 ((a), (b)) and m=5 ((c), (d)), respectively. The 

other parameters are At = 0.01 and Re=500. 

 

 

of the liquids in lock-exchange situation is then 

investigated. For this, the temporal variation of the 

location of fingers in the region above the initial 

interface (Xlocl ) and the region below the initial 

interface (Xloch) is plotted (Fig. 12) for different 

viscosity ratios (m) and Atwood numbers (At) for Re 

= 500. Here, Xlocl refers to the location of the lighter 

liquid which moves towards the upper region above 
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the initial interface. Likewise, Xloch refers to the 

location of the heavier liquid which moves towards 

the lower region below the initial interface. (Xloch) 

and (Xlocl ) are both non-dimensional lengths which 

are non-dimensionalized with the height of the 

channel (H). It is clearly observed from Fig. 12 that 

higher interpenetration occurs for lower viscosity 

ratio and higher Atwood number. Also, it can be seen 

that the location of fingers in the upper and the lower 

regions are closely symmetric at all the simulation 

times. 

Next, the length of the fingers that interpenetrate into 

each of the regions are measured. It can be called as 

the length of penetration (Lp∗), a dimensionless 

quantity wherein (Lp∗ = Lp/L). Lp refers to the total 

length of the penetration of the fingers of the heavier 

and the lighter fluid as shown in the Fig. 13 (b) and 

L is the length of the channel. The measurement of 

(Lp∗) considers only axial penetration, the 

penetration in the transverse direction are not taken 

into consideration. Figure 13 (a) shows the variation 

of the length of penetration (Lp∗) for different 

viscosity ratios (m) and Atwood numbers (At). For 

all the parametric combinations considered here, the 

variation is found to be linear. The faster finger 

penetration is found for m = 1 and At = 0.05. That 

means when the liquids are of iso-viscous and when 

the heavier liquid is much heavier than the lighter 

liquid, the interpenetration occurs more rigorously. 

For the same Atwood number, if the heavier liquid 

is more viscous than the lighter liquid, it can be seen 

that the length of penetration is slightly lesser than 

that obtained for iso-viscous case. 

 

Fig. 12. Temporal variation of the location of the 

fingers in the region above the initial interface 

(Xlocl ) and region below the initial interface 

(Xloch) for different viscosity ratios (m) and 

Atwood numbers (At) for Re = 500. 

 

Lastly, to study how Reynolds number effects the 

length of penetration, consider the case of m = 1 and 

At = 0.05, for which higher length of penetration is 

achieved as evident from Fig. 13(a) and test the 

behavior with different Reynolds numbers. Figure 

14 shows this for Re = 100, 500 and 1000. It is 

observed that at all the time levels, higher Lp∗ is 

achieved for Re = 500 and there is a slight decrease 

in Lp∗ for Re = 1000. That means the axial 

interpenetration of two fluids increases till Re = 500 

and then decreases, indicating a non-monotonic 

variation for this set of parameters. The non-

monotonic effect of Re on the front velocity had also 

been observed earlier by Sahu and Vanka (2011) at 

a higher At. To see the transverse interpenetration, 

the contours of the index function   in the Y − Z 

plane at the mid-length of the geometry (X = L/2) are 

shown in Fig. 15 for Re = 500 and 1000 at various 

simulation times. It is evident that at all the time 

levels, mixing in the transverse direction is more 

vigorous for Re = 1000 than that for Re = 500. Thus 

for this set of parameters as the Reynolds number 

increases, mixing in the axial direction decreases, 

whereas the transverse interpenetration increases. 

The reason for this behavior is that at higher 

Reynolds number, due to the development of 

Kelvin-Helmholtz instabilities more complex flow 

structures appear that lead to higher transverse 

interpenetration. This behavior was also observed by 

Sahu and Vanka (2011) for 2-D buoyancy flows who 

depicted the reason for this behavior as “increasing 

the value of Reynolds number from Re =300 to 1500, 

leads to the rapid development of Kelvin-Helmholtz 

instabilities which in turn lead to complex dynamics 

and intricate flow patterns. These KH type 

instabilities accompanying the flow promote a 

significant level of transverse interpenetration”. 

This is also evident from Fig. 16 that more complex 

structures in ( YZC ) profiles are seen for Re=1000 

than that for Re=500 at all the simulation times 

showed. These complex structures indicate the 

development of Kelvin-Helmholtz instabilities 

leading to ‘higher transverse interpenetration’ which 

can be referred to as ‘rapid mixing’ in the transverse 

direction. 

 

 
(a) 

 

 
(b) 

Fig. 13. (a) The variation of the length of 

penetration (Lp∗) for different viscosity ratios 

(m) and Atwood numbers (At) for Re = 500, (b) 

contour showing the measurement of Lp∗. 
 

4. CONCLUSIONS 

Three-dimensional lattice Boltzmann simulations 
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were performed to study the buoyancy-driven flow 

of two immiscible liquids of varying density and 

viscosity. The implementation of LB solver on 

graphics processing unit is found to be very 

promising and useful mainly for immiscible 3-D 

simulations as they require high computational 

domains. The present study is mainly focused on 

studying the flow and the mixing characteristics 

obtained in a three-dimensional confined inclined 

channel. Mainly the effects of viscosity ratio (m), 

Atwood number (At) and Reynolds number (Re), on 

the density profiles and lengths of interpenetration 

had been presented. The three-dimensional 

characteristics are found to be different to that of 

two-dimensional flows. Reynolds number had a non-

monotonic effect on the axial length of penetration 

(Lp∗). Larger axial interpenetration lengths are 

observed for iso-viscous liquids with higher density 

gradient for an optimum value of Re = 500. An 

increase in Reynolds increased the intensity of KH 

instabilities and thus higher transverse 

interpenetration is observed for Re = 1000. 

 

 
Fig. 14. Temporal variation of the length of 

penetration (Lp∗) for different Reynolds 

numbers for m = 1 and At = 0.05. 

 

 

 

 
Fig. 15. Contours of the index function φ in the Y 

−Z plane at X = L/2 for m = 1 and At = 0.05. (a), 

(b) and (c) in the panel correspond to times t = 

10,30 and 50, respectively. 

 

 
(a) 

 

 
(b) 

Fig. 16. Evolution of the axial variation of depth-

averaged concentration ( YZC ) for different 

Reynolds number (Re) at simulation times (a) t = 

30 and (b) t = 50. The other parameters are m = 

1 and At = 0.05. 
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