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ABSTRACT 

Feedback control is applied to the problem of a viscoelastic Jeffreys fluid layer heated from below to investigate 

conditions for delay of the onset of convection. Interesting results for fixed Prandtl number 1 and 10 were found 

showing that for some conditions proportional control may not work as expected. Also, some limits of the 

feedback control in terms of the parameters of the system through an analytical approach by mean of the 

Galerkin method are discussed. In order to complete the study a numerical analysis was also performed to map 

the space of physical parameters. The results of this work are discussed and compared with results of previous 

authors while attention to small control adjustments is paid. 

Keywords: Feedback control; Hydrodynamic stability; Rayleigh convection. 

NOMENCLATURE 

E  dimensionless retardation time  

F  dimensionless relaxation time  

g  acceleration due to gravity  

H  fluid layer depth  

k  perturbation wavenumber 

x,yk  x,y  wavenumber projection  

K  controller gain  

Pr  Prandtl number  

Ra  Rayleigh number  

*ΔT  temperature difference across the 

fluid layer 

T  dimensionless temperature 
*
BT  bottom wall temperature  

*
TT  top wall temperature 

u  dimensionless fluid velocity 

W  vertical velocity perturbation  

 
β  thermal expansion coefficient  

γ  controller gain   

Θ  temperature perturbation  

κ  thermal diffusivity  

λ  stress relaxation time  

ν  fluid kinematic viscosity 

μ  fluid dynamic viscosity  

σ  complex parameter 

Rσ  perturbations growth rate 

ω  frequency of oscillation 

 
 

1. INTRODUCTION 

The problem of hydrodynamic instability in 

viscoelastic fluid layers heated from below, which 

have been investigated since several decades ago, is 

considered here in the light of a feedback control 

strategy suggested by the work of Tang and Bau 

(1993a) and Tang and Bau (1993b) for prevention 

of convective motions in newtonian fluids. 

However, convection in viscoelastic Jeffreys fluid 

layers sets in as oscillatory motions questioning if 

proportional control would also stabilize the fluid as 

in the newtonian case. At the same time further 

coupling of parameters of the system under this 

feedback control strategy are expected, raising other 

questions on the physics of the problem and 

limitations of this approach to control of convection. 

The present manuscript is devoted to study the 
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effect of a feedback proportional control strategy 

on the problem of Rayleigh convection in 

viscoelastic Jeffreys and Maxwell fluids. Previous 

works gave an interesting perspective for the 

present study since not only different 

hydrodynamical problems have been considered 

but mechanisms for control as well. To the best 

knowledge of the authors two early reports 

introducing theoretical pr
2T Tu+  =  oposals 

for feedback control of thermal convection are due 

to Singer et al. (1991) and to Singer and Bau 

(1991), who also performed an experimental study, 

shown to be effective and trigger further studies. 

Wang et al. (1992) also studied theoretically and 

experimentally the feedback control on thermal 

convection and state that this strategy may induce 

chaotic motion in time dependent convection 

which is important in the light of the results 

presented in this manuscript. Next, in a series of 

papers by Tang and Bau (1993b), by Tang and Bau 

(1994), by Tang and Bau (1995) and by Tang and 

Bau (1998) the stabilization of a newtonian fluid 

layer heated from below is achieved with a 

feedback control strategy based on the thermal 

boundary condition at the bottom wall and on 

temperature measurements in the fluid layer. The 

stabilization of Rayleigh convection in a saturated 

porous media, subject to feedback control based on 

direct temperature measurements, was numerically 

studied by Tang and Bau (1993a) who found that 

for certain situations proportional control fails. 

Also, Howle (1997a) and Howle (1997b) 

introduced the idea of real time temperature 

measurements, through the shadowgraph 

technique, to the proportional feedback control 

loop which proof to be successful in the case of 

Rayleigh convection too. 

On the other hand, applications based on pattern 

formation in polymeric liquids (see the works of 

Mitov and Kumacheva (1998) and Li et al. (2000), 

por example) may be related to studies mentioned 

above and, to some extent, to the nonlinear, 

hydrodynamic stability analysis in layers of 

newtonian fluids, reported by Shortis and Hall 

(1996). In their work Shortis and Hall (1996) found 

that linear and nonlinear controllers may delay the 

onset of convection and hexagonal patterns are 

sustained for certain control conditions. The 

conclusions of Shortis and Hall (1996) suggest that 

attention to the problem convection in viscoelastic 

fluids could be useful for applications, as the ones 

mentioned previously. Thus, it is reasonable to think 

that application of proportional feedback control to 

delay the onset of convection in viscoelastic Jeffreys 

fluid layers are relevant. 

Then, in order to investigate how the critical 

Rayleigh number, wavenumber and frequency of 

oscillation are affected by the proportional control, 

analytical and numerical calculations shall be 

performed by the known Galerkin technique 

(Finlayson 1972). Since oscillations in the fluid are 

expected it would of interest to investigate the 

relationship between the parameters of the system 

and that of the controller. 

The manuscript is organized as follows. Section 2. 

is devoted to the formulation of the problem and 

statement of feedback control strategy is presented. 

Analytical and numerical calculations are presented 

in the Linear Stability Analysis section 3. Results 

and discussion on the findings are shown in section 

4. Finally, conclusions are exposed in section 5. 

2. MATHEMATICAL FORMULATION 

Here, effect of proportional control on the 

hydrodynamic stability of a viscoelastic Jeffreys 

fluid layer, of infinite horizontal extent, uniformly 

heated from below and cooled from above is 

considered. As the viscoelastic fluid is heated the 

onset of convective motions is expected, across the 

layer depth H , so that the proportional feedback 

control strategy used by Tang and Bau (1993a) can 

be used. The governing equations are those for mass 

conservation, for momentum balance, for heat 

conduction and the constitutive equation for the 

viscoelastic Jeffreys fluid. After some 

simplifications these model equations can be written 

in dimensionless form as 

1
1

2
2

L Pr P RaT
t

L

u
u u k

u

−  
+  +  −  

  

= 

                    (1) 

2T
T T

t
u


+  = 


                                                (2) 

where 1L and 2L are linear operators defined as 

1L 1 F
t


= +


                                                          (3) 

2L 1 EF
t


= +


                                                        (4) 

and
* 3Ra gβΔT H / νκ= , Pr ν / κ= , 2

1F λ κ / H=

and 2 1E λ / λ= .Notice that the constitutive equation 

for the viscoelastic Jeffreys fluid is already being 

coupled to the momentum balance Eq. (1). For the 

uncontrolled hydrodynamic problem the governing 

Eqs. (1-2) were subjected to boundary conditions 

corresponding to rigid solid walls and perfect 

thermal conducting walls 

1
0, z T

2
u at= =                                                         (5) 

1
T 0, z

2
at= =                                               (6) 

However, as a proportional control strategy shall be 

implemented for suppression of the onset of 

convection a modification to the thermal boundary 

condition Eq. (6) at the bottom is considered. The 

thermal boundary at the bottom is then rewritten as 

( )c 0

1
T F T , z

2
at= = −                                               (7) 

where cF  is a function defining the controllers 
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response depending on the temperature measured in 

the middle of the layer, 0=z . In view of the good 

results obtained by Tang and Bau (1993a), by Tang 

and Bau (1994) and by Tang and Bau (1995), for the 

stabilization of the fluid in the case of Rayleigh 

convection, the same idea is embraced here but with 

little observations from the physical point of view. 

For the present study attention to the effect of small 

feedback corrections via the controller is given. The 

idea of small adjustments comes from the fact that 

perturbations to the fluid are small to, and this shall 

be discussed later. Thus, for the case of proportional 

control Eq.(7) is expressed as 

0

1
T KT , z

2
at= − = −                                        (8) 

where ( )0 0= =T T z  and K  is interpreted as the 

response of the controller to a deviation from a 

desired temperature value at 0=z  and known as 

the proportional control gain. This is the main idea 

behind the applied control approach. 

3. LINEAR STABILITY ANALYSIS 

The hydrodynamic stability of the fluid layer shall 

be subjected to a theoretical feedback control loop 

in order to avoid the onset of convective motions. In 

other words, the basic state of the system is 

subjected to perturbations that may lead to thermal 

convection but proportional control is introduced as 

a counterweight to the effect of perturbations in the 

system. Therefore, what follows is the perturbation 

of the governing Eqs. (1-2) according to 

1u u= ò                                                                     (9) 

0 1T T T= + ò                                                         (10) 

H 1P P P= + ò                                                          (11) 

where 0T  and HP  account for the basic state 

already included in the governing Eqs. (1-2) and the 

subscript 0 indicates the perturbation variables. 

Next, substitution of Eqs. (11) into system of Eqs. 

(1-2) produce the perturbed governing equations 

whose stability shall be studied. On the other hand, 

pressure still coupled to fluid velocity and 

temperature, which can be split after operating twice 

  on the perturbed momentum balance equation. 

The resulting perturbed governing equations are 

2
1 4 21

1 2 1 1 1

w
L Pr L w RaL T

t
 

− 
=  + 


             (12) 

21
1 1

T
w T

t


− = 


                                                    (13) 

where Eq. (12) is the momentum vertical component 

since this is independent from the horizontal ones. 

Notice, that subscript 1 in Eqs. (12-13) comes from 

the linear perturbation given in Eq. (11). 

Furthermore, periodic patters are expected as 

convective motions set in across the fluid layer, 

either as steady or oscillatory motions. Then, it is 

reasonable to seek for solutions in terms of normal 

modes as follow 

( ) ( )

( ) ( )

1 x y

1 x y

w W z exp i k x k y σt

T θ z exp i k x k y σt

 = + +
 

 = + +
 

                    (14) 

which allows the model for the hydrodynamic 

stability, Eqs. (12-13), is then reduced to the 

following ordinary differential equation system 

( ) ( )

( )( )

1 2 2 2

2
2 2

1 Fσ Pr σ D k W Rak

1 EFσ D k W

− + − +
  

= + −

                   (15) 

( )2 2σ D k θ W − − =
  

                                         (16) 

subject to the following, mechanical and thermal, 

boundary conditions 

1
W 0 z

2
at= =                                                  (16) 

0

1
θ KT z

2
at= − =                                              (17) 

For the above equations and through the manuscript

D d / dz= . In the following subsections, the 

Galerkin technique (Finlayson 1972) shall be used 

to treat the eigenvalue problem for the Rayleigh 

number $Ra$ presented by Eqs. (15-17). This is a 

convenient tool for the present type of problem 

allowing to critical conditions for the onset of 

convection without solving the differential 

equations. 

3.1   Analytical Approach 

In this section a Galerkin low order approximation 

is developed to investigate the relationship among 

the physical parameters of the system and the gain 

of the controller K. Besides, these analytical 

investigation may help to find limitations of the 

feedback control strategy for the problem in hand. 

Then, the following trial functions satisfying the 

boundary conditions Eqs. (17) are chosen 

 ( ) ( )
2 2

n 1W A 2z 1 2z 1= − − +                         (18) 

( )
2

n 1

Kz 1
θ B z

2 K 2

 +
= − + 

+  

                                (19) 

Next, after substitution of Eqs. (19) into the 

perturbed governing Eqs. (15-16) the residual is 

formed by multiplying each governing equation by 

its corresponding trial function and integrating 

across the fluid layer. In this way, a solvability 

condition, from which Ra is obtained, can be 

formed. This is 

( ) ( )
( ) ( )

m 3 n m 4 n

m n m 5 n

W ,L W W ,L θ
0

θ ,W θ ,L θ
=                             (20) 

where the linear operators 1L , 2L  and 3L  are 

defined as
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( ) ( )

( )( )
( )

( )

1 2 2
3

2
2 2

2
4

2 2
5

L 1 Fσ Pr σ D k

1 EFσ D k

L 1 Fσ Rak

L D k σ

−= + −

− + −

= +

= − −

                             (21) 

and (, )  indicates integrals across the fluid layer. A 

first approximation with 1= =n m  produce an 

analytical expression for Pr , F , E , σ , Ra , k  

and K  that is not accurate but keeps the tendency 

of the curves of criticality for the fluid layer 

hydrodynamics. From the point of view of the 

authors, these relationships are of interest for deeper 

understanding of the effect of K and its limitation 

on the stabilization of the layer. Since oscillatory 

convection is the instability mechanism for 

viscoelastic Jeffreys fluid layers heated from below 

the frequency of oscillation ω is introduced through

Rσ σ iω= + . 

At the first approximation the determinant in Eq. 

(20) outputs a linear complex expression for Ra , so 

that this parameter can be easily isolated. On the 

other hand, since Ra  is real the frequency of 

oscillation is such that Im (Ra) vanishes. In order to 

investigate the effect of the controller gain K  on 

the hydrodynamics of the fluid a brief asymptotic 

analysis for K 1  shall be considered. A physical 

explanation for this decision comes from the fact 

that small perturbations would require small K

corrections too. Thus, Ra and   can be expanded 

as 

( )

( )

2
0 1

2
0 1

Ra Ra Ra K K

ω ω ω K K , K 1for

= + +

= + + 

O

O

               (22) 

For expansions Eqs. (22) it was confirmed that 

0Ra  and 0  are in agreement with results reported 

by Takashima (1972) and by Sokolov and Tanner 

(1972) when 0=K , as expected. For example, for 

viscoelastic Jeffreys fluids with 

( ) ( ), , 1,0.1,0.1=Pr F E  it was found that 

( ) ( )0 0, , 1219.3,4.36,10.93=c c cRa k   which gives 

a maximum error 2.55\%, 0.68\% and 1.05\%, 

correspondingly for each parameter, in comparison 

with the results of Takashima (1972). 

 

( ) ( ) ( ) ( )

( )

2 2 2 2 2
1 0 2 1 3 0 1 2 3 0 3

1 2
2 2 2

0

EFf 1 f EPr 2Ff 1 f E k 70 f f Pr Ff 1 f f f EFPr f
7

Ra
81

EPr 1 f 2k 384 F k Pr

  + + + + + + + +
   =

 + − −
 

                     (23) 

( ) ( )( )

( ) ( )( )

4 2 2 4 2

2
1 2

2 4 2 2 2

5 k 24k 504 EFPr k 12 E 1 k 24k 504 Pr

ω

F k 24k 504 EPr k 10 k 12

 + + + + − + +
  = −

 + + + + +
  

                                                  (24) 

 

For this approximation neither 1Ra  nor 1 , shown 

in Eqs. (23-24), are independent of any of the 

properties of the fluid meaning that the gain control 

influence the whole system. 1Ra  contribution is 

given in Eq. (23) where the frequency of oscillation 

have already been introduced. At this point, some 

features of 1Ra  and 1  to understand the role of 

K  are of interest. The Prandtl number Pr and the 

wavenumber k  seem to be the parameters through 

which the control gain works due to the powers and 

change in sign of the factors these are involved in. 

Where 

4 2
0

2
1

2
2

2
3

f k 24k 504

f k 50

f k 10

f 6k 12

= + +

= −

= +

= +

                                      (25) 

Since the Prandtl number may have an important role 

on the feedback control strategy, a short calculation 

was made and for 1Ra  small controller gain 

corrections ( )K 1 are magnified in fluids with

Pr 1 . For this case the Rayleigh number 1Ra can 

be approximated, for K,Pr 1 , as 

2 3
1 2 3

1 2 2 2
0

f F 1 f f7
Ra

81 f PrF k

+  
 − +                                   (26) 

It is noticeable that in this limit, 1Ra  does not 

depend on the dimensionless retardation time E  

possibly due to a large thermal diffusivity. A further 

calculation of the corresponding critical 

wavenumber gives 

2
c

1
k 19

2F
= −                                                        (27) 

which is valid only for non zero viscoelastic effects. 

Another physical limitation for Eq. (27) is that ck  

must be positive so that the relaxation time F can 

not be too small. Furthermore, it can be seen that 

the size of ck may determine the assessment or not 

of the controller gain to the stabilization of the fluid 

due to the change of sign possibility in 1f  (see Eq. 
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25). 

In the limit of fluids with Pr 1 small controller 

gains corrections ( )K 1  seem to have little effect 

on the Rayleigh number 1Ra which is reduced to 

1 0
1 2

f EF 1 f7
Ra

81 Fk

+   − +                                  (28) 

However, in this limit the retardation time E
contributes as a fluid stabilization factor and also 

sign changes may occur for certain values of ck . For 

this case, the critical wavenumber ck  can also be 

easily found to be 

( )2
c

4 691EF 31 EF 126EF 1
k

3EF 3EF

− +−
=                (29) 

Notice that Eqs. (28-29) may hold only for non zero 

viscoelastic effects since non physical results could 

be obtained. In this case, the role of viscoelasticity is 

more important since it defines the critical 

wavenumber and later if the control gain correction 

assists or not the stabilization of the fluid. A common 

found behavior is the stabilization benefits of the 

proportional control strategy for the system although 

there are certain limits due to the viscoelasticity or to 

the viscoelastic fluid model itself, perhaps. 

3.2   Numerical Computations 

The intricate relationship among the parameters of 

the problem justifies a more general view of the onset 

of convection. A more accurate investigation of the 

role played by the proportional control strategy is 

now performed through a numerical analysis based 

on a variation of the Galerkin method previously 

used. Since governing Eq. (15) can be solved for 

temperature once $W$ is known then the eigenvalue 

problem can be approached with very good 

convergence at a low order approximation. Thus, 

with W given by expansion Eq. (19) and the 

temperature being determined from Eq. (15) subject 

to the thermal boundary conditions Eqs. (17) a new 

solvability condition can be obtained after making 

orthogonal the velocity equation to its corresponding 

trial function. This condition is 

( ) ( )m 3 n m 4 nW ,L W W ,L θ 0+ =                               (30) 

The process followed, starting in Eq. (30), to 

compute the critical conditions at which convection 

sets in is very similar to that in subsection 3.1. For 

the present investigation it has been considered that 

small corrections through the gain of proportional 

control strategy are sufficient to make the fluid layer 

more stable or delay the onset of convection. As 

previously stated in the analytical investigation, the 

small perturbations introduced earlier may not need 

large responses to stabilize the system. Then, the 

proportional controller gain shall be mapped from 0, 

for the uncontrolled problem, to 1. 

For the numerical computations the viscoelastic fluid 

properties were fixed to F 0.1,1,10= and 

E 0.05,0.1= while the Prandtl number to Pr 1,10=

to map the space of parameters involved. For these 

choices of properties a set of curves of criticality for 

the Rayleigh number, wavenumber and frequency of 

oscillation are to be calculated. All numerical results 

presented in the manuscript were obtained from the 

solvability condition Eq. (30) at third order of 

approximation. 

3.2.1   Numerical Validation 

Checks on numerical calculations were made for the 

case of classical Rayleigh convection, for Newtonian 

fluids, based on the results of Chandrasekhar (1981) 

and of Tang and Bau (1993a). For this case, when 

0=K  the critical conditions obtained 

( ) ( ), 1707.76,3.13=c cRa k , with the program built 

for this investigation, are in very good agreement 

with reported previously by Chandrasekhar (1981). 

Very good convergence of the numerical 

calculations was assured at the third order 

approximation as it is shown in Fig. 1, in the case of, 

Newtonian fluid, Rayleigh convection. the curve of 

criticality, at third order of approximation, was 

compared to that of Tang and Bau (1993a) and very 

good agreement was found too. Also, for the range 

of K  from 0 to 1 a comparison between the second 

and third order approximations shows a maximum 

error smaller than 1%. 

Further checks on the numerical calculations related 

to the case of viscoelastic Maxwell and viscoelastic 

Jeffreys fluids were carried out too. For example, in 

the case of viscoelastic Maxwell fluids with 0=K , 

0=E  and 0.1=F  it was found 

( ) ( ), , 870.55,4.93,15.09=c c cRa k   which is in 

very good agreement with reports of (Pérez-Reyes 

and Dávalos-Orozco 2011) and (Takashima 1972), 

for example. 

 

 
Fig. 1. Plots of Rac against K showing the 

convergence of the numerical calculations from 

the first order approximation, represented by 

the solid line, to the third approximation, 

represented by the dashed line. Notice, in the 

magnification, that the second order 

approximation, represented by the dotted line, 

and the third approximation are very close. 
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4. RESULTS AND DISCUSSION 

The results obtained from the numerical 

computations are presented for two viscoelastic fluid 

models, that of Maxwell and that of Jeffreys. 

Advantage of Prandtl number Pr fixed to 1 and 10 

shall be taken to present and discuss the curves of 

criticality. 

4.1   The Role of the Prandtl Number Pr 

For the case of 1=Pr  and viscoelastic Maxwell 

fluids 0=E  occurs that the critical Rayleigh 

number cRa  increases with the control gain K  

which means that the fluid layer is stabilized as 

shown in Figs. 2a,3a,4a. However, the effect of the 

stabilization is observed to decrease from fluids with 

0.1=F  to fluids with 10=F . The curves for the 

critical wavenumber ck  have a change from fluids 

with 1=F , see Fig. 2b, to fluids with 1,10=F , see 

Figs. 3b,4b , and there is possibly a relaxation time 

at which the number of convective rolls stop 

increasing and start decreasing in size. Although the 

values of ck  are of the same order for all relaxation 

times, larger dependencies on K  appear in Maxwell 

fluids 1,10=F . The critical frequency of oscillation 

c  always increases with K  for the three values of 

the relaxation time, as shown in Figs. 2c,3c,4c, and 

this is reasonable since this could be a mechanism for 

energy dissipation. 

For viscoelastic Jeffreys fluids with 1=Pr  the 

hydrodynamics is very similar to that of Maxwell 

fluids. However as it can be observed in Figs. 

2a,3a,4a the effect of the control gain K  on the 

system is more remarkable, as the retardation time 

E  is increased, in comparison with all viscoelastic 

Maxwell fluids considered. The behavior of the 

critical wavenumber ck , see Figs. 2b,3b,4b, and 

critical frequency of oscillation c , see Figs. 

2c,3c,4c, is very similar, in change rates with K , to 

the case of viscoelastic Maxwell fluids with 

differences in magnitudes only. In fact, results of ck  

and c  for retardation time 0.05,0.1=E  are 

always very close in magnitude as the relaxation time 

is increased. 

The case of viscoelastic fluids with 100=Pr  seems 

to be interesting since for Maxwell fluids with 

relaxation time 0.1,1=F , see Figs. 5a,6a , the 

system becomes less stable with the control gain K

; but Maxwell fluids with relaxation time 10=F  

behave different becoming more stable with K . 

This behavior points to the existence of a critical 

relaxation point at which the system stop being 

destabilized by K  and starts being stabilized. For 

all relaxation times, the critical wavenumber always 

decreases for the used range of K  as shown in Figs. 

5b, 6b,7b. Notice, in Fig. 7b, that the wavenumber 

tends to become independent of K  for relaxation 

time 10=F . On the other hand, the critical 

frequency of oscillation c , see Figs. 5c, 6c, 7c, 

always decreases with K  which may be explained 

if high thermal dissipation is considered through the 

fluid oscillations. This is, as K  increases from zero 

the number of rolls decreases delaying heat transport 

across the fluid layer and allowing a more efficient 

thermal dissipation by smaller oscillations. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 2. Curves of criticality in viscoelastic 

Maxwell and viscoelastic Jeffreys fluids for Rac 

against K in Fig. 2a, for kc against K in Fig. 2b 

and for ωc against K in Fig. 2c. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 3. Curves of criticality in viscoelastic 

Maxwell and viscoelastic Jeffreys fluids for Rac 

against K in Fig. 3a, for kc against K in Fig. 3b 

and for ωc against K in Fig. 3c. 

 

For viscoelastic Jeffreys fluids with 100=Pr  the 

system behaves different. For short, the control gain 

has a stabilizing effect which is magnified as the 

retardation time increases as shown in Figs. 5a,6a,7a. 

In fact, it seems that there is a coupling between E  

and F  for this result since as F  is increased the 

stabilization effect increases too. The critical 

wavenumber ck , see Figs. 5b,6b,7b, and the critical 

frequency of oscillation c , see Figs. 5c,6c,7c, 

behave in a very similar way. However, the heat 

transfer mechanism changes to an opposite direction 

from that arising in Maxwell fluids since c  tend to 

grow as K  is increased. A physical explanation for 

this is as follows. The fluid becomes more stable by 

increasing the number of rolls with the relaxation 

time which is a more efficient heat transport 

configuration triggering oscillations in the fluid as 

well. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 4. Curves of criticality in viscoelastic 

Maxwell and viscoelastic Jeffreys fluids for Rac 

against K in Fig. 4a, for kc against K in Fig. 4b 

and for ωc against K in Fig. 4c. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 5. Curves of criticality in viscoelastic 

Maxwell and viscoelastic Jeffreys fluids for Rac 

against K in Fig. 5a, for kc against K in Fig. 5b 

and for ωc against K in Fig. 5c. 

 
In some curves a nonlinear dependency of cRa , ck  

and c  with K  appears for some cases. This an 

interesting matter discussed later in section 4.3. 

4.2 Viscoelastic Fluid Response 

An interesting result is that the control proportional 

gain K has put on display the different responses of 

viscoelastic Maxwell and Jeffreys fluids under the 

stabilization strategy. For most of the cases, for 

viscoelastic Jeffreys fluids, the feedback 

proportional control was successful as is shown in 

Figs. 2-7. However, Fig. 5a shows an exception 

where Rac slowly decreases with K. This is an 

unexpected result in view of a comparison with the 

Rayleigh convection in Newtonian fluids. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. Curves of criticality in viscoelastic 

Maxwell and viscoelastic Jeffreys fluids for Rac 

against K in Fig. 6a, for kc against K in Fig. 6b 

and for ωc against K in Fig. 6c. 

 
Time dependent viscoelastic fluid motion is indeed a 

very complex subject where coupling of relaxation 

and retardation time can be observed through the 

precious curves of criticality. In other words, for 

some cases onset of convection is delayed in 

viscoelastic Maxwell and Jeffreys fluids as shown 

for example in Figs. 4a; for some cases the onset of 

convection is delayed only for one the viscoelastic 

fluids as shown for example in Figs. 6a; and for some 

cases as shown for example in Fig. 5a the response 

to the proportional control gain K may change with 

the retardation time. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 7. Curves of criticality in viscoelastic 

Maxwell and viscoelastic Jeffreys fluids for Rac 

against K in Fig. 7a, for kc against K in Fig. 7b 

and for ωc against K in Fig. 7c. 

 

4.3 Effect of Proportional Control Gain 

From the curves of criticality presented before a 

main finding is that the proportional control gain K 

is not always successful for stabilizing or delaying 

the onset of convection in the fluid layer as expected 

in view of results for the classical problem of 

Rayleigh convection reported by Tang and Bau 

(1993a). The analytical approach to this problem to 

investigate the effect of small corrections through the 

feedback control strategy shows that retardation and 

relaxation times favor the stabilization of the layer or 

play against it. 

In view of the nonlinear dependency shown by some 

curves of criticality, as in Fig. 7 for example, further 

numerical computations for K =1−10 were made 

looking for a more general view of the 

hydrodynamics. It was found that nonlinearity of 

those curves increase for larger values of K. For 

example, in the case of Pr = 1, F = 0.1 and E = 

0.05,0.1 the curves for kc have the shape of a parabola 

with a minimum between K = 1 and 1.5. 

4.4 Perspective from Experimental Results 

Despite the interesting results, to the best knowledge 

of the authors, there are no reports on the control of 

Rayleigh convection in viscoelastic fluid layers but 

some findings in the development of lab applications 

(see the work of Braun (2004) for example) point out 

that further understanding and optimization of the 

convective flow are needed. Although linear stability 

is not a concern in the work of Braun (2004) the 

importance of achieving the convection critical 

conditions and the control of heat transport across the 

fluid is evident. On the other hand, the results of 

Braun (2004) have also motivated an ongoing 

experimental study of the linear stability analysis of 

viscoelastic fluid layers. 

5. CONCLUSION 

In this paper the effect of proportional feedback 

control on the natural convection in a viscoelastic 

Jeffreys fluid layer was studied. An analytical and a 

numerical analysis were performed in order to 

investigate the onset of convection for fixed Prandtl 

number Pr = 1,100; relaxation time F = 0.1,1,100 and 

retardation time E = 0.05,0.1. 

One main conclusion of this work is that proportional 

control was not successful for all viscoelastic fluids 

and this was due to the time dependent fluid motions. 

Since convection sets in as oscillatory motions the 

controller gain K may join the viscoelasticity to 

reduce the oscillations (Pr = 100,F = 0.1,E = 0) but 

under certain conditions K may drive oscillatory 

motions too (Pr = 1,F = 10,E = 0). This finding 

indicates that a further correction may be needed, to 

delay the onset of convection, in the form of a 

proportional integral controller. On the other hand, it 

was found that control gains larger than K = 1 can 

make the dynamics of the system more complex than 

it is. 

Another important conclusion is related to the 

viscoelastic response. Relaxation and retardation 

time are dramatically influenced by the controller 

gain since for viscoelastic Jeffreys fluids both, E and 

F, may be opposed to the onset of convection a in the 

case of Pr = 10 where the stabilizing effect of K 

increases from F = 1 to F = 10. However, for Pr = 10 

and E = 0 the control gain K has a negative effect on 

the hydrodynamics of Maxwell fluids with F = 1 

while for the case of F = 10 the critical Rayleigh 

number increases. 

Perhaps, an interesting matter of future 

investigations could be the effect of proportional 

control on the convective pattern selection in 

viscoelastic fluids confined between poorly 

conducting boundaries which are a convenient case 

for analytical investigations. 
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vection through the use of feedback control. 

Physical Review Letters 70(12), 1795–1798. 

Tang, J. and H. H. Bau (1994). Stabilization of the 

no-motion state in the Rayleigh–B é nard 
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