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ABSTRACT 

The present numerical study deals with a mathematical model representing mass transfer in blood flow under 

stenotic condition. Streaming blood is considered as a non-Newtonian fluid characterized by Carreau fluid 

model and the vessel wall is taken to be flexible. The nonlinear pulsatile flow phenomenon is governed by the 

Navier-Stokes equations together with the continuity equation while that of mass transfer is governed by the 

convection-diffusion equation coupled with the velocity field. A finite difference scheme is developed to solve 

these equations accompanied bysuitable initial and boundary conditions. Results obtained are examined for 

numerical stability up to wanted degree of correctness. Various significant hemodynamic parameters are 

examined for additional qualitative insight of the flow-field and concentration-field over the entire arterial 

segment with the help of the obtained numerical results. Comparisons are made with the available results in 

open literature and good agreement has been achieved between these two results. Comparisons have been made 

to understand the effects of viscosity models for Newtonian and non-Newtonian fluids and also for rigid and 

flexible arteries. 
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1. INTRODUCTION 

Partial occlusion of arteries, known as arterial 

stenosis, is one of the most frequent anomalies in 

cardiovascular system. Due to accumulation of low-

density lipoprotein and other lipid bearing materials 

in streaming blood, such type of constrictions are 

formed (Ross 1993) and the disease thus caused by 

is called atherosclerosis. Under physiological 

conditions, atherosclerotic plaques may burst with 

no notice and as a result heart attack and stroke occur 

(Haque et al. 2014). Though the accurate grounds 

behind thecommencement of such constriction are 

not yet clearly known but it is well recognized that 

once such constriction is shaped, the hemodynamic 

environment in the area of the constriction is 

drastically changed and fluid dynamic factors take 

part in the propagation of the disease (Friedman et 

al. 1992; Smedby 1997; Liepsch 2002). Such 

obstruction in arteries implies that the transport of 

low-density lipoproteins from blood stream onto the 

arterial wall must play a key role in the development 

of stenotic lesions. Moreover, mechanical stresses 

are created by the interactions of plaque with the 

flow of blood leading to its burst.  Recirculation 

region is formed downstream the plaque (Haque et 

al. 2014). 

The flow disturbances associated with a medium 

degree of stenosis can be detected through the use of 

non-invasive methods such as the Doppler ultra-

sound technique, but a method to detect a mild 

stenosis is still out of hand. The ability to describe 

the flow through constricted arteries may provide the 

possibility of diagnosing the disease in its earlier 

stages, even before the stenosis become clinically 

relevant, and is the basis for surgical intervention. 

Computational fluid dynamics provides a useful and 

non-invasive tool to study the hemodynamic factors, 

suspected to be associated with the propagation of 

atherosclerosis, through stenosed arteries (Pontrelli 

2001). 

During the past few decades, several studies on fluid 

dynamics through constricted arteries have been 

carried out to evaluate the flow pattern and the wall 

shear stress under steady and pulsatile flow 
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conditions (Tu et al. 1992, Misra and Chakravarty 

1986, Mukhopadhyay et al. 2011 , Mandal et al. 

2014, Mukhopadhyay et al. 2018a and 

Mukhopadhyay et al. 2019). Most of these numerical 

studies considered blood as a Newtonian fluid. 

Experimental results reveal that blood behaves as a 

non-Newtonian fluid at low shear rates and in vessels 

of small cross-section (Ku 1997). Since the shear rate 

drops down significantly in the downstream side of a 

stenosis, Newtonian behavior of blood is not 

accurately applicable in the vicinity of a stenosis. 

Also, blood exhibits remarkably shear-thinning and 

visco-elastic behaviors in pulsatile flows (Phillips 

and Deutsch 1975). Several non-Newtonian models 

for viscosity of blood are available in literature. 

Unfortunately few research works have been carried 

out to study the hemodynamics in a stenosed artery 

by considering blood as a non-Newtonian fluid 

(Nakamura and Sawada 1990; Misra et al. 1993; 

Pontrelli 2001; Mandal et al. 2012; Nandakumar et 

al. 2015 and Mukhopadhyay et al. 2018a). With the 

help of Carreau model, Ali et al. (2015) analyzed the 

unsteady blood flow through a tapered catheterized 

vessel having an overlapping stenosis. Using Casson 

model and generalized Maxwell model, Nejad et al. 

(2018) investigated the pulsatile flow of blood in a 

viscoelastic artery having a symmetric constriction. 

It is more surprising that regardless of significance 

of non-Newtonian fluid, Carreau viscosity model has 

been received less attention compared to other non-

Newtonian fluid models. Of late, considering 

Carreau model, Attia et al. (2018) investigated the 

blood flow under stenotic condition for diabetic and 

normal persons. 

Although formation and development of 

atherosclerotic lesions are often found positively 

correlated with low and oscillatory wall shear stress 

(Ku et al. 1985), some researchers believe that wall 

shear stress may not be the only responsible 

mechanism for such intimal thickening. Caro et al. 

(1971) suggested that stenosis may also occur due to 

mass transfer mechanism of fatty substances from 

blood onto arterial wall. Furthermore, a clear 

understanding of mass transport in arterial stenoses 

is of significant medical interest in the inspection of 

the creation and progress of atherosclerotic lesions. 

Thus to identify the possible sites of atherogenic 

depositions, it is crucial to study the behaviour of 

local mass transport. Basically, mass transfer refers 

to the movement of blood-borne components such as 

oxygen and LDLs (Low-Density Lipoproteins) from 

streaming blood into the arterial walls or vice 

versa.A number of studies about the local mass 

transport phenomenon in a constricted tube may be 

found in literature (Ma et al. 1994; Rappitsch et al. 

1997; Kaazempur-Mofrad et al. 2005; Sarifuddin et 

al. 2009 and Zaman et al. 2016). Recently, Zaman et 

al. (2016) reported the combined effects of 

unsteadiness and tapering on heat and mass transfer 

in blood flow obeying Cross viscosity model under 

stenotic condition. Tripathi and Sharma (2020) 

analyzed the effects of Joule heating, magnetic field 

and variable viscosity on heat and mass transfer of 

two phase blood flow.  

Unfortunately, most of the existing studies in this 

field are either incomplete or are not representative 

of the actual arterial flow. Non-Newtonian 

behaviour of blood, flexibility of arterial wall, 

physiologically realistic pulsatile flow of blood all 

are not taken into account in any of the 

aforementioned studies. Therefore, in this 

numerical study, a sincere attempt has been taken to 

include all of these characteristics of actual arterial 

flow. It is assumed that the arterial segment is a 

cylindrical tube with time-variant wall geometry 

and streaming blood is non-Newtonian 

characterized by the Carreau viscosity model. The 

unsteady nonlinear Navier-Stokes equations in 

cylindrical coordinates governing blood flow and 

the mass transport equation coupled to the velocity 

field are taken up along with appropriate boundary 

conditions and are solved using the stream function-

vorticity approach. To validate the applicability of 

the present model, large-scale numerical 

computations have been carried out and appropriate 

scientific discussions were made to understand the 

effects of various hemodynamic parameters on wall 

shear stress, local mass transfer rate etc. In addition, 

the quantitative analysis is carried out which 

includes the flow structure and distribution of 

concentration.  

2. BLOOD VISCOSITY MODEL 

Though the Newtonian approximation for blood 

viscosity is acceptable in large arteries, a non-

Newtonian constitutive equation should be used to 

describe blood flow in smaller arteries. The plasma 

may be regarded as a Newtonian fluid, but when one 

considers its contents, especially red blood cells, the 

viscosity of the mixture increases significantly. 

Experimental results show that the viscosity of blood 

decreases as shear rate increases. In literature, 

different constitutive equations have been proposed 

to model the shear thinning viscosity of blood. 

Due to broader span of shear rates, Carreau fluid 

model is best fitted for blood flow through arteries of 

both larger and smaller diameters (Razavi et al. 

2011; Ali et al. 2015; Attia et al. 2018). The shear 

dependent Carreau viscosity model is a four 

parameter shear thinning model and is described as: 

𝜇∗(�̇�∗) = 𝜇∞ + (𝜇0 − 𝜇∞)(1 + 𝛬∗2�̇�∗)
(𝑛−1)/2

     (1) 

where �̇�∗  is the shear rate, 𝜇0  and 𝜇∞  are the 

asymptotic apparent viscosities of blood as �̇�∗ → 0 

and ∞  respectively, Λ
∗ ≥ 0  is a material constant 

with the dimension of time representing the degree 

of shear thinning. Values of these parameters for 

human blood, found in literature, are 𝜇0 =
0.056 Pa s,  𝜇∞ = 0.00345 Pa s, Λ∗ = 3.313 s, 𝑛 =
0.3568  (Cho and Kensey 1991). When 𝜇∗(�̇�∗) =
𝜇∞, Newtonian model is obtained. 

3. FORMULATION OF THE 

PROBLEM 

3.1.   Governing Equations 

Let us consider the pulsatile laminar incompressible 
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and axi-symmetric flow of blood with constant 

density ρ and shear dependent viscosity 𝜇∗(𝑟∗) 

flowing through an axi-symmetric artery with a bell-

shaped axi-symmetric constriction. The axis of the 

arteryis taken as the 𝑧 -axis of a cylindrical polar 

coordinate system(𝑟∗, 𝜃∗, 𝑧∗). Since we are looking 

for an axi-symmetric two-dimensional solution, all 

variables may be assumed to be independent of 

𝜃∗(Pontrelli 2001). Let 𝑅0(𝑡∗)be the radius of the 

arteryat the inlet and  𝑟0
∗(𝑧∗, 𝑡∗) defines the wall of 

the arteryat time 𝑡∗. The origin O is taken at the inlet. 

Also, let 𝑝∗  be the pressure, 𝑢∗  and 𝑣∗  be the 

velocity components along the axial and radial 

directions respectively and 𝐶∗ be the concentration 

field of the solute. For pulsatile flow, the flow rate is 

time dependent. Let us introduce the following 

dimensionless quantities 

𝑧 =
𝑧∗

𝑅0
 , 𝑟 =

𝑟∗

𝑅0
 , 𝑟0 =

𝑟0
∗

𝑅0
 , 𝑢 =

𝑢∗

𝑈0
 , 𝑣 =

𝑣∗

𝑈0
 , 

𝑡 =
𝑡∗

𝑇
 , 𝑝 =

𝑝∗

𝜌𝑈0
2  , 𝐶 =

𝐶∗

𝐶𝑠
 ,  

𝜆 =
𝜇0

𝜇∞

, Λ =
Λ

∗𝑈0

𝑅0
, 𝜇 =

𝜇∗

𝜇∞

 ,                 (2) 

where, 𝑈0 is the centerline velocity at the inlet,𝑇 is 

the periodic timeof the pulsatile flow and  𝐶𝑠 is the 

reference concentration at the inlet. 

The unsteady, two dimensional Navier-Stokes 

equations of a homogeneous incompressible fluid 

may be written in dimensionless form as 

St
𝜕𝑢

𝜕𝑡
+

𝜕(𝑢𝑣)

𝜕𝑟
+

𝜕(𝑢2)

𝜕𝑧
+

𝑢𝑣

𝑟
= −

𝜕𝑝

𝜕𝑧
+

1

Re
[𝜇 (

𝜕2𝑢

𝜕𝑟2 +

1

𝑟

𝜕𝑢

𝜕𝑟
+

𝜕2𝑢

𝜕𝑧2
) +

𝜕𝜇

𝜕𝑟
(

𝜕𝑢

𝜕𝑟
+

𝜕𝑣

𝜕𝑧
) + 2

𝜕𝜇

𝜕𝑧

𝜕𝑢

𝜕𝑧
]                (3) 

and 

St
𝜕𝑣

𝜕𝑡
+

𝜕(𝑣2)

𝜕𝑟
+

𝜕(𝑢𝑣)

𝜕𝑧
+

𝑣2

𝑟
= −

𝜕𝑝

𝜕𝑟
+

1

Re
[𝜇 (

𝜕2𝑣

𝜕𝑟2 +

1

𝑟

𝜕𝑣

𝜕𝑟
+

𝜕2𝑣

𝜕𝑧2
−

𝑣

𝑟2
) +2

𝜕𝜇

𝜕𝑟

𝜕𝑣

𝜕𝑟
+

𝜕𝜇

𝜕𝑧
(

𝜕𝑣

𝜕𝑧
+

𝜕𝑢

𝜕𝑟
)].              (4) 

Also the equation of continuity is  

𝑟
𝜕𝑢

𝜕𝑧
+

𝜕(𝑣𝑟)

𝜕𝑟
= 0.                  (5) 

Here, Re = 𝑈0𝑅0𝜌/𝜇∞ is the flow Reynolds number 

and St = 𝑅0/(𝑈0𝑇) is the Strouhal number. 

The convection-diffusion equation governing the 

flow of mass transport in the blood stream may be 

written in terms of non-dimensional variables as 

St
∂C

∂t
+ 𝑢

∂C

∂𝑧
+ 𝑣

∂C

∂𝑟
=

1

ReSc
[

∂2C

∂𝑟2
+

1

𝑟

∂C

∂𝑟
+

∂2C

∂𝑧2
].         (6) 

Here, Sc =
𝜇

𝜌𝐷
 is theSchmidt number, 𝐷  being the 

coefficient of diffusion. 

The dimensionless blood viscosity is obtained as 

𝜇(�̇�) = 1 + (𝜆 − 1){1 + 𝛬2�̇�}(𝑛−1)/2                (7) 

with 

�̇� = [2 (
𝜕𝑢

𝜕𝑧
)

2
+ 2 (

𝜕𝑣

𝜕𝑟
)

2
+ 2 (

𝑣

𝑟
)

2
+ (

𝜕𝑢

𝜕𝑟
+

𝜕𝑣

𝜕𝑧
)

2
]

1
2⁄

.

                  (8) 

𝜆 = 1 refers to the Newtonian model. 

3.2.   Geometry of the Tube 

The geometry of the arterial segment with a smooth 

axi-symmetric constriction in it may be described in 

dimensionless form as: 

𝑟0(𝑧, 𝑡) = [1 − 𝛿𝑒−𝜎(𝑧−𝑎)2
]𝑎1(𝑡), 0 ≤ 𝑧 ≤ 𝐿        (9)  

where 𝑎 and δ indicate the centre and height of the 

stenosis, 𝜎 represents the rate at which the boundary 

profile changes and 𝐿  is the length of the arterial 

segment under consideration. In our study we have 

taken 𝜎 = 5, 𝑎 = 4, 𝐿 = 10. 

As the wall movement must be proportional to the 

flow rate, the time-variant parameter 𝑎1(𝑡) is chosen 

as 

𝑎
1

(𝑡) = 1 + 𝑘|𝑄(𝑡) − 𝑄(0)|              (10)  

where 𝑘 is the amplitude parameterand 𝑄(𝑡) is the 

pulsatile flow rate. As formation of stenosis 

significantly reduces the distiensibility of vessel wall 

(Davies et al. 1985; Nerem 1992), a small value 𝑘 =
0.01  is used in this study. 

Schematic diagrams of the flexible artery have been 

presented in Fig.1(A)-(B).Figure 1(A) exhibits the 

geometry of flexible artery for various constriction 

heights  δ at t=0.13 whereas the effects of flexibility 

can be found in Fig.1(B) which portraits the 

geometry of the artery at two different times. 

4. STREAMFUNCTION-VORTICITY 

FORMULATION 

Let us now define the dimensionless Stokes stream 

function 𝜓(𝑧, 𝑟, 𝑡) by 

𝑢 =
1

𝑟

𝜕𝜓

𝜕𝑟
 , 𝑣 = −

1

𝑟

𝜕𝜓

𝜕𝑧
 ,               (11) 

and the corresponding azimuthal vorticity function  

𝜔(𝑧, 𝑟, 𝑡) by 

𝜔 =
𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑟
.                (12) 

Cross-differentiation of the momentum Eq. (3) and 

Eq. (4), with use of Eq. (11) and Eq. (12), yields 

𝑆𝑡
𝜕𝜔

𝜕𝑡
+ 𝑢

𝜕𝜔

𝜕𝑧
+ 𝑣

𝜕𝜔

𝜕𝑟
−

𝑣𝜔

𝑟
=

1

𝑅𝑒
[𝜇 (

𝜕2𝜔

𝜕𝑧2 +
𝜕2𝜔

𝜕𝑟2 +

1

𝑟

𝜕𝜔

𝜕𝑟
−

𝜔

𝑟2
) + 2

𝜕𝜇

𝜕𝑧

𝜕𝜔

𝜕𝑧
+

𝜕𝜇

𝜕𝑟
(2

𝜕𝜔

𝜕𝑟
+

𝜔

𝑟
) −2

𝜕2𝜇

𝜕𝑟𝜕𝑧
(

𝑣

𝑟
+

2
𝜕𝑢

𝜕𝑧
) + (

𝜕2𝜇

𝜕𝑧2 −
𝜕2𝜇

𝜕𝑟2
) (

𝜕𝑢

𝜕𝑟
+

𝜕𝑣

𝜕𝑧
)]              (13) 

Also, the equation of continuity, with the use of Eq. 

(11) and Eq. (12), transforms to the Poisson equation 

given by  

𝜕2𝜓

𝜕𝑧2 +
𝜕2𝜓

𝜕𝑟2 −
1

𝑟

𝜕𝜓

𝜕𝑟
= −𝜔𝑟                (14) 

5. INITIAL AND BOUNDARY 

CONDITIONS 

The initial conditions for the velocity and 

concentration field are set as 

𝑢 =
2𝑄(0)

𝜋𝑟0
2 {1 − (

𝑟

𝑟0
)

2
} , 𝑣 = 0, 𝐶 = 1 − (

𝑟

𝑟0
)

2
.     (15) 
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Fig. 1. Geometry of the flexible tube (A) for different constriction heights at 𝒕 = 𝟎. 𝟏𝟒  (B) for 

different times. 
 

 

Though the initially chosen velocity or concentration 

fields are not physiological, it is found that final 

results do not depend on these profiles. Further it is 

found that the results do not change significantly 

when the simulation runs for more than three time 

periods. Therefore, the simulation is carried out up to 

three time periods in all cases so that all transitional 

effects vanish within these three time periods. 

For the boundary conditions at the inlet cross section 

of the tube, the flow is assumed to be fully developed 

i.e. 

𝜕𝜔

𝜕𝑧
=

𝜕𝜓

𝜕𝑧
= 0 at 𝑧 = 0              (16)   

and at the outlet cross section, the flow field is 

assumed to have no change which gives 

𝜕2𝜔

𝜕𝑧2 =
𝜕2𝜓

𝜕𝑧2 = 0 at 𝑧 = 𝐿.               (17)  

The flow symmetry gives the conditions 

𝜓 = 0, 𝜔 = 0 along 𝑟 = 0.               (18) 

The usual ‘no slip’ condition is imposed on the tube 

wall which gives 

𝜕𝜓

𝜕𝑟
= 0 along 𝑟 = 𝑟0(𝑧, 𝑡).               (19) 

Due to the movement of the vessel wall, radial 

velocity at the wall is equal to 
𝜕𝑟0

𝜕𝑡
 and hence 

𝜕𝜓

𝜕𝑧
= −𝑟0

𝜕𝑟0

𝜕𝑡
  along 𝑟 = 𝑟0(𝑧, 𝑡).              (20)  

The axial symmetry condition for the concentration 

field gives 

𝜕𝐶

𝜕𝑟
= 0 along 𝑟 = 0.              (21) 

At the inlet, the concentration of the solute is 

assumed to be constant while the concentration 

gradient at the outlet is assumed to be zero. Thus  

𝐶 = 1 at 𝑧 = 0 and  
𝜕𝐶

𝜕𝑧
= 0 at 𝑧 = 𝐿.             (22) 

A Dirichlet boundary condition of the zero 

concentration on the arterial wall (Etheir 2002; 

Sarifuddin et al. 2009; Zaman et al. 2016) is set as 

𝐶 = 0 at 𝑟 = 𝑟0(𝑧, 𝑡).              (23) 

A time dependent non-dimensional pulsatile flow 

rate  

𝑄(𝑡) = 𝑄∗(𝑡) 𝑄max
∗ (𝑡)⁄                (24)   

is given through the tube (see Fig.2(A), where 𝑄∗(𝑡) 

is a physiologically realistic pulsatile flow rate of 

blood as  

given by Stettler et al. (1981). Since the mass flux 

across all cross-sections of the tube is the same at any 

instant of time, so 
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∫ 2𝜋𝑟 (
1

𝑟

𝜕𝜓

𝜕𝑟
) 𝑑𝑟

𝑟0(𝑧,𝑡)

0

= 𝑄(𝑡). 

This gives the value of the stream function 𝜓 at the 

tube wall as 

𝜓(𝑧, 𝑟0(𝑧, 𝑡), 𝑡) =
1

2𝜋
𝑄(𝑡).               (25) 

 

 
Fig. 2(A). Physiological pulsatile flow rate 

of Stettler et al. (1981). 
 

6. COORDINATE TRANSFORMATION 

Let us choose a suitable coordinate system so that the 

arterial constriction coincides with a constant 

coordinate curve. For this, let us introduce a radial 

coordinate transformation given by Ling and Atabek 

(1972),  

𝑥 =
𝑟

𝑟0(𝑧,𝑡)
 ,                (26) 

which maps the constricted region into a rectangular 

one. Using this transformation, the vorticity transport 

Eq. (12) is transformed into 

St (
𝜕𝜔

𝜕𝑡
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑡

𝜕𝜔

𝜕𝑥
) + 𝑢 (

𝜕𝜔

𝜕𝑧
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝜔

𝜕𝑥
) +

𝑣

𝑟0

𝜕𝜔

𝜕𝑥
−

𝑣𝜔

𝑥𝑟0
  

=
1

Re
[𝜇 {

𝜕2𝜔

𝜕𝑧2 + (
𝑥2

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
+

1

𝑟0
2)

𝜕2𝜔

𝜕𝑥2 −
2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕2𝜔

𝜕𝑥𝜕𝑧
+

(
2𝑥

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

𝑥

𝑟0

𝜕2𝑟0

𝜕𝑧2 +
1

𝑥𝑟0
2)

𝜕𝜔

𝜕𝑥
−

𝜔

𝑥2𝑟0
2}  

+2 (
𝜕𝜇

𝜕𝑧
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝜇

𝜕𝑥
) (

𝜕𝜔

𝜕𝑧
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝜔

𝜕𝑥
) +

1

𝑟0

𝜕𝜇

𝜕𝑥
(

2

𝑟0

𝜕𝜔

𝜕𝑥
+

𝜔

𝑥𝑟0
) −

2

𝑟0
(

𝜕2𝜇

𝜕𝑥𝜕𝑧
−

1

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝜇

𝜕𝑥
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕2𝜇

𝜕𝑥2
) (

𝑣

𝑥𝑟0
+ 2

𝜕𝑢

𝜕𝑧
−

2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝑢

𝜕𝑥
) + {

𝜕2𝜇

𝜕𝑧2 + (
𝑥2

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

1

𝑟0
2)

𝜕2𝜇

𝜕𝑥2 −

2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕2𝜇

𝜕𝑥𝜕𝑧
+ (

2𝑥

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

𝑥

𝑟0

𝜕2𝑟0

𝜕𝑧2 )
𝜕𝜇

𝜕𝑥
} (

1

𝑟0

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑧
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝑣

𝜕𝑥
)].                (27) 

Vorticity and stream function are related by the 

following equation 

𝜕2𝜓

𝜕𝑧2 + {
𝑥2

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
+

1

𝑟0
2}

𝜕2𝜓

𝜕𝑥2 −
2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕2𝜓

𝜕𝑥𝜕𝑧
+

{
2𝑥

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

𝑥

𝑟0

𝜕2𝑟0

𝜕𝑧2 −
1

𝑥𝑟0
2}

𝜕𝜓

𝜕𝑥
= −𝑟0𝑥𝜔.              (28) 

The transformed boundary condition for the stream 

function 𝜓 at 𝑥 = 1 becomes 

𝜓(𝑧, 𝑥 = 1, 𝑡) =
1

2𝜋
𝑄(𝑡).               (29) 

To derive a boundary condition for the vorticity 𝜔 at 

𝑥 = 1, we use Eq. (28) and obtain 

𝜔(𝑧, 𝑥 = 1, 𝑡) = −
1

𝑟0
3

[1 + (
𝜕𝑟0

𝜕𝑧
)

2
] (

𝜕2𝜓

𝜕𝑥2
)

𝑥=1
+

(
𝜕2𝑟0

𝜕𝑧𝜕𝑡
+

1

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝑟0

𝜕𝑡
).                 (30) 

The transformed form of the mass transport Eq. (6) 

is given by 

St (
𝜕𝐶

𝜕𝑡
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑡

𝜕𝐶

𝜕𝑥
) + 𝑢 (

𝜕𝐶

𝜕𝑧
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝐶

𝜕𝑥
) +

𝑣

𝑟0

𝜕𝐶

𝜕𝑥
=

1

ReSc
[

1

𝑟0
2

𝜕2𝐶

𝜕𝑥2
+

1

𝑥𝑟0
2

𝜕𝐶

𝜕𝑥
+ {

𝜕2𝐶

𝜕𝑧2
+

𝑥2

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2 𝜕2𝐶

𝜕𝑥2
−

2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕2𝐶

𝜕𝑥𝜕𝑧
+ (

2𝑥

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

𝑥

𝑟0

𝜕2𝑟0

𝜕𝑧2
)

𝜕𝐶

𝜕𝑥
}].              (31) 

7. NUMERICAL METHOD 

The transformed governing equations together with 

the initial and boundary conditions are solved 

numerically by using finite difference technique over 

a uniformly spaced grid. The vorticity transport Eq. 

(27) and the equation for stream function Eq. (28) are 

discretized using central difference approximations 

for all spatial derivatives and forward difference 

approximation for the time derivative of 𝜔. 

The finite difference representations of the 

derivatives and all other terms have been written at 

the mesh point (𝑖, 𝑗) which indicates a point where 

𝑧𝑖 = 𝑖∆𝑧  and 𝑥𝑗 = 𝑗∆𝑥 , ∆𝑧 and ∆𝑥  being the 

increments of 𝑧  and 𝑥  respectively. The finite 

difference form for time is written as 𝑡𝑘 = 𝑘∆𝑡 , 

where ∆𝑡 is the time increment.  

A tri-diagonal system of algebraic equations 

associated with each line (constant 𝑖) in 𝑥-direction 

is formed. The finite-difference representation of Eq. 

(28) is  

𝐴(𝑗)𝜓𝑖,𝑗−1
𝑘+1 + 𝐵(𝑗)𝜓𝑖,𝑗

𝑘+1 + 𝐶(𝑗)𝜓𝑖,𝑗+1
𝑘+1 = 𝐷(𝑗)    (32) 

where the quantities 𝐴(𝑗), 𝐵(𝑗), 𝐶(𝑗)  and 𝐷(𝑗) are 

defined by 

𝐴(𝑗) =
𝐿2

(∆𝑥)2 −
𝐿1

2∆𝑥
 , 𝐵(𝑗) = −

2

(∆𝑧)2 −
2𝐿2

(∆𝑥)2  , 𝐶(𝑗) =
𝐿2

(∆𝑥)2 +
𝐿1

2∆𝑥
  and 

𝐷(𝑗) = −𝑟0𝑥𝜔𝑖,𝑗
𝑘 –

𝜓𝑖+1,𝑗
𝑘 +𝜓𝑖−1,𝑗

𝑘

(∆𝑧)2
+  

𝐿3
𝜓𝑖+1,𝑗+1

𝑘 −𝜓𝑖+1,𝑗−1
𝑘 −𝜓𝑖−1,𝑗+1

𝑘 +𝜓𝑖−1,𝑗−1
𝑘

4∆𝑧∆𝑥
  

in which 

𝐿1 =
2𝑥

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

𝑥

𝑟0

𝜕2𝑟0

𝜕𝑧2 −
1

𝑥𝑟0
2  , 𝐿2 =

𝑥2

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
+

1

𝑟0
2  , 𝐿3 =

2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧
 .  

Using the values of all the quantities in 

𝐴(𝑗), 𝐵(𝑗), 𝐶(𝑗)  and 𝐷(𝑗)at the 𝑘th -time level, the 

tri-diagonal system of Eq. (32) can be solved by 

using the well-known Thomas algorithm for each 

fixed 𝑖 in 𝑥-direction, to get the value of the stream 
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function at the (𝑘 + 1)th-time level. Eq. (11) then 

gives the values of 𝑢and 𝑣. 

We now use a second order accurate formula for wall 

vorticity obtained from Eq. (30) in terms of the 

known values of stream function. The vorticity at the 

tube wall is given by 

𝜔(𝑧, 𝑥 = 1, 𝑡) = −
2

𝑟0
3 [1 + (

𝜕𝑟0

𝜕𝑧
)

2
]

𝜓𝑖,𝑗𝑠𝑡𝑝−1−𝜓𝑖,𝑗𝑠𝑡𝑝

(∆𝑥)2 +

(
𝜕2𝑟0

𝜕𝑧𝜕𝑡
+

1

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝑟0

𝜕𝑡
)                (33) 

where 𝑗 = 𝑗𝑠𝑡𝑝 corresponds to the value of 𝑥 at the 

tube wall.  

The momentum Eq. (27) is now solved exactly in the 

same way as stated above. The discretized form of 

the momentum Eq. (27) is given by 

𝑃(𝑗)𝜔𝑖,𝑗−1
𝑘+1 + 𝑄(𝑗)𝜔𝑖,𝑗

𝑘+1 + 𝑅(𝑗)𝜔𝑖,𝑗+1
𝑘+1 = 𝑆(𝑗)     (34) 

where the quantities 𝑃(𝑗), 𝑄(𝑗), 𝑅(𝑗)  and 𝑆(𝑗) are 

defined as 

𝑃(𝑗) =
1

2∆𝑥
(

𝑢𝑥

𝑟0

𝜕𝑟0

𝜕𝑧
−

𝑣

𝑟0
) +

1

Re
(

𝑀1

2∆𝑥
−

𝑀2

(∆𝑥)2
) − 𝑀3 +

𝑀4 +
St

2𝛥𝑥

𝑥

𝑟0

𝜕𝑟0

𝜕𝑡
,   

𝑄(𝑗) =
St

∆𝑡
−

𝑣

𝑥𝑟0
+

2𝑀2

Re(∆𝑥)2 +
𝜇

Re(𝑥𝑟0)2 −
1

Re 𝑟0
2𝑥

𝜕𝜇

𝜕𝑥
 ,  

𝑅(𝑗) = −
1

2∆𝑥
(

𝑢𝑥

𝑟0

𝜕𝑟0

𝜕𝑧
−

𝑣

𝑟0
) −

1

Re
(

𝑀1

2∆𝑥
+

𝑀2

(∆𝑥)2
) +

𝑀3 − 𝑀4 −
St

2𝛥𝑥

𝑥

𝑟0

𝜕𝑟0

𝜕𝑡
 and 

𝑆(𝑗) =
𝑆𝑡

∆𝑡
𝜔𝑖,𝑗

𝑘 − 𝑢
𝜔𝑖+1,𝑗

𝑘 −𝜔𝑖−1,𝑗
𝑘

2∆𝑧
+

𝜇

𝑅𝑒
(

𝜔𝑖+1,𝑗
𝑘 −2𝜔𝑖,𝑗

𝑘 +𝜔𝑖−1,𝑗
𝑘

(∆𝑧)2
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜔𝑖+1,𝑗+1
𝑘 −𝜔𝑖+1,𝑗−1

𝑘 −𝜔𝑖−1,𝑗+1
𝑘 +𝜔𝑖−1,𝑗−1

𝑘

2∆𝑧∆𝑥
)  

+
2

Re
(

𝜕𝜔

𝜕𝑧
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝜔

𝜕𝑥
)

𝜔𝑖+1,𝑗
𝑘 −𝜔𝑖−1,𝑗

𝑘

2∆𝑧
+

𝑀

Re
  

in which 𝑀1 = 𝜇 [
2𝑥

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

𝑥

𝑟0

𝜕2𝑟0

𝜕𝑧2 +
1

𝑥𝑟0
2] ,  

𝑀2 = 𝜇 [
𝑥2

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
+

1

𝑟0
2] ,   

𝑀3 =
𝑥

Re𝑟0∆𝑥

𝜕𝑟0

𝜕𝑧

𝜕𝜇

𝜕𝑧
 , 𝑀4 =

1

Re𝑟0
2∆𝑥

[𝑥2 (
𝜕𝑟0

𝜕𝑧
)

2
+

1]
𝜕𝜇

𝜕𝑥
, 

𝑀 = −
2

𝑟0
(

𝜕2𝜇

𝜕𝑥𝜕𝑧
−

1

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝜇

𝜕𝑥
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕2𝜇

𝜕𝑥2
) (

𝑣

𝑥𝑟0
+

2
𝜕𝑢

𝜕𝑧
−

2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝑢

𝜕𝑥
)  

+ {
𝜕2𝜇

𝜕𝑧2 + (
𝑥2

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

1

𝑟0
2)

𝜕2𝜇

𝜕𝑥2 −
2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕2𝜇

𝜕𝑥𝜕𝑧
+

(
2𝑥

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

𝑥

𝑟0

𝜕2𝑟0

𝜕𝑧2 )
𝜕𝜇

𝜕𝑥
} (

1

𝑟0

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑧
−

𝑥

𝑟0

𝜕𝑟0

𝜕𝑧

𝜕𝑣

𝜕𝑥
)  

The mass transport Eq. (31) is solved by using its 

discretized version 

𝐶𝑖,𝑗
𝑘+1 = 𝐶𝑖,𝑗

𝑘 +
∆𝑡

St
[𝑁4

𝐶𝑖,𝑗+1
𝑘 −𝐶𝑖,𝑗−1

𝑘

2∆𝑥
− 𝑢

𝐶𝑖+1,𝑗
𝑘 −𝐶𝑖−1,𝑗

𝑘

2∆𝑧
+

1

ReSc
{

𝐶𝑖+1,𝑗
𝑘 −2𝐶𝑖,𝑗

𝑘 +𝐶𝑖−1,𝑗
𝑘

(∆𝑧)2 −

𝑁3
𝐶𝑖+1,𝑗+1

𝑘 −𝐶𝑖+1,𝑗−1
𝑘 −𝐶𝑖−1,𝑗+1

𝑘 +𝐶𝑖−1,𝑗−1
𝑘

4∆𝑧∆𝑥
+

𝑁2
𝐶𝑖,𝑗+1

𝑘 −2𝐶𝑖,𝑗
𝑘 +𝐶𝑖,𝑗−1

𝑘

(∆𝑥)2
  

+𝑁1
𝐶𝑖,𝑗+1

𝑘 −𝐶𝑖,𝑗−1
𝑘

2∆𝑥
}]  

where 𝑁1 =
2𝑥

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
−

𝑥

𝑟0

𝜕2𝑟0

𝜕𝑧2
+

1

𝑥𝑟0
2 , 𝑁2 =

𝑥2

𝑟0
2 (

𝜕𝑟0

𝜕𝑧
)

2
+

1

𝑟0
2, 

𝑁3 =
2𝑥

𝑟0

𝜕𝑟0

𝜕𝑧
 , 𝑁4 = St

𝑥

𝑟0

𝜕𝑟0

𝜕𝑡
+

𝑢𝑥

𝑟0

𝜕𝑟0

𝜕𝑧
−

𝑣

𝑟0
. 

Once the velocity and concentration field of the 

streaming blood is obtained, the dimensionless wall 

shear stress and Sherwood number (Zierenberg et al. 

2006), representing the local mass flux to the arterial 

wall, are computed by using the formulae 

𝜏w = − (𝜇
𝜕𝑢

𝜕𝑟
)

wall
                (35) 

and 

𝑆ℎ = −2 (
𝜕𝐶

𝜕𝑟
)

wall
                (36) 

The wall pressure is obtained by solving the coupled 

Eq. (3) and Eq.(4). For this a zero pressure at the inlet 

is assigned. 

8. STABILITY CRITERIA OF THE 

NUMERICAL SCHEME 

Some restrictions are imposed on selecting the time 

step t  depending on the grid size∆𝑧, ∆𝑥. The first 

restriction i.e. CFL (Courant et al. 1928) condition is 

given by 

∆𝑡1 ≤ Min [
∆𝑧

|𝑢|
 ,

∆𝑥

|𝑣|
]

(𝑖,𝑗)
.  

The second restriction is related to the viscous effect 

and is given by 

∆𝑡2 ≤ Min [
Re

2

∆𝑧2∆𝑥2

∆𝑧2+∆𝑥2]
(𝑖,𝑗)

.  

Actually, the time step is chosen by using the 

relation∆𝑡 = 𝛽Min[∆𝑡1 , ∆𝑡2], 0 < 𝛽 ≤ 1, where the 

minimum is taken in the global sense and the time 

steps ∆𝑡1  and ∆𝑡2  must satisfy the above two 

inequalities. Inthe present study, the parameter β is 

selected as 0.1. 

9. RESULTS AND DISCUSSION 

In this study, a non-dimensional physiological 

pulsatile flow rate [see, Fig.2(A)] proposed by 

Stettler et al. (1981) has been considered. This flow 

profile includes flow reversal and is composed of, in 

each cycle, an impulsive motion with strong 

acceleration and deceleration (systole) followed by a 

slowly accelerating and decelerating flow (diastole). 

It may be characterized by the peak flow in systole 

(  𝑡 = 0.14), maximum reverse flow at the end of 

systole ( 𝑡 = 0.36) and peak flow in diastole (𝑡 =
0.56). Most of the flow quantities are computed at 

these time levels. 

A grid independence test has been carried out for the 



Su. Mukhopadhyay et al. / JAFM, Vol. 14, No. 3, pp. 805-817, 2021.  

 

811 

intention of inspecting the error connected with the 

grid sizes used in this investigation and is presented 

in Table 1. In the current situation, grid 

independence test has its own significance to set up 

the precision of the numerical results thus obtained. 

 

Table 1 Errors connected with different 

grid sizes for length of separation 

Grid Time (t) Re 
Constriction 

Height (δ) 

Separation Length 

at the wall 

0.005 

X 

0.005 

0.36 150 

0.1 0.00 

0.2 1.08 

0.3 1.65 

0.010 

X 

0.010 

0.36 150 

0.1 0.00 

0.2 1.08 

0.3 1.65 

0.015 

X 

0.015 

0.36 150 

0.1 0.00 

0.2 1.05 

0.3 1.61 

 
To verify the accuracy of the numerical scheme used 

in this investigation, a comparison is made with the 

available results of Sarifuddin et al. (2009) related to 

wall shear stress for Newtonian fluid passing through 

a tube having cosine shaped constriction for steady 

state solution (for pulsatile and sinusoidal flows) at 

Re = 300, St = 1, 𝛿 = 0  [see Fig.2(B)]. We have 

also compared the axial velocity profile at 𝑧 = 2 

presented in the study of Shupti et al. (2015) for 

blood flow, modeled as a Carreau fluid, through a 

flexible blood vessel past a 50% cosine shaped 

stenosis, centered at 𝑧 = 0 ,in presence of a 

physiological pulsatile flow at  Re = 300, St =
1[see Fig.2(C)]. Excellent agreements are found in 

these comparisons which provide us immense 

confidence to carry on our investigation for non-

Newtonian fluid model. 

 

 
Fig. 2(B). Comparison of wall shear stress 

for Newtonian fluid with Sarifuddin et al. 

(2009). 

With the help of the presented non-Newtonian 

model, a rigorous quantitative analysis has been 

performed for various hemodynamic parameters of 

major physiological significance such as wall 

pressure, time-averaged wall shear stress, relative 

residence time etc. Qualitative similarity of our 

findings with existing and available literature 

validates the applicability of our present model. 

 

 
Fig. 2(C). Comparison of the axial velocity 

profile at 𝐳 = 𝟐 with Shupti et al. (2015). 

 

At the very beginning, the wall pressure 

distribution at the peak flow time has been shown 

in Fig.3(A)–(C). A rapid fall in wall pressure is 

noted in the stenotic region and this sudden fall of 

wall pressure increases with the severity of the 

constriction. Because of the lower viscosity of 

Newtonian fluid, drop of wall pressure is less in 

case of Newtonian fluid than that of non-

Newtonian fluid, which is in agreement with the 

study of Shupti et al. (2015). Figure 3(C) describes 

the effect of wall flexibility on the wall pressure 

distribution.  It is worth noting that the flexibility 

of arterial wall reduces the pressure fall in the 

constricted region. Low pressure in the stenotic 

region produces a health risk as the constricted 

artery may collapse due to low pressure (Ku 

(1997), Tang et al. (2001)). 

It is well established that the shear stress on the 

arterial wall plays an important role in the initiation 

and development of arterial diseases. Damage in the 

arterial wall and the blood cells may occur due to 

higher magnitudes of wall shear stress (Fry (1968), 

Sutera et al. (1975)). So it is of special interest to 

inspect the distributions of wall shear stress at the 

stenotic and post-stenotic regions. 
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Fig. 3. Wall pressure distribution at t=0.14 for (A) different 𝜹 and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖,
𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (B) different 𝝀 and 𝜹 = 𝟎. 𝟐, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎,

𝐒𝐭 = 𝟎. 𝟏; (C) rigid and flexible tube and 𝜹 = 𝟎. 𝟐, 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 =
𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 

 

 

 
Fig. 4. Time-averaged wall shear stress distribution for (A) different 𝜹and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 =

𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (B) different𝝀 and 𝜹 = 𝟎. 𝟐, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 =
𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (C) rigid and flexible tube and 𝜹 = 𝟎. 𝟐, 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖,

𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 
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Fig. 5. Oscillatory shear index for (A) different 𝛅and 𝛌 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝐧 = 𝟎. 𝟑𝟓𝟔𝟖, 𝐒𝐜 = 𝟑, 𝐑𝐞 =

𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (B) different 𝛌 and 𝛅 = 𝟎. 𝟐, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝐧 = 𝟎. 𝟑𝟓𝟔𝟖, 𝐒𝐜 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 =0.1. 

 

 

The time-averaged wall shear stress may be defined 

as 

𝑇𝐴𝑊𝑆𝑆 = ∫ 𝜏𝑤
1

0
𝑑𝑡               (37) 

Distributions of time-averaged wall shear stress for 

variations of 𝛿 and 𝜆 are presented in Fig.4(A) and 

Fig.4(B). One may note that the time-averaged wall 

shear stress increases significantly in the constricted 

part and attains its maximum (in the global sense) 

slightly upstream of the stenosis throat. 

Significantly, a second peak is also observed in the 

downstream side. In the rear side of the constriction, 

wall shear stress becomes negative in some region. 

This negative value of wall shear stress indicates the 

flow separation region. Flow separation modifies the 

flow structure, forms vortex and the length of this 

region gives an idea about the size of vortex. 

Formation of these recirculation regions is of 

pathological significance, since these regions may 

prolong the residing time of blood constituents which 

may eventually pass onto the arterial wall and form 

secondary stenosis. One may observe that the peak 

value of the 𝑇𝐴𝑊𝑆𝑆 and the time-averaged length of 

flow separation increases with severity of stenosis. 

For 𝛿 = 0.3  (51% area reduction), two separation 

regions are observed: a smaller separation zone 

slightly downstream of the throat and a larger 

separation zone distal from the throat. The length of 

separation region for the later one increases with the 

stenosis height [Fig.4(A)]. Peak value of 𝑇𝐴𝑊𝑆𝑆 

rises up, but the time-averaged length of flow 

separation reduces in case of non-Newtonian model 

compared to Newtonian model, which are consistent 

with the findings of Molla et al. (2011) [Fig.4(B)]. 

A comparison between the distributions of 𝑇𝐴𝑊𝑆𝑆 

for rigid and flexible tubes are made through 

Fig.4(C). 𝑇𝐴𝑊𝑆𝑆 distribution shows a greater peak 

value slightly upstream of the throat in case of rigid 

wall than that of flexible wall. However, the 

recirculation zone in the downstream side of the 

constriction is smaller in a rigid tube compared to 

that in a flexible tube. Advancement of 

atherosclerosis reduces the wall distensibility, 

which, in turn, may increase the risk of rupture of the 

plaque by elevating the peak shear stress. 

Another significant hemodynamic wall parameter is 

the oscillatory shear index which is defined as 

(Buchanan et al. 1999). 

𝑂𝑆𝐼 = 0.5 (1 − |∫ 𝜏𝑤
1

0
𝑑𝑡| ∫ |𝜏𝑤|

1

0
𝑑𝑡⁄ )              (38)  

and indicates the cyclic departure of the wall shear 

stress from its predominant axial direction. The 𝑂𝑆𝐼 

varies between 0 (for no-cyclic variation of 𝑊𝑆𝑆 

vector) and 0.5 (for 1800 deflection of 𝑊𝑆𝑆 vector) 

and the peak values indicate the locations of the time-

averaged separation and reattachment points. 

Figure 5 exhibits the distribution of 𝑂𝑆𝐼 for different 

𝛿  and 𝜆 . It is found that the distribution of 𝑂𝑆𝐼 

becomes more uneven and oscillatory in the post-

stenotic region. The 𝑂𝑆𝐼  has two or four 

characteristic peaks (𝑂𝑆𝐼|𝑚𝑎𝑥 = 0.5)  at the time-

averaged separation and reattachment points 

respectively for 𝛿 = 0.2 or 𝛿 = 0.3. In case of 𝛿 =
0.1, no such points exist. It is observed that the first 

peak, representing the separation point and the 

second peak, representing the reattachment point of 

the vortex, formed in the region 5 ≤ 𝑧 ≤ 7, move in 

the upstream and downstream direction respectively 

with severity of the stenosis or with decreasing 

viscosity and extend the time-averaged length of the 

flow separation region. As the imposed flow profile 

is not always forward, 𝑂𝑆𝐼|𝑚𝑖𝑛˃0. 

Normally, the mass flux from the blood stream onto 

the arterial wall is measured with the help of the 

Sherwood number. For a better insight into the mass 

transfer phenomenon in a pulsatile flow through a 

constricted artery, the distributions of the time-

averaged Sherwood number  

𝑇𝐴𝑆ℎ = ∫ 𝑆ℎ
1

0
𝑑𝑡                (39) 

over the entire stenosed arterial segment are 

computed for variations of 𝛿, 𝜆  and 𝑆𝑐  and are 

depicted in Fig.6(A)–(C). One may observe from 

these figures that the maximum (in the global sense)  
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Fig. 6: Distribution of Time-averaged Sherwood number for (A) different 𝜹 and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 =
𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (B) different 𝝀 and 𝜹 = 𝟎. 𝟐, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 =

𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑 , 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (C) different 𝑺𝒄 and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝜹 =
𝟎. 𝟐, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (D) rigid and flexible tube and 𝜹 = 𝟎. 𝟐, 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖,

𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 
 

 

mass transfer rate occurs slightly upstream of the 

stenosis throat in all cases like the case of the time-

averaged wall shear stress. This result agrees 

qualitatively well with that of Kaazempur-Mofrad et 

al. (2005) and Sarifuddin et al. (2009). In the rear 

side of the stenosis, distribution of 𝑇𝐴𝑆ℎ becomes 

oscillatory and twoprominent peaks are noted. This 

phenomenon could explain the formation of multiple 

stenoses observed in clinical practice (DeBakey et al. 

1985) with the enlargement of existing one. Mass 

transfer rate over the entire region increases with the 

severity of the constriction or with increasing 

Schmidt number. Mass transfer rate reduces in case 

of non-Newtonian fluid compared to Newtonian 

fluid. Thus non-Newtonian fluid behaviour helps to 

slow down the advancement of atherosclerosis. 

Figure 6(D) represents the fact that the mass transfer 

rate from the blood stream into the arterial wall is 

more in case of a rigid tube compared to a flexible 

tube. Thus once a mild stenosis is formed, it further 

helps to propagate the disease by decreasing the 

distensibility of vessel wall and the situation 

deteriorates in course of time. 

Effect of the pulsatile nature of blood flow on the 

concentration profile is reflected through the 

Figs.7(A)-(C).  At the systolic peak flow time, we see 

that the mass concentration of the solute is getting 

dispersed more in the downstream side of the 

constriction than in the upstream side. A vortex is 

about to form just in the lee of the stenosis. At 𝑡 =
0.36 i.e. at the maximum back flow time dispersion 

of concentration takes place both in the fore and aft 

side of the stenosis. Mass transfer is greater in the 

fore side and the previously formed vortex has 

become larger and moved in the rear side of the 

constriction. A weak vortex in the upstream side is 

seen. At the diastolic peak flow time mass transfer 

has again taken place more in the rear side of the 

stenosis. The upstream vortex has almost 

disappeared and the downstream vortex has become 

larger and weaker and moved further downstream. 

With the advancement of time this vortex moves 

downstream and finally disappears. 

Figures 8(A)-(C) depict the flow structure for various 

degrees of constriction at 𝑡 = 0.36. With increasing 

severity of the stenosis, strength of the downstream 

vortex increases and another weak vortex is noted to 

be formed just after the throat.  As the flow moves 

towards the throat of the stenosis, the streamlines 

traces the sketch of the constricted wall with a 
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secondary flow which helps in creating two flow 

separation zones in the diverging section of the 

constriction and ultimately the streamlines recover 

its normal structure later on i.e. distal to the 

constricted region. 

 

 
(A) 

 
(B) 

 
(C) 

Fig. 7. Concentration profile for 𝜹 = 𝟎. 𝟐, 𝝀 =
𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 =

𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏 at (A) 𝒕 = 𝟎. 𝟏𝟒; (B) 𝒕 = 𝟎. 𝟑𝟔; (C) 

𝒕 = 𝟎. 𝟓𝟔. 

 

 
(A) 

 
(B) 

 
(C) 

Fig. 8.Streamlines for (A) 𝜹 = 𝟎. 𝟏; (B) 𝜹 = 𝟎. 𝟐; 

(C) 𝜹 = 𝟎. 𝟑 at 𝒕 = 𝟎. 𝟑𝟔 and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 =
𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 

 

Figures 9(A)-(C) reveal the consequence of severity 

of constriction on the distribution of mass 

concentration at 𝑡 = 0.36 . As it is expected, 

concentration profiles for various degrees of 

constriction closely mirror the flow structures.  

 
(A) 

 
(B) 

 
(C) 

Fig. 9. Concentration profile for (A) 𝜹 = 𝟎. 𝟏; 

𝜹 = 𝟎. 𝟐; (C) 𝜹 = 𝟎. 𝟑 at 𝒕 = 𝟎. 𝟑𝟔 and 𝝀 =
𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 =

𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 
 

10. CONCLUSIONS 

Localized narrowing of an artery disturbs normal 

blood flow and fluid dynamic factors play a 

significant role in the development of the disease. It 

is well established that mathematical models and 

numerical simulations offer an efficient non-invasive 

technique to examine probable grounds and effects 

of such disease. A flexible arterial model based on 

the mass transfer to the flowing blood past a bell 

shaped stenosis in its lumen is considered in the 

present study. A non-Newtonian shear-thinning 

model of blood and a physiologically realistic 

pulsatile flow have been considered. The main 

findings of this study may be summarized as follows: 

i) Flow becomes more unstable in the constricted 

and downstream regions. 

ii) Wall pressure in the stenotic region falls rapidly 

which may collapse the arterial wall. 

iii)  Wall shear stress increases dramatically in the 

constricted region and attains its maximum 

slightly upstream of the stenosis throat. Flow 

separation takes place in the rear side of the 

constriction. 

iv) Maximum (in the global sense) mass transfer rate 

occurs slightly upstream of the stenosis throat. In 

the rear side of the constriction, distribution of 

𝑇𝐴𝑆ℎ becomes oscillatory. This may be a cause 

of the formation of multiple stenoses observed in 

reality. 

The authors state that there is no conflict of interest. 
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