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ABSTRACT 

Prediction of the aerodynamic forces acting on a NACA 2415 airfoil equipped with plasma actuators is 

carried out by using artificial neural network. The data sets for ANN model include the experiments which 

are plasma actuator positions for effective flow control, different Reynolds numbers and various attack 

angles. Mean absolute percentage and mean squared errors are calculated to assess the performance of the 

training and the testing stages of ANN model in prediction of drag and lift coefficients. The maximum error 

for lift and drag estimation are 12.84% and 23.705%, respectively. Also, as a part of the presented study, the 

process parameters affecting the performance of the plasma actuators in active flow control around a NACA 

2415 airfoil is presented in detail. The well-matched results of the ANN based estimations of the ANN 

indicates that there is almost no need for dealing with complex experimental studies to determine the 

aerodynamic performance of the NACA2415 airfoil, hence providing the advantage of saving time and cost. 

Furthermore, the experimental results along with the ability of ANN to estimate aerodynamic performance 

parameters provide a good database in the active flow control related research field. 
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NOMENCLATURE 

AoA  Angle of Attack 

αx   output bias value 

AC  Alternate Current 

AD  cross sectional area for drag force 

AL  cross sectional area for lift force 

ANN  Artificial Neural Network 

b  bias value for input layer 

C  chord length 

DC  Direct Current 

f  plasma excitation frequency 

fa   activation function for input layer 

F  estimated force value  

FL  measured lift force value 

FD  measured drag force value 

g  activation function for output layer 

µ  dynamic viscosity 

MAPE  Mean Absolute Percentage Error 

 

MAV  Micro Air Vehicle 

MSE  Mean Squared Error 

n  number of measured data 

nh  number of input parameters 

Pi  predetermined value 

R  regression 

Re  Reynolds number 

Ri  real measured value 

U∞  mean flow stream velocity 

νj  weight of output value 

Vpp  peak to peak applied voltage 

wij  weight of input layer 

xc/C  position of the plasma actuators on the 

airfoil 

xi  input variable 

ρ  density of air 

 

 

 

1. INTRODUCTION 

With the developments in flow control techniques 

and related technologies, the aerodynamic 

performance of new generation aircraft systems has 

been improving ever since. This leads to increasing 

number of studies on the topic. Some of these 

studies tackle the issue of increasing 
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maneuverability, Wang et al. (2013), reducing fuel 

cost with reduced drag, Gad-El-Hak (2000) 

searching the means for radar hiding, Dorn (1989), 

improving the aerodynamic forces, Meng et al. 

(2018), Mazaheri et al. (2016), Corke et al. (2002) 

and reducing the noise level during take-off, Huang 

and Zhang (2010). These improvements are 

achieved by modifying the flow structure around 

the model. The flow structure is modified by active 

and passive flow control techniques. In passive 

methods, Fernandez-Gamiz (2013), Yen et al. 

(2000), Stiesdal and Enevoldsen (2008), Chow and 

Van Dam (2011), Winzen et al. (2014), Fouatih et 

al. (2016), Durhasan et al. (2018), there is a 

geometrical modification and also there is no need 

for energy. On the other hand, there is a need for 

energy for active methods, Smith and Glezer 

(1997), Cattafesta et al. (1999), Gunther et al. 

(2007), Güler et al. (2018), Messanelli et al. (2019), 

Zhu et al. (2019). However, they have the 

advantage of fast response time to instant system 

interventions. In this respect, the active flow control 

devices have an important role in flow structure 

modification. Plasma actuators, one of the active 

flow control methods, generate ionized gas and add 

momentum to the flow around the model. Typically, 

the generated ions make circular motion from 

exposed electrode towards embedded electrode side. 

Consequently, an induced flow occurs and 

momentum is added to the flow due to collisions of 

the charged particles with neutral ones, Roth et al. 

(1998), Roth et al. (2000), Moreau et al. (2006). In 

active flow control applications, the velocity of 

induced flow and the actuator flow control 

performance are the important parameters for 

improvement of aerodynamic performance. These 

parameters are related to plasma settings such as the 

discharge regime, the distance between the 

electrodes, the width of the exposed and embedded 

electrode and the type of dielectric material. 

Dalvand et al. (2018) reported experimental 

investigation, modeling and prediction of transition 

from uniform discharge to filamentary discharge in 

DBD plasma actuators by using Artificial Neural 

Network (ANN). The ANN technique is used for 

modeling the complex and non-linear system 

allowing simulation of the system dynamics and 

related analysis. 

The aerodynamic structure of the aircraft wings and 

the effects of the flow control application play an 

important role in wind tunnel studies. In such 

studies, in order to examine these effects and to 

reveal the related results, there is a need for a 

number of experiments such as measurements of 

pressure, velocity, drag and lift. In such a typical 

experimental study, the requirement for high 

number of experiments, the experimental system 

installation costs encourage researchers to carry out 

numerical studies. Among these numerical studies, 

ANN has a promising potential due to its capability 

for modeling complex nonlinear systems, Narendra 

(1990), Hunt et al. (1992), Calise and Rysdyk 

(1998). In fluid mechanics, ANNs are used mostly 

for three application areas such as performing 

image analysis as PIV, Gim et al. (2020), Rabault et 

al. (2017), Cai et al. (2019), modeling of complex 

systems and conducting reduced order modeling, 

Beck et al. (2019), San and Malik (2018), and for 

performing flow control applications, Rabault et al. 

(2019), Rabault and Khunle (2019), Tang et al. 

(2020), Belus et al. (2019). 

The use of ANN in aerodynamics is becoming an 

important design assisting tool as it provides 

estimation based aerodynamic performance for 

extreme cases where experimental studies are 

difficult to achieve. Rai and Madavan (2001) 

studied the design of turbomachinery airfoils using 

a neural network that is trained with pressure 

distribution data. They reported that the usage of the 

neural network in designing of the airfoils provides 

a major advantage to designers whom perform to be 

obligate to work with limits of the design. Faller et 

al. (1994) used ANN to predict the unsteady surface 

pressure of NACA0015 airfoil. They compared the 

predicted results with experimental results. They 

mentioned that, for the aircraft systems integration 

with sensors, actuators and controllers become far 

more effective by using ANN. Estimation of 

aerodynamic properties of aircraft wings and 

examination of the flow structures around the wings 

are becoming a regular research topic including 

such topics as lift coefficient, Post and Corke 

(2006), drag coefficient, Winslow et al. (2018), 

pressure coefficient, Hand et al. (2017), wake 

region width, Hezaveh et al. (2017), etc. Linse and 

Stengel (1993) reported that aerodynamic 

coefficients could be identified with neural 

networks. In addition, ANN can also be used to 

predict the contribution of active and passive 

methods used to improve aerodynamic 

performances. Rokhsaz and Steck (1993a) trained 

artificial neural network to predict the force and 

moment coefficients of 70° sweep delta wing. For 

training the ANN, the experimental data were used 

in their study. They reported that ANN successfully 

learn the aerodynamic behavior of the model. 

Schreck et al. (1995) compared the nonlinear and 

linear structures of the ANN. In comparison study 

of these structures, a NACA0015 is used as the 

airfoil model. The temporal and spatial variations 

are well predicted with ANN using aerodynamic 

loads and pressure values measured from aircraft 

wing surface. Kurtulus (2009) successfully studied 

the prediction of force coefficient for a flapping 

motion kinematics of a NACA0012 airfoil model. 

The numerical analysis results of the study are very 

well matched with the ANN predicted values. Also, 

it is reported that estimation performance of the 

ANN appears to be better at lift coefficient than that 

of the drag coefficient. The ANN training inputs 

must cover the estimation range with as many 

datasets as possible. This in turn allows the ANN to 

get the best prediction of the unknown part of the 

experimental model data with a higher precision, 

Rokhsaz and Steck (1993b). 

In the first part of the present study, the proposed 

work aims to show the importance of the DBD 

plasma actuators. It is shown that these actuators 

play an important role in control of flow separation 

and also in improving the aerodynamic forces as a 

part of active flow control approach. This technique 



H. Akbıyık and H. Yavuz / JAFM, Vol. 14, No. 4, pp. 1165-1181, 2021.  

 

1167 

provides many advantages including fast response 

time, lack of geometrical change and being on-

demand active/passive, etc. In general, ANN 

performs well in estimation, classification and 

selection processes within a given data range after 

an extensive training phase covering the work 

range. Mainly, the data sets to train the ANN are 

based on the experimental data or numerical 

simulation studies. As second a part of the study, 

the experimental data is presented. This data 

includes Re numbers from 40000 to 80000 with an 

increment of 10000. Also angle of attack (AoA) is 

varied from 0 degree to 17 degree with an 

increment of 1 degree. In addition, the position of 

the plasma actuator on the airfoil defined by xc/C is 

varied from 0.1 to 0.5 with an increment of 0.1. In 

order to ensure reliability of the experimental 

results and to minimize the related errors, each of 

the experiments are repeated three times. The 

experimental results along with the ability of ANN 

to estimate near perfect values of aerodynamic 

performance parameters provide a good archive 

database for the research community. 

2. ARTIFICIAL NEURAL NETWORK 

Artificial Neural Network, as an artificial 

intelligence technique, is inspired from biological 

neural systems, Bishop (1994), Dickenson et al. 

(1999). A typical neural network is composed of 

layers (input, hidden, output) of neurons. Each 

neuron has a sum with a threshold that is provided 

by a non-linear mathematical function. Each 

neuron in a layer takes information from all 

previous neurons. Then, it sends the sum of 

received information with considering threshold 

to all the next layer of neurons. In a Feed-Forward 

Neural Network (FFNN), the neurons send 

information only to the following layers. If the 

neuron sends information back to preceding 

layers, then it is called a Recurrent Neural 

Network. The properties of the input layer are 

determined by the input parameters. The bias and 

weights of the input layer is optimized by training 

the ANN for the provided input data. The 

properties of the output layer are determined by 

the output parameters. Between input and output 

layers, there lies the hidden layer number of 

which can be from one to any counting number 

depending on the complexity of the input output 

relation. This structure of network is called multi-

layer neural network, as seen in Fig. 1. The ANNs 

are reported being capable of approximating 

functions a with desired degree of accuracy 

provided that sufficiently high number of hidden 

layers are defined. Hence, ANNs can generally be 

defined as a class of universal approximators, 

Hornik et al. (1989). It is worth mentioning that 

the architecture of the Neural Network is critical 

in predicting and matching the input-output 

related provided by the experimental data. Hence, 

it is vitally important to determine the number of 

inputs, hidden and output layers as well as the 

type of activation function. In addition, it is worth 

selecting the appropriate method of training 

algorithm as well as training, testing and 

validation ratios of the overall dataset. The back-

propagation algorithm is well-known in the 

literature, Skapura (1996). Levenberg-Marquardt 

algorithm is convergent to use with 

backpropagation algorithm to train ANN. The 

Levenberg-Marquardt algorithm is the most 

widely used algorithm for training of neural 

networks, Hagan and Menhaj (1994). The ANN 

trained as a part of the study is used for estimation 

of the aerodynamic output force from the input 

parameters. The Neural Network based 

aerodynamic output force calculation is defined as 

below; 

( )
12 3

1 1

a x j ij i j
i i

F f a gv w x b
= =

 
= + + + 

 
 
 
    

          (1) 

where, estimated force value ( F ), activation 

function for input layer (
af ), the weight of input 

layer (
ijw ), bias value for input layer ( b ), input 

variable (
ix ), activation function for output layer 

( g ), the weight of output value (
jv ), and the 

output bias value (
xa ). 

The tansig(a)  in Eq. (2) represents the activation 

function in the neurons. The output neuron 

activation function is defined as purelin(a)  

function as given in Eq. (3). 

2

2
tansig(a) 1

1 ae−
= −

+
                                        (2) 

purelin(a) a=                                                     (3) 

The input parameters for the ANN is defined as 

Reynolds number ( Re ), angle of attack ( ), and 

position of the plasma actuators on the airfoil 

(
cx C ). The Reynolds numbers are chosen between 

44 10 and 48 10 with an increment of 41 10  The 

presently defined Re range is outlined by Mueller 

(1999) where the effects of Reynolds number on 

airfoil maximum sectional lift to drag ratio were 

shown for MAVs. The force measurement 

experiments are performed between attack angle of 

0 and 17degrees with an increment of 1 degree. The 

last input parameter used is plasma actuator position 

on the airfoil surface. The actuators placed on the 

airfoil surface at 
cx C 0,1 , 0, 2 , 0,3 , 0, 4  and 0,5 . 

These plasma actuator positions are determined by 

initial analysis results that takes into account the 

effect of plasma actuators for flow separation from 

leading edge to mid-chord of the NACA 2415 

airfoil. This argument is also supported the study of 

Jolibois et al. (2008) who have shown that the 

placement of the plasma actuators leads to more 

effective separation control when it is mounted on 

the upstream separation point. 

By using the experimental input dataset, the lift and 

the drag forces acting on NACA2415 airfoil are 

predicted by the trained ANN. Some studies in the 

literature divide the dataset into three group as 

namely as training, validation, and testing, Sarioglu 

et al. (2016) sub-datasets. Some others divide the 
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dataset into two groups as the training and the 

testing sub-datasets, Seyhan et al. (2017), Ozsahin 

and Murat (2018). 

In order to assess the performance of the developed 

ANN model, mean squared error (MSE) and mean 

absolute percentage error (MAPE) methods are 

used. As it seen in Eqs. (4) and (5), MSE and 

MAPE can be given as; 

( )
2

1

1
n

i i
i

MSE
n R P

=

= −                                         (4) 

 

Fig. 1. Schematic description of a multi-layered ANN architecture and scheme of an artificial neuron. 
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n
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 −
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 
 


                                 (5) 

where, n  is the number of measurement data, 
iR is 

real measuring value and 
iP  is the predetermined 

value. 

3. EXPERIMENTAL RESULTS 

Experiments were conducted in an open suction 

type wind tunnel. The test section of the tunnel is 

57 57 100cm cm cm   area as shown in Fig. 2. The 

main stream velocity was varied from 4.6 m s and 

9 m s . A NACA 2415 airfoil is used as a test 

model. Its chord and span length are 160 mm and 

520mm, respectively. 

 

 
Fig. 2. An open suction type wind tunnel and 

experimental setup. 

 

The plasma actuator consists of two electrodes and 

a dielectric material between the electrodes. One 

electrode that is exposed to the air is applied high 

voltage. Other electrode that is encapsulated with 

the dielectric material is grounded. As it is shown in 

Fig. 3, the electrodes are copper and their 

thicknesses are 0.05 mm. The width and length of 

the electrodes are 5 mm and 520 mm, respectively. 

The dielectric material is chosen as Kapton that has 

3.3 of dielectric constant. The width of the dielectric 

material is about 10 mm. There is no gap between 

the embedded and exposed electrodes, where 

induced flow (plasma) is generated. 

The plasma actuators are placed on the surface of 

the airfoil at xc/C = 0.1, 0.2, 0.3, 0.4, and 0.5 

positions. The corners of the electrodes, rounded off 

around 1mm to prevent burning out of the 

electrodes, have high electric concentration. The 

AC frequency supplied to the actuators is applied at 

3 kHz and the applied AC voltage is about 8 kVpp. 

The waveform of the AC signal is selected as a 

sinus wave. The induced flow is generated by the 

actuators that are driven by electrical power from 

custom-made high voltage power supply. A 

TDS2012B model oscilloscope is used to monitor 

the signal properties. A Tektronix P6015A model 

high voltage probe is connected to the oscilloscope 

in order to acquire for the voltage measurements. 

Also, the current signal is measured by the 

oscilloscope using a Fluke 80i-110s AC/DC model 

current probe. 

As it seen in Fig. 3. the airfoil is produced by using 

3D printing method with PLA material. A Zortrax 

M200 model 3D printer machine is used for 3D 

printing the models. In production process, the 

diameter of the 3D printer nozzle is selected as a 0.2 
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mm to achieve a smoother airfoil surface. In order 

to get 2D flow structure, two end plates are attached 

to each end of the airfoil model. The diameter of the 

end plate is chosen as 280 mm. The 60° fillet is 

applied to the round of end plates. 

In this study, the Reynolds numbers are varied from 
44 10 to 48 10 with an increment of 41 10 . The 

selection of this range aims at observing flow 

conditions and variation of aerodynamic forces 

based on influence of plasma actuators on the air 

flow. The Reynolds number for the airfoil model 

used can be defined as; 

Re
C U


 

=                                                (6) 

where, Re  is the Reynolds number, C  is the total 

chord length of the NACA 2415 airfoil,   is the 

dynamic viscosity, U
 is the mean flow stream 

velocity and   is the density of the air. 

A six axis ATI Gamma DAQ F/T load cell is used 

for force measurements. In each force measurement, 

the results are collected as 2000 samples at a 

sampling frequency of 100 Hz for the 20 second 

data recording period. Besides, each experiment is 

repeated 3 times in order to minimize the 

experimental error. A rotary unit is used to rotate 

the airfoil for arrangement of attack angle. The 

lifting capability of the airfoil is calculated by the 

lift coefficient given below; 

0,5

L
L

L

F
C

U A 

=
  

                                     (7) 

where,   is the density of the air, U
 is the 

mean flow stream velocity, A is the lifting area 

of the airfoil, and 
LF  is the force measured by 

the load cell. Likewise, the drag coefficient 

can be defined as; 

0,5

D
D

D

F
C

U A 

=
  

                                      (8) 

 

 
Fig. 3. A NACA 2415 airfoil structure and 

produced model. 

 

The MAVs and UAVs have small structure that 

provides some advantages in application areas such 

fast maneuvering ability and low radar visibility. 

The small structure of the MAVs and UAVs leads 

to smaller control surface. Therefore, they have 

lower lifting capabilities. The reduced lifting 

capabilities degrades aerodynamic performance and 

design of such systems with high aerodynamic 

performance becomes a challenge. It is worth noting 

that the plasma actuators play a critical role in 

improvement of aerodynamic performance of such 

systems. The plasma actuators are known for their 

light weight, not requiring geometrical modification 

and fast response. As reported in the literature, 

plasma actuators are not only used for increasing 

the lift coefficient, Akbıyık et al. (2017), but also 

used for decreasing the drag coefficient, Post and 

Corke (2004) and shifting the stall angle, Moreau 

(2007). These results are considered as a good 

contribution to wing’s efficiency (CL/CD). It is also 

reported that plasma actuators are effective in 

controlling of flow separation, Akbıyık et al. 

(2017), Post and Corke (2004) and reduction in drag 

at Reynolds numbers between 310 10  and 410 10 . 

The range of the Reynolds number defined is 

compatible to the flow conditions of MAVs and 

UAVs as it is reported by the study of Lissaman 

(1983), and Mueller (1999). 

4. TRAINING OF ARTIFICIAL 

NEURAL NETWORK 

In this study, dataset is divided into two sub-

datasets as training (%80 of the dataset) and testing 

(%20 of the dataset). As a part of the experimental 

study, a total of 1150 experiments are performed 

and a total of 350 input data is obtained. This data is 

then used for training and testing of the ANN 

model. Figures 4a and 4b show the correlation 

between the experimental and the predicted values 

of the drag and the lift coefficient obtained from 

ANN model.  

In the ANN model, the chosen type is defined as 

three input one output system type. As a part of the 

ANN training, the number of hidden layers is tested 

starting from 6 to 15. It has been observed that for 

the chosen configuration of input and outputs the 

best fit for lift coefficient estimation is the one with 

7 hidden layers while the best fit for drag 

coefficient estimation is the one with 8 hidden 

layers.  

In a generated ANN model, the determination of 

hidden layer configuration is a complicated issue 

and it is highly dependent on the nature of the 

problem as well as the training data. In literature, 

one may come across with several solutions for 

obtaining the number of hidden neuron nodes as 

well as number of layers based on techniques such 

as trial-and-error, grid method and some empirical 

rules, etc. One of approaches for determination of 

the number of hidden neurons is based on the 

number of the input parameters (nh). In literature, 

these relations are proposed as 2nh+1 by Lippmann 

(1987), and Hecht-Nielsen (1990). While Wong 

(1991), Tang and Fishwick (1993), and Kang 

(1991) reports using the relation as 2nh, nh and 
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(a) 

 
(b) 

Fig. 4. Regression models of the training and testing set for a)lift coefficient b)drag coefficient. 

 

  
(a)                                                                                               (b) 

Fig. 5. Best MAPE values depending on numbers of hidden neuron for (a)lift coefficient and (b)drag 

coefficient. 

 
nh/2, respectively. As it can be seen from Fig. 5a, 

the MSE and MAPE (defined by Eqs. (3) and (4)) 

are determined for the best fit training results by 

using MATLAB (MATLAB version 9a, 2009). The 

best fit for the lift coefficient training is achieved at 

MAPE = 3.657, MSE=0.00107 and for testing 

MSE=0.00057, MAPE=2.718. The maximum 

estimation error is observed (12.84) at settings 

Re=50000, xc/C=0.4, AoA=2 as can be seen in Fig. 

8.  

As can be seen from Fig. 5b, the MSE and MAPE 

(defined by Eqs. (3) and (4)) are determined for the 

best fit training results by using MATLAB (2009). 

The best fit for the drag coefficient training is 

achieved at MAPE = 6.855, MSE=0.0027 and for 

testing MSE=0.0026, MAPE=7.187. The maximum 

estimation error is observed (23.705) at settings 

Re=40000, xc/C=0.1, AoA=7 as can be seen in Fig. 

14. 
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Fig. 6. Comparison of plasma on case and base NACA 2415 airfoil lift coefficient results for various 

Reynolds number at xc/C=0.1. 

 

 

3. RESULTS AND DISCUSSIONS 

The previously presented ANN model is used to 

predict the lift and drag coefficient for the selected 

cases. In order to be able to provide a full picture 

for the aerodynamic coefficients (lift and drag) 

under different working conditions, the experiments 

are performed for a range of Reynolds number 

(from 40 000 to 80000), plasma actuator positions 

(from xc/C=0.1 to 0.5), and angle of attack (from 0 

to 17). Hence, in total 1150 experiments are 

performed and related aerodynamic coefficients (lift 

and drag) are determined. With the use of the data 

and the trained ANN, it is now possible to 

determine the aerodynamic coefficients for any 

given working condition provided that they are 

within the mentioned range. 

In Fig. 6, the lift force coefficients acting on a 

NACA 2415 airfoil is experimented for various 

Reynolds number and plasma actuator positions. It 

is clearly seen that plasma actuators are effective 

devices for flow control around an airfoil. The 

comparison of the lift coefficients of "plasma on 

case" and "base airfoil case" shows that the plasma 

actuators increases the lift coefficient for in the 

range of Reynolds number between 40000 and 

70000. For the Reynolds number of 80000, it is 

worth mentioning that plasma actuators are not 

effective to reattach the separated flow. This is due 

to the low velocity profile of induced flow. 

When AoA increased at the Reynolds number being 

varied between 40 000 and 70 000, the flow fails to 

follow the surface of the airfoil for the critical 

angle. In this Reynolds number range, for the 

cambered airfoils (6% or above), the flow regime is 

observed to be a laminar separation with transition 

to turbulent flow form. In this Reynolds number 

range between 70 000 and 200 000, the flow regime 

is observed to be extensive laminar form. At this 

point the airfoil performance is affected by the 

Laminar Separation Bubble. Hence, the Laminar 

Separation Bubble contributes to separation of the 

flow from the airfoil surface depending on 

properties of the bubble. At the case of Reynolds 

number of 80 000, the induced flow fails to reattach 

the separated flow. Thus, the stall angle is not 

shifted further and no aerodynamic performance 

improvement is achieved. Apart from the case for 

Reynolds number of 80 000, as it can be seen from 

Fig. 6, the stall angle has been shifted with the 

plasma actuator contribution to aerodynamic 

performance. 

Figure 7 shows that the ANN model generated 

estimation values are considerably matched up with 

the experimental data indicating highly satisfactory 

results. With reference to the base airfoil, the 

improvement in the lift coefficient is observed at 

certain positions of the plasma actuators. Also, in 

the figure it can be seen that the stall angle has been 

shifted for all xc/C positions except for xc/C=0.2. 

Predicted values of the lift coefficient overlap with 

experimental ones even at the stall angle values. As 

can be seen from Fig. 8, for xc/C=0.1, the lift 

coefficient at α = 14° is 1.273 while estimated value 

is 1.263. For xc/C=0.2, the lift coefficient at α = 13° 

is 1.112 while estimated value is 1.118. For 

xc/C=0.3, the lift coefficient at α = 14° is 1.171 

while estimated value is 1.168. For xc/C=0.4, the lift 

coefficient at α = 14° is 1.112 while estimated value 

is 1.132. For xc/C=0.5, the lift coefficient at α = 14° 

is 1.06 while estimated value is 1.051. 
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Fig. 7. Comparison of experimental and estimated lift coefficients of a NACA 2415 airfoil for various 

plasma actuator positions (xc/C) at Reynolds number of 40000. 

 

 

These results prove the validity of the proposed 

ANN model estimations used in determination of 

lift coefficient of the airfoil. Hence, the proposed 

ANN based aerodynamic lift coefficient estimation 

technique is very much useful in determination of 

performance with highly accurate results. This also 

allows the user to achieve any aerodynamic lift 

coefficient estimation for any given working 

condition without performing any experiment. 

As shown in Fig. 9, for the Reynolds number of 60 

000, it is seen that plasma actuators have been 

effective in shifting the stall angle. It is observed 

that it does not contribute to the lift coefficient for 

the pre-stall attack angle while it has been effective 

in improving the lift coefficient for post-stall cases. 

In Fig. 9, considering the lift coefficient curve for 

the estimated values, the maximum error is 

observed at xc/C=0.3 plasma actuator position. All 

in all, it can be said that the proposed ANN based 

estimation model produces results that matches the 

experimental data based aerodynamic performance 

curves successfully in the pre-stall, stall and post-

stall states. 

As can be seen in Fig. 6 to 10, the variation of the 

Reynolds number plays an important role in 

effectiveness of the plasma actuators on the 

aerodynamic performance of the airfoil. In general, 

the proposed ANN aerodynamic estimation model 

is very much successful for prediction of the lift 

coefficient up to the stall angle where the lift 

coefficient is almost linear. On the other hand, 

although the model estimates the lift coefficient 

within a certain range of error it performs relatively 

poorly. For the base airfoil study presented in Fig. 

6, the stall angle is shifted about 1 degree for the 

actuator position of xc/C=0.1. It is seen that the 

separated flow with the variation of actuator 

position is more effective in shifting the stall angle 

in the positions of xc/C = 0.3 and 0.5, where the 

separated flow becomes closer to the surface. In the 

actuator position of xc/C = 0.4, the actuator's 

effectiveness decreases as it remains inside the flow 

separation area. 

As seen in Fig. 11, when the Reynolds number 

exceeds 80000, the efficiency of plasma actuators 

decreases as the position approaches xc/C=0.5. In 

this case, the stall angle shift is about 5°. However, 

no improvement in the lift coefficient is observed. 

Fig. 12 presents the full data set used in predicting 

the lift coefficient where training and testing subsets 

are also presented. The results indicate that the 

estimation matches the experimental data. The 

percentage error, defined as difference between 

measured and predicted values, is observed to be 

about 12.84 for the maximum error case. 
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Fig. 8. Comparison of experimental and estimated lift coefficients of a NACA 2415 airfoil for various 

plasma actuator positions (xc/C) at Reynolds number of 50000. 

 

 

Fig. 9. Comparison of experimental and estimated lift coefficients of a NACA 2415 airfoil for various 

plasma actuator positions (xc/C) at Reynolds number of 60000. 
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Fig. 10. Comparison of experimental and estimated lift coefficients of a NACA 2415 airfoil for various 

plasma actuator positions (xc/C) at Reynolds number of 70000. 

 

 

  

Fig. 11. Comparison of experimental and estimated lift coefficients of a NACA 2415 airfoil for various 

plasma actuator positions (xc/C) at Reynolds number of 80000. 
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Fig. 12. Percentage error between measured and predicted lift coefficient values in proposed ANN 

model. 

 

All in all, it can be said that the proposed ANN 

based estimation model produces results that 

matches the experimental data based aerodynamic 

performance curves successfully in the pre-stall, 

stall and post-stall states. In this study, it is shown 

that the proposed ANN aerodynamic performance 

estimation model is seen to be a sufficient and 

successful tool for modeling the flow control effects 

of the plasma actuators. Considering the nonlinear 

relationships amongst the input parameters (plasma 

actuator position, Reynolds number, AoA) and 

output parameters (lift and drag coefficient) highly 

encouraging and satisfactory results are obtained by 

the proposed ANN model. Besides, for a better 

ANN aerodynamic performance estimation model, 

aerodynamic flow conditions, airfoil geometry and 

plasma actuator electrical performance parameters 

could be added as input parameters. In addition, the 

number of hidden layers, the input function (other 

than tansig) etc. could be used to improve 

performance of ANN aerodynamic performance 

estimation model. The drag coefficients of the base 

airfoil and the airfoil model with plasma actuator 

are compared for different Reynolds number and 

various plasma actuator positions as shown in Fig. 

13. For low Reynolds number the curves of the drag 

coefficient are nearly linear before the stall angle. 

Then, these curves are increased dramatically. It 

appears that the plasma actuators reduce drag 

coefficient of the base airfoil effectively, at 

Reynolds numbers of 40000 and 50000. However, it 

is observed that the plasma actuators reduce the 

drag coefficient beyond the AoA of 14° at 

Re=60000 and 70000. On the other hand, there does 

not seem to have a significant reduction in drag for 

Re number of 80000. 

 

Fig. 13. Comparison of plasma on case and base NACA 2415 airfoil drag coefficient results for various 

Reynolds number at xc/C=0.1. 
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Figure 14 shows the comparison of ANN estimated 

drag coefficient and the base airfoil drag coefficient 

for various plasma actuator positions. With the use 

of plasma actuators at the positions of xc/C = 0.2 

and 0.3, an improvement in the lift coefficient is 

observed at low angle of attack values. However, in 

the case of the plasma actuators positions of xc/C = 

0.4 and 0.5, the situation in drag coefficient is 

increased. The results presented in the figure for the 

drag coefficient indicates that the ANN based 

estimated the drag coefficient results sufficiently 

match the experimental values. 

In Fig. 15, it is seen that plasma actuators do not 

contribute to drag reduction when placed at 

positions from leading edge to mid chord. The 

maximum reduction in drag is observed when 

plasma actuators are placed near the leading edge of 

the airfoil. It is reported in the study by Karasu et 

al. (2012) that the laminar separation bubble may 

occur after angle of attack of 4°. Besides, the 

laminar separation bubble length in this case is 

about 0.4 xc/C at Re=50000 for NACA2415 airfoil. 

They also concluded that the laminar separation 

bubble lengths are 0.3 xc/C and 0.18 xc/C for the 

attack angle of 10° and 12°, respectively. Therefore, 

the effectiveness of the plasma actuators is not 

enough to reattach the separated flow from the 

surface of the airfoil. There is no significant 

improvement for drag reduction at Re 50000 for 

xc/C=0.1 when angle of attack is between 10° and 

13°. Nevertheless, the aerodynamic performance is 

improved with regards to CL/CD when this case is 

assessed for lift coefficient. The results presented in 

Fig. 15 illustrates the experimental and estimated 

values of drag coefficient. It can be said that the 

proposed ANN based estimation model generates 

very much successfully matched results.  

In Fig. 16, for various plasma actuator positions 

(xc/C = 0.1, 0.2, ., 0.5), the drag coefficient related 

results are presented for a range of AoA. It can be 

seen in Fig. 6 that the stall occurs at Reynolds 

number of 60 000 and α=14°. In Fig. 16, before this 

attack angle, drag coefficient curve nearly linear. 

However, after stall angle, curve is increased 

dramatically. The application of plasma actuators is 

not effective in reduction of drag coefficient for 

Re=60 000 and further. The experimental results 

presented in Fig. 16 illustrates a linear and a 

nonlinear region for each plot. The linear results are 

up to the stall angle of 14°. However, the nonlinear 

region is the one after the stall angle. The presented 

results show that the proposed ANN model matches 

the experimental results very well indicating that 

ANN is well trained. Figure 17 presents the full 

data set used in predicting the drag coefficient 

where subsets of training and testing sections of the 

full dataset is presented. The results related to 

percentage error, for pre-stall, near-stall and post-

stall case, are presented as the difference between 

measured and predicted values for the drag 

coefficient of a NACA 2415 airfoil. The maximum 

error for the pre-stall case is observed about 

23.705% at xc/C=0.1, the Reynolds number of 40 

000 and α=7°. The maximum error for the near-stall 

case is observed about 16.85% at xc/C=0.2, the 

Reynolds number of 40 000 and α=12°. The 

maximum error for the post-stall case is observed 

about 16.887% at xc/C=0.3, the Reynolds number of 

60 000 and α=16°. The presented results of the 

study indicate that the developed ANN model can 

be used to determine aerodynamic performance 

coefficients under different conditions without the 

need of experimental study that requires highly time 

consuming and costly experimental studies. 

 
Fig. 14. Comparison of experimental and estimated drag coefficients of a NACA 2415 airfoil for various 

plasma actuator positions (xc/C) at Reynolds number of 40000. 



H. Akbıyık and H. Yavuz / JAFM, Vol. 14, No. 4, pp. 1165-1181, 2021.  

 

1177 

 
Fig. 15. Comparison of experimental and estimated drag coefficients of a NACA 2415 airfoil for various 

plasma actuator positions (xc/C) at Reynolds number of 50000. 

 

 
Fig. 16. Comparison of experimental and estimated drag coefficients of a NACA 2415 airfoil for various 

plasma actuator positions (xc/C) at Reynolds number of 60000. 

 

 

5. CONCLUSION 

In this study, an ANN model used as a successful 

tool for modelling of plasma actuators as an active 

device in flow control method. The trained model is 

then used to predict the aerodynamic force 

coefficients (lift and drag) of a NACA 2415 airfoil 

for various AoA, Reynolds numbers and plasma 

actuator positions between leading edge and mid-

chord. This ANN based estimation model provides 

numerous advantages such as qick achievement of 

results at almost no cost. Besides, the ANN based  
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Fig. 17. Percentage error between measured and predicted drag coefficient values in proposed ANN 

model.

approach does not require any experimental study 

provided that the aerodynamic coefficient related 

working conditions are within the range of input 

parameters of this study. Another important 

contribution of the proposed ANN model is to 

provide extensive results covering a wide range of 

input settings providing details on use of the plasma 

actuators for active flow control in aerodynamics. In 

other words, the overall results presented maps the 

effects of plasma actuators in active flow control 

around a NACA 2415. It is observed that the 

plasma actuators increase the lift coefficient of the 

airfoil for Reynolds number between 40 000 and 60 

000. However, there is no significant improvement 

in lift coefficient for Reynolds number of 70 000 

and 80 000. The stall angle is shifted for all 

Reynolds number except for Reynolds number of 

80 000. The drag coefficient of the airfoil is 

decreased for Reynolds number between 40 000 and 

60 000. From a wider perspective, the decrease in 

drag coefficient and increase in lift coefficient leads 

to enhancement of CL/CD ratio compared with the 

base airfoil case. It is also worth mentioning that 

varying the plasma actuators positions affects the 

efficiency of plasma actuators in flow control 

around the airfoil. The presented results indicate 

that the predicted and experimental values are 

compared and the results well matched. So, it is 

suggested that the results of the present study can be 

used in the applications of plasma actuators in 

active flow control for aerodynamics of a NACA 

2415 airfoil in general. For further studies, varying 

the effectiveness of plasma actuators (such as 

electrical parameters of the plasma) may be 

considered for a better ANN model. In addition, the 

structures of the actuators (such as dielectric 

material type, gap between the electrodes and so on) 

could also be studied for future works. 
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