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ABSTRACT 

The present paper is concerned with a study of water waves generated due to the presence of a line singularity 

(source) with time harmonic strength as well as impulsive strength through mangrove forests in the presence of 

a viscoelastic bed. The trunks of mangroves are assumed to be in the upper layer inviscid fluid, while the roots 

of mangroves are inside the viscoelastic bed. The equation of motion in the viscoelastic region is obtained by 

coupling the Voigt’s model with the equation of motion in the presence of mangroves. The expressions for the 

potential functions in the two layers are obtained. The forms of the surface and interface waves are depicted 

graphically for realistic values of kinematic viscosity and shear modulus of elasticity, the line source being 

submerged in the upper layer.  

Keywords: Wave motion; Mangrove forests; Viscoelastic bed; Line source; Two layer; Muddy bottom. 

NOMENCLATURE 

V        depth of upper layer  

2h      depth of viscoelastic layer  

g        acceleration due to gravity  

ef       linearising coefficient  

G       shear modulas of elasticity 

pw      peak frequency 

f       depth of the source point 

1P       hydrodynamic pressure of upper layer 

2P      hydrodynamic pressure of lower layer 

2
xU            horizontal velocity in lower layer  

2
yU            vertical velocity in lower layer  

ν              kinematic viscocity  

              angular frequency  

1             density of upper layer  

2             density of lower layer  

1( , ) x y    velocity potential of upper layer  

2 ( , ) x y    velocity potential of lower layer  

1( , ) x y    stream function of upper layer  

  
 

 

1. INTRODUCTION 

The study of water wave generation problems by 

various disturbances present either on the surface 

or inside the water is of great importance. Velocity 

potentials due to the presence of various types of 

singularities commonly known as source potentials 

have wide applications. If a body is present in 

water, waves may be generated by the movement 

of the body. Velocity potentials due to fundamental 

time harmonic singularities present in an 

homogeneous, incompressible fluid with a free 

surface are useful in the investigation of scattering 

or radiation problems involving obstacles which 

are either partially immersed or fully submerged in 

water. These velocity potentials may be identified 

with the Green’s functions for the boundary value 

problems for solving the Laplace equation subject 

to appropriate boundary conditions which appear 

in linear water wave theory. Thorne (1953) listed 

different kinds of time harmonic singularities 

present in the fluid. Rhodes-Robinson (1970) 

modified these results for fluids with surface 

tension. These time harmonic potential functions 

are solutions of certain boundary value problems 

satisfying the Laplace equation in the fluid medium 

except at a point where a singularity is situated. 

http://www.jafmonline.net/
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The technique of using flow singularities to model 

floating and submerged bodies has been enormously 

successful in marine hydrodynamics when 

irrotational (potential) flow is assumed. Since in 

inviscid theory the only boundary condition on a 

solid surface is impermeability, a streamline and a 

solid surface are one and the same thing. The 

linearity of the governing equation (Laplace 

equation) allows one to use a distribution of 

singularities to satisfy boundary conditions on a solid 

body, for instance using panel methods. The 

technique is computationally far cheaper than 

solving the corresponding boundary value problem 

with the full equations of motion while still giving 

satisfactory results for description of wave–body 

interactions (cf. Newman (2018); Faltinsen (1993)). 

The submerged oscillatory source is thus recognized 

as an elementary solution for linearized water waves 

governed by Laplace equation and the first 

mathematical solutions were given by Kochin (1952, 

1967) also see the review article by Wehausen and 

Laitone (1960). The linearized water wave radiation 

problem for an oscillating submerged line source in 

an inviscid shear flow with a free surface was 

considered by Ellingsen and Tyvand (2016). The 

effect of a small undulation at the bottom of a 

laterally unbounded ocean covered with an ice sheet, 

on the waves generated by an oscillating line source 

submerged in water was considered by Banerjea et 

al. (2011). The traditional linearized free-surface 

conditions were used on both the sea surface and the 

mudwater interface by Zilman et al. (1996). The mud 

was modeled as a linear viscoelastic substance. The 

numerical test cases presented in that publication 

were applicable to an air-cushion vehicle (ACV) 

traveling over the sea with a muddy bottom, an ACV 

traveling over mud alone and a ship traveling in a sea 

with a muddy bottom. 

Behera et al. (2018) recently have described in some 

detail the background to model mangrove forests as 

a fluid layer above a viscoelastic bed while studying 

wave propagation through mangrove forests. For the 

sake of completeness, this is also briefly mentioned 

here. It is widely believed that mangrove forests 

provide coastal protection and they worked as bio-

shields during many marine hazards. After the 

December 2004 tsunami, a study performed by 

Kathiresan and Rajendran (2005) in coastal hamlets 

along the southeast coast of India shows the 

importance of mangrove forests in coastal area 

protection. However, some reports state that 

mangrove forests and tsunami damage has no direct 

linkage. Gedan et al. (2011) concluded that wetlands 

cannot protect shorelines in all scenarios and some 

man-made structures are also needed along with the 

wetlands. Since most of the data based analysis 

suggests that mangrove forests play a key role in 

coastal protection, many authors have focused on 

assessing tsunami wave attenuation and flow 

patterns around the plants. Physical models such us 

cylinders, disposed in uniform and organized 

arrangements have been frequently used to 

determine dissipation capacity of mangroves. Massel 

et al. (1999) developed a mathematical model to 

predict the attenuation of wind induced random 

surface waves in the mangrove forest by replacing 

the nonlinear term with the linear one. Later, this 

model was used by Hadi et al. (2003) to analyze 

surface wave attenuation in two types of mangrove 

forests i.e Rhizophora and Ceriops forests. Both 

these studies show that the rate of wave energy 

attenuation depends strongly on the density of the 

forests, diameter of mangrove roots and trunks. 

Brinkman (2006) developed a predictive model of 

propagation through nonuniform forests in water of 

finite depth. Vo-Luong and Massel (2008) developed 

a model for arbitrary depth of a nonuniform 

mangrove forest where they used a modified mild 

slope equation for modeling the changing water 

depth within mangrove forest. 

Huang et al. (2011) investigated the characteristics 

of the wave height reduction by performing a 

numerical experiment and simulation regarding the 

tsunami–vegetation interaction. Ismail et al. (2012) 

tested prototype Rhizophora mangrove forests 

formed by three different parts: canopy, trunk and 

root. Their study concretes the fact that their is a 

strong influence of forest density and width on wave 

damping. Also Irtem et al. (2009) tested cylindrical 

timber sticks to study tsunami run-up reduction. The 

same runs were performed considering artificial 

trees. Tang et al. (2013) studied the damping effect 

on solitary water wave run-up due to vegetated 

seabed. Their study reveals that vegetation can 

effectively reduce solitary wave propagation 

velocity and that solitary wave run-up is decreased 

with increase of plant height in water and also 

diameter and stem density. For periodic waves, Mei 

et al. (2014) established the semi-analytical model 

for predicting the wave attenuation by specific 

configurations of cylinder array, e.g. an infinitely 

long forest belt. Liu et al. (2015) developed a 

mathematical model for small-amplitude periodic 

waves propagating through an aquatic forest within 

a finite extent. Maza et al. (2015) investigated the 

influence of solitary wave steepness, vegetation 

density and vegetation arrangement on tsunami wave 

attenuation using a three dimensional numerical 

approach based on IHFOAM. Most of these studies 

focuses on the effects of the vegetation near the 

shoreline while assuming the bottom surface of the 

mangrove forest to be an impermeable rigid bed. 

When waves are attenuated in coastal waters, the 

mechanism of energy dissipation generally involves 

some form of bottom interaction. It is evident that as 

waves propagate over the sea bed, small deflections 

can be induced in the sea bed by itself. Associated 

with such deflections, there is inevitably some 

dissipation of water wave energy due to internal 

friction within the sea bed. 

To analyze wave attenuation over a region with soft 

mud bottom Dalrymple and Liu (1978) considered 

the bottom as a viscous fluid. Later Macpherson 

(1980) considered the bottom as viscoelastic bed and 

derived a dispersion relation from which the rates of 

wave attenuation and sea bed deflections were 

computed. Hsiao and Shemdin (1980) considered the 

same problem but in their study they considered the 

pressure to be continuous. Ng and Zhang (2007), Liu 

and Chan (2007) contributed notably on the study of 

water wave propagation over the viscoelastic bed. 
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Inspired by the success of flow singularities in 

irrotational flow, we have studied generation of 

water waves due to the presence of two types of 

source, one is a time-harmonic line source and 

another is an impulsive source present in the upper 

layer consisting of mangrove forests. This can be 

mathematically viewed as an initial and/or boundary 

value problem for the potential function (source 

potential) satisfying Laplace equation in the fluid 

except at a point where the source is present with 

appropriate boundary conditions. The lower layer 

has been considered to be a viscoelastic medium. The 

expressions for the potential functions in the two 

layers are determined and the surface and interface 

profiles are presented graphically. We hope our 

study will be helpful for further studies on wave 

attenuation through mangrove forests using linear 

theory. 

2. FORMULATION 

A schematic sketch to explain the configuration of 

the problem is given in the following figure 1. Here 

the y-axis is taken vertically downwards and x-axis 

is in the horizontal direction with y =0 representing 

the mean free surface. The fluid domain consists of a 

upper layer of homogeneous inviscid water of 

density 1ρ  and depth 1h  bounded below by a 

viscoelastic fluid layer of depth 2h   and density 2ρ . 

It is assumed that the trunks of the mangroves are in 

the upper layer 1(0 y h )   while the roots are in the 

viscoelastic bed 1 2(h y h )   which is bounded 

below by an impermeable rigid flat bottom. The only 

external force acting on the system is the force due 

to gravity. The motion in the fluid is generated due 

to a line singularity in the upper fluid. The 

mathematical formulation in both the regions is 

represented as follows (cf. Behera et al. (2018)). 

Upper region: 

The motion in the fluid domain in the upper region is 

irrotational and incompressible. Thus the velocity 

potential 1 (for upper region) satisfies the two-

dimensional equation 

2
1  0  =                                                              (1) 

everywhere except at the point of singularity (0, f), 

10 y h  , x−  ,together with the Bernoulli 

equation 

1 1
1

1

1                                0 , in 


+  + =



  −   

e p

P
f w g y

t

y h x

       (2) 

where 1P is hydrodynamic pressure, pw is the peak 

frequency and ef  is the linearised coefficient 

associated with the energy dissipation  characterized 

by 1e pf w U  ( 1U is the velocity vector) and g is the 

acceleration due to gravity. In the calculations of ef , 

 

Fig. 1. Configuration of the problem. 

 

the simplified assumption of rigid bottom is used as 

an alternative of viscoelastic bed, due to the very 

small value of the linearising coefficient  ef  

compared to viscous drag inside the viscoelastic 

layer. The details of the linearisation procedure and 

determination of the coefficient ef are given in 

Appendix B of Massel et al. (1999). At the mean free 

surface y = 0, the linearized kinematic condition 

yields 

1 1  on  0,

,

 
= =

 

−   

y
t y

x



                                         (3) 

Where 1η (x, t)  is the the upper layer surface 

depression. 

The dynamic condition at y 0= yields 

1
1 1  on  0,

.


+  = =



−   

e pf w g y
t

x


                         (4) 

Combining the kinematic and dynamic condition as 

in Eqs, (3) and (4) the boundary condition on the 

mean free surface is obtained as  

2
1 1 1

2
 on  0,

.

   
+ = =

 

−   

e pf w g y
t yt

x

                (5) 

Lower region: 

In the lower layer, the governing equations within the 

viscoelasatic medium are based on Voigt's model 

and the main advantage of this is that the governing 

equations have been reduced to the form of the 

linearised Navier-Stokes equations for a viscous 

fluid as discussed in Macpherson (1980). The 

viscoelastic bed is assumed to be homogeneous in 

this study. Since this layer is incompressible the 

linear two dimensional equations for small 

disturbance in the absence of mangrove may be 

expressed as  

2 2 2 2
2

2 2 2 2
2 2

1
,

     
= − + + 

     

x x xP G

tt x x x

  


 
     (6) 
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2 2 2 2
2

2 2 2 2
2 2

1
,

     
= − + + + 

     

y y yP G
g

tt y y y

  


 
(7) 

where ( , )x y   is the displacement of the particle,  

2P is the pressure distribution, g is the vertical 

acceleration due to gravity, G is the shear modulus 

of elasticity and ν is the kinematic viscosity.  

In the presence of roots and trunks of the mangroves 

in this viscoelastic medium, a friction term has to be 

incorporated in the governing equations as in Hadi et 

al. (2003). The modified governing equations are, 

2 2 2
2

2 2 2
2

2

2
2

1

                                    ,

    
= − +  

    

 
+ −



x x

x x

e p

P

tt x x

G
f w

tx

 




 



  (8) 

2 2 2
2

2 2 2
2

2

2
2

1

                                 

    
= − +  

    

 
+ − +



y y

y y

e p

P

tt y y

G
f w g

ty

 




 



(9) 

where ,e pf w  are defined earlier. 

Continuity equation is given by 

2 2 0


+ =
 

yx UU

x y
                                                 (10) 

where 2U =( 2 2,
yxU U )is the velocity component in 

the lower region. Now, within the viscoelastic 

medium, the particle velocities can be expressed in 

terms of scalar functions 2 2( , , ) and  ( , , ) x y t x y t

given by (cf. Lamb (1932)) 

2 2 2 2
2 2 and  .

   
= + = −

   

yxU U
x y y x

          (11) 

Here 2Φ  denotes the velocity potential and 2Ψ

denotes the stream function.Moreover, the linearized 

Bernoulli equation of this region is analogous to that 

of upper region and can be written as 

2 2
2

2

1 2                                in  , 


+ +  =



  −   

e p

P
f w gy

t

h y h x

 )  12) 

where 2P is the pressure within this region. It may be 

mentioned that the Bernoulli equation relates the 

velocity potential with pressure, the pressure 

depends only on 2Φ , it does not depend on 2 . As 

the velocity is continuous at the interface, the 

linearized kinematic condition at the mean interface 

is given by 

2
11 2  on  , , 


= = = −   



y y
U U y h x

t


              (13) 

where U1 and U2 are the corresponding vertical 

velocities of upper layer and lower layer. Expressing 

the velocities  in terms of scalar function, we have, 

2 2 2 1

1                                 on  ,

   
= − =

   

= −   

t y x y

y h x



        (14) 

where 2η is the viscoelastic bed depression. In the 

absence of surface tension normal stress at the mean 

viscoelatic bed y = 1h must be continuous. Therefore 

2
2 2 1 12 0 on ,  

 
 − − = =
 
 

y

s

U
P P y h

y
   

so that 

2
2 1 2 1   2  on  . 


− = =



y

s

U
P P y h

y
                       (15) 

The vanishing of the shear stress yields 

2 2
10  o   . n


+ = =

 

yx UU
y h

y x
                               (16) 

Eliminating the pressure and velocity terms by the 

scalar functions, we get 

2 2 2
2 2 2

12 2
2 0  on  .
     

+ − = =
   

y h
x y y x

           (17) 

( ) ( )

2 2
2 1 2 2

2 1 2 2

2 2 1 1 2 1 2

1

2

 

                                              on  .

       
− + −          

+  −  = −

=

s

e p

t t x yy

f w g

y h

   

        (18) 

The final condition, vanishing of the horizontal and 

vertical velocities at the rigid horizontal bed is given 

by 

2 2 2 2

1 2

0  and  0

                                                on  .

   
+ = − =

   

= +

x y y x

y h h

     (19) 

3. METHOD OF SOLUTION 

Case - 1 (Time harmonic source) 

Here, it is assumed that a time harmonic line source 

is present at the point (0, f ). Therefore, 

2 2
1 log  as  0,− → = + →i tre r x y

            (20) 

Then the motion can be considered to be simple 

harmonic with frequency σ , so that the velocity 

potentials (of the upper and lower fluids) are time 

harmonic too. Therefore, Eq. (5) can be written as 

( )
2

1
11  on  0,

.


= − +  =



−    

e pif w y
y g

x



                    (21) 
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where 1 1[ ]− =  i tRe e 
. The frequencies σ  and pw

are different in general. The complex valued 

potential 1 satisfies the Laplace equation 

2
1 0  =                                                               (22) 

By virtue of the time harmonic property of the 

motion, Eqs. (8) and (9) can be further simplified as 

22 2
2 2

2

1
,

 
= − +  −

 

x
x x

s e p

U P
U f w U

t x



              (23) 

222
2 2

2

1 
= − +  − +

 

y
y y

s e p

U P
U f w U g

t y



          (24) 

where 2 2( , ) ,
  

=  
   

x y
yxU U

t t

 
is the velocity vector 

of the viscoelastic fluid particle and 
2

.= +s

G
i 


Using Eqs. (11) in Eqs. (10), (23) and (24), the 

governing equations of motion can be expressed in 

terms of scalar functions  2 2Φ (x, y, t) and Ψ (x, y, t)  

as  

2 2 2
2 2 20  and  .


  =   = + 


s e pf w

t
         (25) 

Since the scalar functions 2 2( , , ) and  ( , , ) x y t x y t

are time harmonic with frequency σ  these equation 

reduce to 

2 2
2 2 20  and  ,  =  =                                 (26) 

where 2 2 2 2[ ], [ ]i i− − =   =t tRe e Re e  and

−
=

e p

s

f w i



.The details of this derivation is 

provided in the Appendix of Behera et al. (2018).  

Introducing a characteristic length h, characteristic 

time 
h

g
, we define the dimensionless quantities as, 

=
x

x
h

, =
y

y
h

=
g

t t
h

, =
t

t
h

,
1

1 =
h

h
h

, 2
2 =

h
h

h
,

= i
i

h gh


 , =

h gh


 ,

1

2

=s



,

3
2

, ,= = =
f G

f G
h gh gh





 Using the fact that  

2 2[ ], [ ]i i− − =  =t t
i iRe e Re e    and removing 

the bars, the dimensionless quantities satisfy 

2
1 10  for 0 ,  =   −   y h x                   (27) 

everywhere except at the point of singularity (0, f),  

21
1(1 )  on  0

,


= − +  =



−   

e pif w y
y

x


                       (28) 

2
2 1 20  for  , ,   =   −   h y h x                (29) 

2
2 2 1 2 for ,    , =   −   h y h x         (30) 

2 2 1
1 on   ,

  
− = =

  
y h

y x y


                              (31) 

2 2 2
2 2 2

2 2

1

2 0 

                             on  , ,

   
+ − =

   

= −   

x y y x

y h x

 

            (32) 

( )

( )

21
2 1

2 2
2 2

12

( 1) 1

2 0  on  ,

 
− − +  −  

  

   
+ − − = = 

   

e p

s

f w
s i s

y

i y h
x yy





 

          (33) 

2 2 2 2
1 20  and  0  on  .

   
+ = − = = +

   
y h h

x y y x

    (34) 

To solve the boundary value problem governed by 

the Eqs. (27), (29) and (30), the velocity potential can 

be expressed following Thorne (1953) as 

1 1
01

[ ( )cosh ( )

                                  ( )sinh ]cos ,



 = + − +
r

log A k k h y
r

B k ky kxdk

        (35) 

1 2
0

1 2

2 [ ( )cosh ( )

              ( )sinh (( ))]sin ,



+ −

+ +

=

−

 E k l h h y

F k l h h y kxdk


   (36) 

1 2
0

1

2

2

[ ( )cosh ( )

             ( )sinh (( ))]cos



 = + −

+ + −

 G k k h h y

H k k h h y kxdk

   (37) 

where . Using 

the boundary conditions (34) 2  can be written as 

2 1 2
0

1 2

[ ( )cosh ( )

               ( )sinh (( ))]cos

  
 = − + − 

 

− + −


l

F k k h h y
k

F k k h h y kxdk

 (38) 

Here A(k), B(k), E(k), F(k) are unknown functions 

and are determined by using the boundary 

conditions. 

Condition (32) yields 

2 2
2 2

2 2 2
2 2

( )sinh 2 sinh
( ) ( ).

( )cosh 2 cosh

+ −
=−

+ −

l k lh lk k h
E k F k

l k lh k k h
(39) 

From (28) we obtain, 

2
1 1

2
1 1

( ) ( )

sinh 1 cosh

2
           .

sinh 1 cosh

−

=
 

− + 
 

−
 

− + 
 

e p

k f

e p

k
A k B k

f w
k k h i k h

e

f w
k k h i k h







(40) 

2 2 2
1, ( ) = + = + +l k r x y f
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Finally, we obtain 

1
1

1

0

( )cosh ( ) ( )sinh
   cos .

( ) ( )



 =

− +
+



r
log

r

a k k h y b k k y
kxdk

k v k

(41) 

Where 

2 2 2 2

2
1

1 1 2

2 2 2

( ) sinh cosh sinh cosh

2 1 sinh ( ) 2( 1)

cosh ( ) 2 cosh ( ) cosh

cosh sinh sinh ,

( )

(

) (

)

= −

 
+ − − − 

 

− − −

− +

e p

a k l kh lh k lh kh

f w
s i k f h s k

k f h k k f h A kh

lh B kh lh C






 

1 1

1

2 2 2 2

2 2

2 2 2 2

( ) sinh cosh sinh cosh

2 1 2 1

sinh 2( 1) sinh

2{ sinh sinh cosh cosh

} sinh ,

( )

(

)

−

− −

−

= −

   
+ + +   

   

 − −

+ −

−

e p e pkf

kh kh

kh

b k l kh lh k lh kh

f w f w
s i e i

se kf s e kf

B kh lh A kh lh

C e kf



 
 

 

2
2 2

2
1 2 2

1 2 2

2 2
2 2

2
1 1

2 2

( ) 1 sinh cosh

( 1) cosh sinh cosh

1 sinh sinh cosh

1 sinh cosh

cosh 1 sinh

sinh cosh

 
 = + 

 

+ − +

 
 + 
 

 
− + 

 

 
 − + 

 

 +

e p

e p

e p

e p

f w
k s i kl kh lh

s kl kh kh lh s

f w
i l kh kh lh

f w
s i k lh kh n

f w
kh s i k kh n

lh kh k




 




 


 


1 2

1 2 2

( cosh

cosh sinh sinh ), − +

coshkh A kh n

lh B kh lh C

 

With 

2

2 2 2 2

2

2 2 2 2 2

2 2 2

1

           ( ) 2 ( ) ( 3 ),

1

         ( ) 2 ( ) (3 ),

2 ( ) ( 3 ) 2 1 ,

 
= + 

 

 + − − +

 
= + 

 

 + − − +

 
= − + − + 

 

e p

s

e p

s

e p
s

f w
A i

l
l k i kl l k

k

f w
B i

l k i k l k

f w
C i kl l k i lk




 




 

  


 

2
1 1( ) sinh 1 cosh

 
= − + 

 

e pf w
v k k kh i kh


 

and 

2 1 2
2

0

1

2 2
2 2

1 2

0

2 2
1

2
2 2

sinh ( )
2 1

( ) ( )

cos ( cosh ( ) sinh ( ))

(( ) sinh 2 sinh )

cosh ( )cos

( ) ( )

( cosh ( ) ( )sinh )(( )

cosh 2 cosh ) ,

(

)





  + −
 = + 

 

 − −

+  −

+ −
−



 − + +

 −





e pf w k h h y
s i

k v k

kx k k f h kf v k

l k lh kl kh dk

k h h y kx

k k v k

kl k f h lv k kf l k

lh k kh dk




(42) 

2 1 2
2

0

sinh ( )
2 (1 )

( ) ( )
(

 + −
= +


e pf w l h h y

s i
k v k

 


     (43) 

2 2

1 2
2

2 2
0

2 2

2 2

cos ( cosh ( ) ( )sinh )(( )

cosh ( )

( ) ( )cosh 2 cosh )

cos ( cosh ( ) ( )sinh )(( )

sinh 2 sinh ) .)



 − − +

+ −

 − −

 − + +

 −



kx k k f h v k kf l k

l h h y

k v klh k kh dk

kx k k f h v k kf l k

lh kl kh dk

 

From the normalized form of the Eq. (4), the 

normalized surface elevation is obtained as 

1

2 2 2
0

2
2 1

1

1 2 2

2 2

1

( , ) ( )

2 ( sinh cosh sinh

cosh )( 1 sinh ( )

( 1) cosh ( ))

2 cosh ( )( cosh cosh

sinh sinh )

cosh cos
.

( ) ( )

[

(

)

]



−

= −

−

 
+ − 

 

− −  −

− −

− +





e p

e p

i t

x t Re f w i

l kh lh k lh

f w
kh s i k f h

s k k f h

k k f h A kh lh

B kh lh C

kh kx
dk e

k v k



 






      (44) 

Normalized interface elevation h2 can be computed 

from the equation 

2
2 1 2

2 2

2
2

2 1 1

1
( , ) 2 (

( 1)

) ( ) ( , , ).

[ (

)]

   
= − +

−   

 
− +  − 
 

s

e p

x t Re s
s t t y

f w s x h t
x y

 

(45) 

Case-2(Source of impulsive strength) 

 Here it is considered that a line source of impulsive 

strength is present at (0,f). Therefore 

2 2
1 ( ) log  as  0. → = + →t r r x y                (46) 

The initial conditions are given by 

2
20, 0, 0, 0, at  0.

 
 =  = = = =

 

i
i t

t t
          (47) 
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Let,
0

( , , ) ( , , )


− = 
pt

i ix y p x y t e dt and 

2 2
0

( , , ) ( , , )


−= 
ptx y p x y t e dt  be the Laplace 

transforms of i 2Φ ,Ψ  respectively. Taking Laplace 

transform of non-dimensional form of Eq. (1), (5), 

(46) and (11), we have 

2
1 10  for 0 ,  =   −   y h x                  (48) 

everywhere except at the point of singularity (0,f), 

( )  on   0 ,


= +  = −   


e pp p f w y x
y

     (49) 

2 2
1 log  as  0, → = + →r r x y                       (50) 

2 2 2 2
2 2 and 

   
 ,

     
= + = −

   

yxU U
x y y x

 
       (51) 

where 2
xU  and 2

y
U  are the Laplace transform of 

2
xU  and 2

y
U respectively. Now, Eq. (8) can be 

written as 

22 2
2

2

2
2 2

02

          

1

( ( ) ) . 

 
= − + 

 

 +  −

x
x

t
yx

e p

U P
U

t x

G
U t dt f w U






              (52) 

Taking Laplace transform of Eq. (52) we have 

22
2 2

2

2
2 2

2

     

1

1
( ) .    


= − + 



+  −

x x

x x
e p

P
pU U

x

G
U f w U

p






                        (53) 

Similarly, Laplace transform of Eq. (9) yields 

22
2 2 2

2

 
   

1 
= − +  −



x x x
s e p

P
p U U f w U

x



         (54) 

where 
2

.= +s

G

p
 


 Introducing the scalar 

functions from Eq. (51) into Eqs. (53) and (54) we 

have 

2 2
2 2 2 0  and     =  =s     

where .
+

=
e p

s

f w p



 Taking  Laplace transform of 

non-dimensional form of  Eq. (14), (17), (18) and 

(19) we get 

2 2 1
1 on  

 
  , ,

  
− = = −   

  
y h x

y x y


       (56) 

2 2 2
2 2 2

2 2

1

2 0 

                           on  , ,

   
+ − =

   

= −   

x y y x

y h x

 

             (57) 

( )1
2 1

2 2
2 2

12

( 1) ( )

2 0 on  ,


− − +  − 



   
+ − = = 

   

e p

s

s p p f w s
y

p y h
x yy




                  (58) 

2 2 2 2

1 2

0 and  0 

                                           on  .

   
+ = − =

   

= +

x y y x

y h h

 

         (59) 

Clearly, 1 , 2 and 2ψ satisfies the equations quite 

similar to the complex valued potentials associated 

with the time harmonic case. So, as described earlier, 

we can write the solutions as 

1
1

1

0 1 1

log

( )cosh ( ) ( )sinh
    cos ,

( ) ( )



 =

− +
+



r

r

u k k h y w k k y
kxdk

k v k

(60) 

where 

2 2 2 2

1

1 1

2 2 2 2

( ) 2 sinh cosh sinh cosh

(1 ) cosh ( ) ( )

sinh ( ) 2 cosh ( )

cosh cosh sinh sinh ,

( )

(

)

( )

= −

− − − +

− − −

+ +

e p

u k l kh lh k lh kh

s k k f h sp p f w

k f h k k f h

M kh lh N kh lh Q



 

1

1

2 2 2 2

2 2

2 2

( ) 2 sinh cosh sinh cosh

sinh (1 ) ( )

( ) 2{ cosh cosh

sinh sinh } sinh ,

( )

( ( )

)

−

−

−

= −

− − +

− + −

+ +

kh
e p

kf
e p

kh

w k l kh lh k lh kh

e kf s sp p f w

se p p f w M kh lh

N kh lh Q e kf



 

1 1 2 2

2 2

2
2 2

1 1

2 2 1

2 2 1 2

1

( ) ( 1) cosh sinh cosh

( ) sinh cosh

( ) sinh cosh

cosh ( ) sinh

sinh cosh ( ) sinh

sinh cosh cosh ( cosh

cosh

 = −

− +

+ +

 − +

+ +

 +

 +

e p

e p

e p

e p

k s kl kh kh lh

s p p f w kl kh lh

sp p f w k lh kh

kh sp p f w l kh

kh lh sp p f w k kh

lh kh k kh M kh

lh











2 2sinh sinh )+N kh lh Q

 

with 

2 2 2 2

2 2 2 2 2

2 2

1 1 1

2 ( 3 ) ( ) ( ) ,

( )( ) 2 (3 )

2 ( 3 ) 2 ( ) ,

( ) sinh ( )cosh

= + − +  +

= + + + +

= + + +

= + +

s e p

e p s

s e p

e p

l
dM pkl l k p p f w l k

k

dN p p f w l k pk l k

Q pkl l k p p f w lk

v k k kh p p f w kh







 

And 

1 2
2 e p

0 1 1

cosh k(h h y)coskx
2sp(p f w )

kΔ (k)v (k)

 + −
 = +   

2 2
1 1(klcosh k(f h ) lv (k)sinh kf )((l k ) − + +  
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2
2 2 e p

1 2

0 1 1

2 2
1 2

2

cosh lh 2k cosh kh )dk 2sp(p f w )

sinh k(h h y)
cos kx(v(k)sinh kf

Δ (k)v (k)

k cosh k(f h ))((l k )sinh lh

2klsinh kh )dk,



 − − +

+ −

+ − +

−

 (61) 

1 2
2

0

2 2
1

2 2

1 2
1

0

2 2 2
2 2

cosh ( )
2 ( )

( ) ( )

cos ( cosh ( ) ( )sinh )(( )

sinh 2 sinh ) 2 ( )

sinh ( )
cos ( cosh ( )

( ) ( )

( )sinh )(( )cosh 2 cosh ) .





+ −
= +



 − + +

 − − +

+ −
−



+ + −





e p

e p

l h h y
sp p f w

k v k

kx k k f h v k kf l k

lh kl kh dk sp p f w

l h h y
kx k k f h

k v k

v k kf l k lh k kh dk



(62) 

Therefore, the free surface elevation is given by 

1 2 2
0

2 2 1

1 1

1 2 2

2 2

1

1
( , ) 2 ( sinh cosh

2

sinh cosh )((1 ) cosh ( )

( )sinh ( )cosh ( ))

2 cosh ( )( cosh cosh

sinh sinh )

( )cosh cos

( ) ( )

(

)

]

+  

− 
=

− − −

− + − −

− −

+ +

+



 
c i

c i

e p

e p pt

x t l kh lh
i

k lh kh s k k f h

sp p f w k f h k f h

k k f h M kh lh

N kh lh Q

p f w kh kx
e dp dk

k v k

 


(63) 

and similarly the expression for 2 ( , )x t  can be 

obtained from (18) after taking the Laplace inverse 

of the potential functions.  The integrals arising 

during the computation are multiple integrals which 

can be evaluated approximately by the method of 

steepest-descent (cf. Jeffreys and Lapwood (1957)). 

Usually the use of the method of steepest-descent for 

a single integral requires a large parameter in the 

exponential term of the integrand. 

 However, Jeffreys and Lapwood (1957)obtained 

steepest-descent approximations of multiple 

integrals whose integrands do not necessarily have  

any large parameter explicitly in the exponential 

term. 

4. NUMERICAL RESULTS 

The roots of the dispersion equation for the wave 

propagation through mangrove forests with 

viscoelastic bottom are all complex in nature. Only 

two roots lie close to the positive real axis which 

contributes to the propagation of surface and 

interface waves. The detailed analysis of the position 

the roots is discussed by Behera et al. (2018). The 

outgoing waves at surface and interface are studied 

for various values of linearising factor, shear 

modulus of elasticity and kinematic viscosity for 

different positions of the source. The quantities 

, , , , , ,i ex t f G f  v have already been non 

dimensionalised.  

 All the figures have been drawn taking 1h =1; 

2h =2.5; G =1.27;  =2; =ef 0.15; f =0.375; 

5=t . It is to be noted here the non-dimensional 

value G=1.27 corresponds to a value of  
510  Newton/

2m  and the non-dimensional value 

 =2 corresponds to approximately the value of  

50 
2m /sec. All the values have been taken as 

mentioned above unless otherwise stated. 

 

 

Fig. 2. Normalized response amplitude in surface 

and interface modes for different values of n 

against x. 

 

Case-I ( 1)ef  

Figures 2-5 represent   when the presence of 

mangrove is negligible i.e the factor of drag force is 

very small. This is the case of a two-layer system 

with the lower layer as a viscoelastic medium. Figure 

2 represents   for various values of  ,   =0.8, 2, 

4, 20. It is observed that with the increase of   the 

height of peak of surface waves increases but height 

of peak of interface waves decreases. Figure 3 

represents the surface mode (Fig.3a) and interface 

mode (Fig.3b) for different positions of the source. 

When the source is present nearer to the free surface, 

it causes waves of greater amplitude. Figure 4 is for 

different values of G. Graphs for G = 1.27, 1.9, 2.5, 

5 have been drawn here. Greater values of G causes 

greater height of peak at the surface but lesser height 

of peak at the interface. 

The depth of the viscoelastic layer also affects the 

damping of the waves which can be seen in Fig. 5. 

When the density of the lower layer is taken to be 

1.25 times the density of the water, graphs of free 

surface elevation have been drawn for 2h =1.25, 

1.75, 2.5, 3.75. Figure 4(b) represents the interface 

mode of the above situation. 

Case-II 0( )=G  
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Fig. 3. Normalized response amplitude in surface 

and interfacemodes for different values of f 

against x. 

 

 

Fig. 4. Normalized response amplitude in surface 

and interface modes for different values of G 

against x. 

Here the lower medium has been taken as a viscous 

medium instead of a viscoelastic medium. Figure 6 

represents waves at surface and interface 

respectively for non-dimensional f=0.125, 0.375, 

0.625, 0.875. It is observed that when the source is 

nearer to the free surface the particles nearer to the 

source are displaced more than the particles at large 

distances. In fact at a large distance the variations are 

almost negligible. Figure 7 represents 1 2 and    for  

 

Fig. 5. Normalized response amplitude in surface 

and interface modes for different values of h2 

against x. 

 

 

Fig. 6. Normalized response amplitude in surface 

and interface modes for different values of f 

against x. 

 

different values of  , the larger values causes 

greater height of peak at surface but lesser height of 

peak at interface. Figure 8 depicts the waves at 

surface and interface for different values of ef . The 

denser forests prohibit the motion of outgoing waves. 

Generally, the value of ef  lies in the interval (0.05, 

0.35). The different curves represent the waves 
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Fig. 7. Normalized response amplitude in 

surface and interface modes for different values 

of n against x. 

Fig. 9. Normalized response amplitude in 

surface and interface modes for different values 

of n against x. 

 
 

Fig. 8. Normalized response amplitude in 

surface and interface modes for different values 

of fe against x. 

Fig. 10. Normalized response amplitude in 

surface and interface modes for different values 

of fe against x. 

 

 for ef  = 0.5, 0.15, 0.25, 0.35. Increasing values of 

ef causes the waves to diminish faster. 

Case-III 

Here the waves at surface and interface have been 

represented graphically for mangrove forests with 

viscoelastic bed. Figures 9-12 represent 1η and 2η

for variation in different parameters. Figures 9(a) and 

9(b) depict 1 and 2  for variation in  . Similar 

results have been observed. Figure 10 is for different 

density of forests. Graphs have been drawn for 

different values of ef . Similar to the previous cases 

Fig. 11 shows that smaller values of f causes greater 
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Fig. 11. Normalized response amplitude in 

surface and interface modes for different values 

of f against x. 

Fig. 13. Normalized response amplitude in 

surface and interface modes for different values 

of fe against x at t=6. 

  

Fig. 12. Normalized response amplitude in 

surface and interface modes for different values 

of G against x. 

Fig. 14. Normalized response amplitude in 

surface and interface modes for different values 

of fe against t at x=50. 

 

 height of peak but at larger distances the waves 

become similar. Figure 12 shows the effects of 

variation in G. 

Case-IV 

Here the source is considered to be of impulsive 

strength. Figure 13 represents the wave profiles for 

different values of ef  at t =6. It can observed that 

the effect of the forest density is quite similar to the 

previous cases i.e the amplitude of the waves gets 

diminished as the waves gets deeper into the forest. 

As the density of the forest increases the attenuation 

rate is much faster. Figure 14 and Fig. 15 depict the 

variation in the wave amplitude with time. In Fig. 14, 

the normalized wave amplitudes have been plotted 

against time for x =50 and similar plots have been 

depicted for x =75 in Fig. 15. Both these figures 

show the decrease in amplitude with time and the 
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rapid decease in amplitude for denser forest over 

time. 

Finally, Fig. 16 represents the amplitude ratio vs 

kinematic viscosity graph for different values of G. 

In this figure, the values of G and   are taken as 

dimensional. 

 

Fig. 15. Normalized response amplitude in 

surface and interface modes for different values 

of fe against t at x=75. 

 

 

Fig. 16. Amplitude ratio against kinematic 

viscosity for different values of G.(  and G have 

dimensional value in this figure). 

 

5. DISCUSSION 

The effects of mangrove trunks and viscoelastic bed 

on the surface waves and interface waves due to the 

presence of a line singularity submerged in water is 

studied here. Since the lower medium is considered 

to be viscoelastic the wave at interface is the 

deformation at the muddy layer. 

Numerical computations show that in the absence of 

mangrove, lower values of shear modulus of 

elasticity causes waves of lesser amplitude at the 

surface. As the elasticity increases, value of 1  also 

increases. These waves are progressive and 

oscillatory in nature. But at interface an opposite 

phenomenon has been noticed. In the absence of 

shear modulus of elasticity the deformation in the 

lower medium is greater than the case when elasticity 

is present and for greater value of shear modulus of 

elasticity the amplitude of the interface wave is 

decreasing. In the absence of mangroves the position 

of the source plays a major role for the amplitude of 

the surface and interface waves. Source nearer to the 

free surface is creating larger waves relative to the 

waves generated by a source nearer to the interface. 

At large distances, the variation is very small, but 

here we have noticed that for lesser angular 

frequency this variation for different positions of 

source point is very small. The effect of kinematic 

viscosity on the free surface wave in the absence of 

mangrove is very prominent, the lower viscosity 

helps the surface wave to damp faster. In the 

presence of mangrove the effect of damping is more 

faster. At the interface the effect of viscosity is more 

prominent. As the viscosity increases, the amplitude 

is getting smaller and smaller and for very large 

values of viscosity the deformation is too negligible 

that it can be considered as almost rigid bottom. In 

the presence of mangroves the amplitude ratio shows 

that as the viscosity increases the ratio decreases 

rapidly because as the viscosity increases the waves 

at surface has greater amplitude but the interface has 

lesser amplitude. We also notice that the elastic 

effects of the bed has similar effect. For higher 

values of kinematic viscosity the effect of elasticity 

is not prominent but the for lower viscosity this effect 

is very significant. The presence of elasticity 

decreases the amplitude of waves at the interface. In 

the absence of shear modulus of elasticity as there 

are no elastic forces to restore the bed to its 

undisturbed state the waves at the interface have 

greater amplitude in the absence of elastic forces. 

In the case of a body or a number of bodies 

undergoing small oscillations in fluid medium waves 

of small amplitudes are generated. If the motion 

starts initially from rest then it can be assumed to be 

irrotational and thus it can be described uniquely by 

a velocity potential. As the motion is of small 

amplitude the basic equations of linearised theory 

involving the velocity potential can be assumed to 

hold good. When a body or a number of bodies are 

present the resulting motion of the fluid can be 

described by a series of singularities placed on the 

body or bodies. These singularities are characterised 

by their giving rise to velocity potentials which are 

typical singular solutions of Laplace equation in the 

neighbourhood of the singularity. For two 

dimensional problems, these singularities are of 

logarithmic types or multipole types and for three 

dimensional problems these are point sources or 

multipoles. Thus the determination of velocity 

potentials due to different types of singularities in a 
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fluid medium is of considerable importance and has 

important application in the mathematical study of 

many real life physical phenomena describing the 

wave propagation in ocean. Usually, the ocean is 

modeled as a fluid medium with a free surface of 

infinite or finite depth. For a fluid medium with 

infinite depth or uniform finite depth these potentials 

are well known (cf. Thorne (1953), Wehausen and 

Laitone (1960),Rhodes-Robinson (1970). For a two-

fluid medium these were obtained by Gorgui and 

Kassem (1978),Rhodes-Robinson (1980), Mandal 

(1981), Kassem (1982). However, for mangrove 

forests modeled as a two-layer fluid with a 

viscoelastic bed these potentials are yet to be 

determined. Thus the problem of determination of 

source potential due to a line source in mangrove 

forests appears to be quite important both 

mathematically and physically as it has application 

in real life physical phenomena involving wave 

propagation through a medium such as coastal 

mangroves. 
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