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ABSTRACT 

Past studies showed that a micron-sized surface roughness may cause the generation of a significant unstable, 

stationary wave in a crossflow boundary layer, and consequently promote or delay the laminar-turbulent 

transition. The crossflow boundary layer is usually driven by the favorable pressure gradient which is produced 

by accelerated inviscid velocity. Hence, for a fixed sweep angle, the magnitude of pressure gradient is the key 

parameter for the excitation and evolution of the stationary crossflow mode. In order to study the effect of 

pressure gradient on the excitation and subsequent linear development of stationary mode, a classical Falkner-

Skan-Cooke boundary layer is introduced so that the magnitude of pressure gradient can be easily parameterized 

by an acceleration coefficient. Numerical simulation is performed to induce the stationary perturbation by 

chordwise-isolated, spanwise-periodic roughness at the lower branch of neutral curve. Then the excited waves 

develop into Rayleigh modes in the downstream region. The stationary modes with different spanwise 

wavenumbers in various favorable-pressure-gradient boundary layers are simulated and analysed to determine 

the effect of pressure gradient. And the corresponding coupling coefficients are calculated to connect the initial 

amplitude and the eigenmode of linear stability theory for implementing the existing prediction method of 

laminar-turbulent transition.  

Keywords: Stationary wave; Instability; Falkner-Skan-Cooke boundary layer. 

 

1. INTRODUCTION 

The role of surface roughness of wall-bounded flows 

is of particular interest in the laminar-turbulent 

transition. In a crossflow boundary layer, stationary 

waves with significant amplification can be 

generated by roughness elements solely (Saric et al. 

2003). In the wind-tunnel experiments, even micron-

sized surface irregularities were able to cause 

laminar-turbulent transition (Reibert et al. 1996; 

Carrillo Jr et al. 1997). Radeztsky Jr et al. (1999) 

changed the height of the roughness, and the 

measured location of transition moved downstream 

consequently. Furthermore, the transition is sensitive 

to the chordwise-isolated, spanwise-periodic 

roughness elements placed near the attachment line 

(Radeztsky Jr et al. 1999; Reibert et al. 1996), and 

an evident influence on the transition has been 

observed in the experiments which suggests that 

micron-sized surface roughness can promote or 

delay the laminar-turbulent transition. By means of 

spatial direct numerical simulation, Wassermann and 

Kloker (2002) and Wassermann and Kloker 

(2003)investigated the transition control strategy of 

upstream flow deformation (UFD) by discrete 

roughness elements (DREs) (Saric et al. 2003) and 

explained the underlying mechanisms for the first 

time. 

For the understanding of the mechanism behind the 

crossflow-dominated transition, a theoretical 

analysis must be put forward. Finite-Reynolds-

number theory (FRNT) was introduced by Crouch 

(1993) and Choudhari (1994) to study the receptivity 

of the stationary crossflow modes. It works as 

solving Orr-Sommerfeld equation with the 

inhomogeneous boundary condition which 

represents the wall roughness. The obtained results 

show a good agreement with the experimental 

observation (Reibert et al. 1996), though it neglects 

the non-parallelism effect which plays an important 

role near the leading edge (Collis and Lele 1999). 

Complementary to the FRNT, large-Reynolds 

number asymptotic analysis is carried out by 

(Choudhari 1994; Choudhari 1995) and (Butler and 

Wu 2018), to reveal the mechanism of excitation and 

subsequent linear amplification of so-called long-

wavelength Rayleigh mode. The crossflow mode is 

first generated as a wall-shear-aligned mode at the 

leading order, then develop into a viscous-inviscid 

interactive regime, and finally become the long-

wavelength Rayleigh mode. Moreover, the super-

linear (Kurz and Kloker 2014) and nonlinear 

http://www.jafmonline.net/


L. Shen and C. Lu / JAFM, Vol. 14, No. 5, pp. 1437-1445, 2021.  

 

1438 

response to the roughness height is explained by 

large-Reynolds number asymptotic analysis as well 

(Butler and Wu 2018; Choudhari and Duck 1996). 

Schrader et al. (2009) and Tempelmann et al. (2011) 

performed direct numerical simulation (DNS) of the 

generating process of the travelling and stationary 

crossflow as well. Recently, He et al. (2019) linked 

the mechanism of laminar-flow-control based on 

distributed roughness to the resonance between the 

multiple crossflow modes and the roughness-

induced perturbation in a Fanker-Skan-Cooke 

boundary layer. The wave-wave interactions in their 

study include the triadic resonance involving two 

crossflow eigenmodes and one roughness mode. The 

generalized resonant mechanism may explain the 

selected wavenumber of the distributed roughness 

that is able to delay or promote the transition. 

For a fixed sweep angle, the magnitude of pressure 

gradient is one of the key parameters for the 

excitation and subsequent linear development of 

instability. In this paper, a classical Falkner-Skan-

Cooke similarity solution is introduced to study the 

effect of pressure gradient. Numerical simulation is 

performed to generate the stationary perturbation by 

chordwise-isolated, spanwise-periodic roughness. 

The excited waves are compared with the 

eigenmodes of linear stability theory and Rayleigh 

modes in various favorable-pressure-gradient 

boundary layers. And the corresponding coupling 

coefficients are calculated for the application of 

prediction of laminar-turbulent transition. 

2. FORMULATION 

2.1 Scalings and Base Flow 

We consider a small-height roughness element on the 

surface of a swept flat plate to induce stationary wave 

in a classical Falkner-Skan-Cooke Boundary layer as 

seen in Fig.  1. The simulation is carried out in a 

Cartesian coordinate system which is non-

dimensionalized by the displacement thickness of 

boundary layer 
*   at the inlet boundary of the 

computational domain, 

* * * *( , , ) ( , , ) / .x y z x y z =                                      (1) 

And the velocities and pressure are non-

dimensionalized by the far-field chordwise velocity 

of mean flow 
*U   at the inlet boundary 

*

*
* *

*
*

*2
/ , , 

uu
p

v v U p
U

w w

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

 
   
   = =    
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where 
*  is the reference density. The sweep angle 

is 45 = . The Reynolds number is defined as 

* * */Re U  =  with 
*  being the kinematic 

viscosity. The Reynolds number at the inlet 

boundary is set to 180Re =  which is upstream of 

Schrader et al. (2009)’s case ( 220)Re = , so that we 

can place the roughness element closer to the leading 

edge of the flat plate. The velocity and pressure are 

decomposed into two parts, i.e., the base flow and 

perturbation, 
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where 
* */ 1h h =  is the non-dimensional 

roughness height that is much smaller than the 

displacement thickness of boundary layer. The 

invicid slip velocity of Falkner-Skan-Cooke flow 

(Shen and Lu 2021b) over the flat plate is 

( )
0

.

m

e

x
U x

x

 
=  
 

                                                   (4) 

The base flow is assumed to be spanwise uniform. 

And a similarity variable Re eU
y

x
 =  and stream 

function ( )F   and ( )G    are introduced so that the 

base flow velocities can be written as, 

( ) ( )1/2

,
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2

tan .
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
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       (5) 

By substituting the velocities Eq. (5) into the 

classical boundary layer equations, the governing 

equations for base flow are obtained 

( )
21

1 0,
2

1
0,

2

m
F F F m F

m
G FG

+    + + − =   


+  + =


                   (6) 

where e

e

dUx
m

U dx
=  is the acceleration parameter. 

We only consider the favorable-pressure-gradient 

boundary layer, i.e., 0m  . The lower and upper 

boundary conditions are 

0, 0,F F G as = = = =                                (7) 

and 

1, ,F G as = = →                                      (8) 

respectively. 

 

2.2 Perturbed flow 

Due to the streamwise-isolated and spanwise-

periodic roughness, the crossflow eigenmodes and 

roughness-induced perturbations are periodic in the 

spanwise direction and can be modeled by Fourier 

components 
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Fig. 1. Sketch of the computational domain. 
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where 3k  is the fundamental wave number. 

Substitute Eq. (9) into the perturbed Navier-Stokes 

equations, then obtain the governing equations for 

our numerical simulation, 
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where the wave number of Fourier component 

3n nk = . t B B n BU V i W
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linear convective operator. 
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 is the 

viscous operator. The equivalent boundary condition 

for the small surface roughness is expressed as a 

Maclaurin series of perturbed velocities on the 

surface, 
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where ( , )F x z  is shape function of the roughness, 

and the dimensionless roughness height h=0.01. A 

smooth top-hat roughness (Kurz and Kloker 2014) is 

applied here whose contour is defined by a 

hyperbolic tangent function 

( )
1 2, 1 tanh . .,
2
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(12) 

where d is the diameter of the roughness element and 

  controls the maximum slope angle of the element, 

which is 0.5 in the following computations. 

Jaccobi transform is utilized for applying the 

numerical simulation on non-uniform meshes. High-

order compact schemes (Lele 1992; Wassermann 

and Kloker 2002; Shen et al. 2019; Shen and Lu 

2021a) are used to discretize the spatial derivatives. 

The fifth-order upwind schemes 
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are used for the convection terms, where C is the 

propagation speed, f can be any variable in the 

governing equations. The sixth-order first derivative 

scheme 
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and fifth-order second derivative scheme 
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are used for the pressure gradient term and viscous 

term respectively. The time marching is 

implemented by fourth-order Runge-Kutta scheme. 

Fourth-order iterative schemes are applied to solve 

the elliptical pressure-divergence equation. The 

nonlinear terms in the momentum equations are 
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solved by the pseudo-spectral method. The 

computational area is a rectangle space with 

chordwise length of 800 and normal length of 25. 

The perturbed velocities at the inlet boundary is set 

to zero, while a von Neumann condition is used at 

the far-field/upper boundary. The wall/lower 

boundary is applied the non-slip condition unless the 

roughness area given by Eq. (12), and a non-reflect 

boundary condition (Jin and Braza 1993) is utilized 

at the outlet boundary. 800 chordwise-grids and 200 

normal-grids is used for the computation. The 

validation of numerical method and convergence of 

mesh are shown in section 3. 

2.3 Eigenvalue modes 

The eigenvalues of the theoretical solutions will be 

used to identify and analyse the generated stationary 

mode in the numerical simulation. According to the 

linear stability theory (LST), the crossflow 

eigenmodes can take a local normal-modal form 
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where r ii  = +  is the complex chordwise 

wavenumber and   is the spanwise wavenumber. 

Substitution of Eq. (16) into linear perturbed Navier-

Stokes equations with parallel-flow assumption 

leads to 
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where 
d

D
dy

 . By eliminating u , w  and p , it will 

be reduced to the steady form of Orr-Sommerfeld 

equation, 
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This is an eigenvalue problem by applying the 

homogeneous boundary conditions.  

If the Reynolds number is asymptotic large, the 

steady Orr-Sommerfeld equation will be reduced to 

a steady Rayleigh equation, 
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Thus, a critical layer appears, if an inflection point 

cy  exists in the profile of the effective velocity of 

base flow and satisfy 
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which can be written as 

, ,

B B
c

B yy B yy

U W
as y y

U W
= =                               (21) 

to find the inflection point of the effective velocity of 

base flow and the eigenvalue. Obviously, the 

location of the critical layer is independent of the 

wavenumber, and the chordwise wavenumber is in a 

linear relationship with the spanwise wavenmber. In 

addition, near the leading edge where viscous effect 

play at the leading order equations, the stationary 

mode is wall-shear-aligned at the leading order, 

, , 0, 0.B y B yU W as y + = =                        (22) 

3. RESULTS AND DISCUSSION 

 

Fig. 2. Neutral curves of base flows with 

different favorable pressure gradients, m=0:1, 

0:15 and 0:2. 

 

Before the numerical simulation, the stability 

analysis on the base flow is carried out by using 

linear stability theory Eq. (18). The neutral curves of 

different favorable pressure gradients are shown in 

Fig. 2, i.e., m=0.1, 0.15 and 0.2. Inside the neutral 

curve is the unstable region where the perturbed 

waves are amplifying, whereas outside the neutral 

curve is the stable region where the perturbed waves 

are damped. As seen in Fig. 2, the boundary layer of 

greater acceleration parameter has larger unstable 

region which begins closer to the leading edge of the 

flat plate. The higher-spanwise-wavenumber branch 

of the neutral curve is the so-called upper branch, and 

the lower-spanwise-wavenumber branch is the lower 

branch. The most efficient excitation of the 

stationary wave occurs at the lower branch of the 

neutral curve, which can experience sufficient 

amplification once generated. Therefore, the 

roughness element in this study is placed at the lower  
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Fig. 3. Chordwise evolutions of dispersion relations of the excited stationary wave comparing with 

those predict by linear stability theory and Rayleigh mode, 0.2, 0.16.m = =  

 

branch for the efficient excitation of the unstable 

waves. 

First, the optimal case of Schrader et al. (2009) is 

calculated. The base flow is a Falkner-Skan-Cooke 

Boundary layer of m=0.2. The spanwise 

wavenumber of the wall roughness are chosen to be 

0.16 =  and placed at the lower branch. The real 

part of the chordwise wavenumber r  is associated 

with the wavelength of the perturbed wave. And its 

numerical results (Fig. 3a) show a good agreement 

with the those predicted by linear stability theory and 

Rayleigh mode as it propagates downstream. The 

imaginary part of the chordwise wavenumber i  is 

associated with the amplifying rate (negative values) 

of the perturbed wave. And its absolute value (Fig.  

3b) is larger than those predicted by linear stability 

theory near the roughness, while both results 

converge downstream. Moreover, the profiles of the 

chordwise and spanwise velocity of the excited 

stationary waves agree well with the eigenfunctions 

obtained from linear stability theory at x=400 as 

shown in Fig. 4.  

 

 

Fig. 4. Profiles of the chordwise and spanwise 

velocity of stationary wave obtained by 

numerical simulation comparing with the 

eigenfunctions computed by linear stability 

theory at x = 400, 0.2, 0.16.m = =  

It indicates that at the sufficient downstream location 

the excited stationary wave develops into a long-

wave Rayleigh mode and its dispersion relation 

match well with the eigenvalue of linear stability 

theory. Therefore, we can define a coupling 

coefficient RC , namely so-called effective 

receptivity coefficient (Schrader et al. 2009; 

Tempelmann et al. 2011), to evaluate the efficiency 

of the excitation by extrapolating the initial 

amplitude at the neutral point from the downstream 

amplitude via the 
Ne  method whose amplifying rate 

i  is computed by linear stability theory. 

( )

( )
( ) ( ), ,

e

N

x

e
R e iN

r x

A x
C N x x xdx

e H



= = −         (23) 

where N  is the integral of the amplifying rate from 

neutral point Nx  to downstream location ex , and 

( )eA x  is the downstream amplitude. ( )rH   is the 

shape function of roughness in Fourier space. In this 

paper, we choose the amplitude of chordwise 

velocity |u| at 700ex =  as the downstream amplitude 

and the spanwise velocity has the similar features. 

The coupling coefficient RC  is a constant in the 

downstream region. 

Additionally, the numerical results of the optimal 

case at m=0.2 on meshes of different numbers of 

y -grids yN  are presented to verify the numerical 

method and the convergence of computational mesh. 

The errors of the dispersion relations of the 

eigenmodes at downstream location 600x =  

between numerical results on different numbers of 

grids and theoretical solutions of linear stability 

theory are shown in Fig. 5. The error of the real part 

of complex chordwise wavenumber ( )rE   

represents the disperse error, and the error of the 

imaginary part ( )iE   represents the dissipative 

error. The finer meshes give relatively exact results 

for both the real part and imaginary part of the 

wavenumber. And the coarse meshes of less than 150 

grids bring in visible errors. In view of this, we 
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choose a mesh of 200 y -grids for maintaining the 

high accuracy and efficiency of computation. 

 

 

Fig. 5. The errors of the real part E( r ) and 

imaginary part E( i ) of complex chordwise 

wavenumber of the eigenmodes at x=600 on 

different y-grid meshes, m = 0:2, b = 0:16. 

 

The coupling coefficient RC  provides the initial 

condition for the existing prediction methods of 

laminar-turbulent transition, for instance, the well-

known 
Ne  method based on the linear stability 

theory. It is calculated by Eq. (23) varying with 

spanwise wavenumber   in different pressure-

gradient boundary layers and the results are shown in 

Fig. 6(a). Additionally, as shown in Fig. 6(b), the 

displacement thickness of boundary layer r  at the 

roughness varying with spanwise wavenumber has a 

minimum point i.e., 0.25 =  for 0.15m =  or 

0.3 =  for 0.2m = . That is the location of neutral 

point as seen in Fig.  2. On the left of the neutral point 

is the lower branch, whereas on the right of the 

neutral point is the lower branch. The obtained 

coupling coefficient of the optimal case ( 0.16 = ,

0.2m = ) accord well with the numerical result of 

Schrader et al. (2009). The roughness in our 

simulation located at the lower branch of neutral 

curve trigger the worst scenario. As seen in Fig.  6(a), 

the lower-spanwise-wavenumber stationary waves 

give higher coupling coefficients for favorable-

pressure-gradient 0.1,0.15 and 0.2m = . It indicates 

that the lower branch relates to strong excitation. 

And it also finds the relationship between the 

excitation and the magnitude of pressure gradient. 

The greater favorable pressure gradient brings larger 

coupling coefficients. The 0.2m =  case has the 

largest coupling coefficients as seen in Fig. 6(a).  It 

demonstrates that favorable-pressure-gradient 

promote the exciting process of stationary waves. 

The subsequent linear development, after excitation, 

is important to the entire process of transition as well. 

The evolution of the dispersion relations of the 

excited stationary waves in the downstream of 

roughness are shown in Figs. 7 and 8. Figure 7 gives 

the real parts of chordwise wavenumbers computed 

by numerical simulation and linear stability theory. 

Due to the linear dependence of chordwise 

wavenumber on the spanwise wavenumber (see Eq. 

(20)), the results are all normalised by the spanwise 

wavenumber  . The dispersion relations of higher-

spanwise-wavenumber mode ( 0.24 = ) are closer 

to the eigenvalues of Rayleigh mode. On the 

contrary, the lower-spanwise-wavenumber modes 

( 0.12,0.16) = have a smaller chordwise 

wavenumber than that of Rayleigh mode. It indicates 

that the viscous effect remains significant in this 

region. This phenomenon is similar in different 

pressure-gradient boundary layers ( 0.15,0.2m = ). 

Figure 8 gives imaginary parts of chordwise 

wavenumbers computed by numerical simulation 

and linear stability theory. Obviously, the amplifying 

rate has been underestimated by linear stability 

theory near the roughness. It mainly attributes to the 

assumption of parallel flow in linear stability theory, 

which should have non-parallel effect in the leading-

edge area. On account of the neutral point of greater 

favorable-pressure-gradient boundary layer being 

closer to the leading edge, the corresponding 

development of stationary mode experiences 

stronger non-parallelism effect and leads to larger 

deflection between the results of numerical 

simulation and linear stability theory as seen the 

difference in cases m=0.2 and m=0.15. 

 

 

Fig. 6. Coupling coefficients CR of stationary waves and displacement thickness of boundary layer r at 

the roughness varying with spanwise wavenumber in various pressure-gradient boundary layers. 
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Fig. 7. Real parts of chordwise wavenumbers r computed by numerical simulation and linear stability 

theory comparing with the eigenvalue of Rayleigh mode. 

 

 

Fig. 8. Imaginary parts of chordwise wavenumbers i computed by numerical simulation and linear 

stability theory. 

 

According to Eq. (23), the larger receptivity 

coefficients of lower-spanwise-wavenumber modes 

(Fig.  6) are partly due to the relatively smaller 

amplification rates (Fig.  8). Because, even if the 

unstable waves have the equal downstream 

amplitude, the smaller amplification rates would 

obtain larger receptivity coefficients. 

Nonetheless, the amplifying rates of numerical 

simulation and linear stability theory converge in the 

downstream. It suggests that the coupling 

coefficient, which is proposed to connect the initial 

amplitude and the eigenmode of linear stability 

theory, can be applied to the prediction method of 

laminar-turbulent transition as the initial conditions 

in different pressure-gradient boundary layers (Xu et 

al. 2016). The computation of 
Ne  method is much 

more economical than the cost of DNS which means 

this application in the prediction of transition will be 

highly valuable. 

4. CONCLUSIONS 

In this paper, we simulate the excitation and 

subsequent development of the stationary waves in 

the Falkner-Skan-Cooke boundary layers 

numerically. The surface roughness is placed at the 

lower branch of neutral curve to induce the 

instability efficiently. The obtained results have been 

compared with the eigenmodes of linear stability and 

Rayleigh modes. The dispersion relations of higher-

spanwise-wavenumber waves match well with the 

eigenvalues of inviscid Rayleigh mode. On the 

contrary, the lower-spanwise-wavenumber waves 

have a relatively smaller chordwise wavenumber 

which indicates that the viscous effect remains 

significant in this region.  

The neutral point of greater favorable-pressure-

gradient boundary layer is closer to the leading edge, 

hence the corresponding development experiences 

stronger non-parallelism effect and leads to larger 

deflection between numerical results and linear 

stability theory. Nonetheless, the amplifying rates of 

numerical simulation and linear stability theory still 

converge in the downstream where non-parallelism 

effect fades out. It suggests that the coupling 

coefficient, which is proposed to connect the initial 

amplitude and the eigenmode of linear stability 

theory, can be applied to the prediction method of 

laminar-turbulent transition as the initial conditions.  
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The numerical results show that lower-spanwise-

wavenumber roughness introduces higher coupling 

coefficient. And the greater favorable-pressure-

gradient bring larger coupling coefficient. It 

demonstrates that favorable-pressure-gradient 

promote the exciting process of stationary waves. 
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