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ABSTRACT 

The study of wind turbine wakes was the subject of numerous papers. However, most computational studies 

were based on Reynolds Averaged Navier Stokes (RANS) equations or on large eddy simulations (LES) 

technique. In this work, a different technique based on Lattice Boltzmann method (LBM) is applied. This 

approach allows the numerical investigations of the flow field in the wake of a wind turbine modelled by a solid 

porous disk. The LBM is a mesoscopic simulation method for fluid flow computations. The applied model is 

based on the Regularized Bhatnagar-Groos-Krook (R-BGK) model and an LBM-LES method is used to solve 

the turbulent flow at a Reynolds number Re = 40000. Three-dimensional computations are performed using the 

open source Palabos code. The effects of the lattice velocity schemes D3Q19 and D3Q27, the value of 

Smagorinsky’s constant and the type of boundary conditions on the solid porous disk are investigated. The 

potential of 3D LBM computations to describe the far wake of an horizontal axis wind turbine is also shown.  

Keywords: LBM; LES; Porous disk; Actuator disk; Wind turbine wake. 

NOMENCLATURE 

a   induction factor x   streamwise location 
c   lattice speed of sound y   spanwise location 

ic   discrete velocities z   vertical location 

PC   power coefficient zh hub height 

sc   speed of sound    function of TC  

sC   Smagorinsky constant    Kronecker symbol 

TC   thrust coefficient      initial wake width 

D   rotor diameter T   turbulent viscosity 

if   distribution function 0   molecular viscosity 

eq
if   equilibrium distribution 

functions 
e ff   total viscosity 

neq
if   non-equilibrium distribution 

functions 

   constant weight 

k   growth rate of the wake    collision operator 

p   disk porosity    second order non-equilibium moment 

iQ   first non-equilibrium moment    fluid density 

Re   Reynolds number    standard deviation of the Gaussian-like 

velocity deficit 
t   physical time 0   molecular relaxation time 

0U   free stream velocity T   turbulent relaxation time 

  e ff
  

total relaxation time 
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1. INTRODUCTION 

The use of wind energy for the production of 

electricity is constantly evolving around the world. 

This boom is mainly due to a better analysis of the 

physical phenomena involved in wind energy 

conversion systems, which has led to a drop in the 

production costs of electrical energy. Among the 

most studied subjects, there is that of the wake of 

wind turbines. Indeed, the wind speed decreases 

downstream of the wind turbines and the turbulence 

increases. In the case of wind farms, the wind 

turbines located downstream are less efficient if the 

distance separating them from upstream turbines is 

small. In addition, the turbulence being there more 

important, the stresses are more important, 

consequently, the wind turbine blades can be 

damaged. The study of the wake downstream of the 

wind turbines has therefore been the subject of 

numerous studies, both numerical and experimental. 

Thus, Gomez-Elvira et al. (2005) studied the 

turbulence characteristics of the wind turbine near 

wakes. They applied a calculation method based on 

an explicit algebraic model for the components of the 

turbulent stress tensor. Kasmi and Masson (2008) 

combined the Reynolds Averaged Navier Stokes 

(RANS) equations with the actuator-disk model to 

compute the flow in the wind turbine wake. 

Turbulence was modelled by a modified k −ε model 

in which an extra term was added to the transport 

equation for the turbulence energy dissipation rate in 

the near wake. Ameur et al. (2011) performed 2D-

axisymmetric and 3D numerical simulations of flow 

around two horizontal-axis wind turbines. Their 

simulations were performed by resolving the RANS 

equations over the whole computational domain. The 

rotor was approximated by the actuator disk concept 

and the geometry of the nacelle was taken into 

account. 

Wu and Porte-Agel (2011) applied large-eddy 

simulation (LES) coupled with a wind-turbine 

model, to characterise the wake of a turbine in a 

turbulent and neutral boundary-layer flow. 

Bastankhah and Porte-Agel (2014) introduced an 

analytical wake model to predict the wind velocity 

distribution downwind of a wind turbine. Their 

model was derived by applying conservation of mass 

and momentum and assuming a Gaussian 

distribution for the velocity deficit in the wake. 

Englberger and Dornbrack (2016) used a 

geophysical flow solver and carried out LES 

computations to investigate the wake of a wind 

turbine in a turbulent boundary layer under neutral 

stratification. In Englberger and Dornbrack (2017), 

these investigations were performed for a wind 

turbine under non-neutral thermal stratification. 

More recently, Ranjbar et al. (2020) performed 

experimental and numerical investigations on the 

flow field in the vicinity of porous disks with 

porosity varying from 0.4 to 0.8. Relations between 

the disk porosity and wind turbine parameters 

including induction factor, power coefficient and 

thrust coefficient were suggested. These reported 

works are not exhaustive. More other studies related 

to this topic were the subject of review papers, 

among them, Sanderse et al. (2011) and the latest, 

Porte-Agel et al. (2020). 

In short, most of the numerical methods applied for 

the computations of the fluid flow in the wake of 

wind turbines were based on the solution of the 

Reynolds Averaged Navier-Stokes equations 

(RANS) or on Large Eddy Simulations (LES) in 

more recent studies. Knowing that LES methods are 

costly in time and computing equipment, a different 

numerical technique, namely the Lattice Boltzmann 

Method (LBM) is applied in this paper, to compute 

the wind turbine wake. The most advantages of the 

LBM are its computational efficiency in solving 

complex physical problems and in some specific 

areas of CFD (Latt et al. 2020). This is a continuum 

method and not a diskrete particle approach. It offers 

an Eulerian view of the flow and is mesh based 

(Gourdain et al. 2018). Thereby, LB computations 

were successfully applied for the simulation of 

natural convection problems with comple.x 

geometry (Khazaeli et al. 2015), to study the flow 

and heat transfer of nanofluids (Jafari et al. 2018) 

and other fluid flow problems in porous media. LBM 

was also applied for the numerical simulation of 

viscous flow around bluff body at low Reynolds 

numbers (Kumar et al. (2010)) and athigh Reynolds 

numbers (Liu et al. 2008). As for aerodynamic 

applications, Chen (2015) coupled MRT-LBM with 

SA turbulent model to compute a two-dimensional 

flow around NACA0012 airfoil. Gourdain et al. 

(2018) applied the LBM for the study of the turbulent 

flow around microair vehicles. 

Their results were compared to Direct Numerical 

Simulations (DNS) of a single blade rotor at low 

Reynolds number, to LES computations of a two-

bladed rotor operating inground effect and to LES 

computations of a three-bladed rotor optimised for 

acoustic performance. Rullaud et al. (2018) 

developed a 2D solver based on the LBM coupled to 

the Actuator Line method to compute the forces 

acting on vertical axis wind turbines. Their study was 

applied to two 2D turbine models for the prediction 

of blade forces and wake velocity. Grondeau et al. 

(2019) combined also an Actuator Line Method 

(ALM) with the Lattice Boltzmann Method (LBM) 

to study vertical axis wind turbines. Their 

ALM/LBM model was implemented in a LBM/LES 

solver to compute the wake of a three-bladed H-type 

Darrieus tidal turbine. 

The aim of our investigations is to assess the 

potential of 3D LB computations to describe the far 

wake of an horizontal axis wind turbine, modelled by 

a solid porous disk. This model is similar to the 

actuator disk concept (Espana et al. (2012)). These 

simulations are carried out using the open source 

Palabos code (www.Palabos.org), developed by the 

University of Geneva. A complete presentation of 

this code can be found in Latt et al. (2020). 

The paper is organized as follows: A description of 

the considered turbine model is given in section 2. 

The applied LBM technique and LES modelling are 

described in section 3. Then, the obtained results are 

discussed in sections 4. 
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2. WIND TURBINE MODEL 

The porous disk that model the wind turbine is 

analogous to that described by Aubrun et al. (2013) 

and Sumner et al. (2013). 

These computations are performed for a solid porous 

disk without mast, of porosity p = 55% and diameter 

D = 0.100m (Fig. 1). The reference velocity is U0 = 

6m/s and the Reynolds number is set to Re = 40000. 

These parameters represent a modeled wind turbine 

with a thrust coefficient CT = 0.42, a power 

coefficient CP = 0.37 and an induction factor a = 

0.195 (Espana 2009). 

 

 
Fig. 1. Solid porous disk. 

 

3. NUMERICAL APPROACH 

These simulations are based on the BGK assumption 

and the regularized lattice Boltzmann technique that 

is applied to increase the stability and accuracy of the 

method. Turbulence is modelled using the static 

Smagorinky model and a grid refinement technique 

is applied. 

3.1 The Regularized Lattice Boltzmann 

equations 

The lattice Boltzmann (LB) equations write as 

(Nathen et al. 2018): 

( , ) ( , )i i i if x c t t t f x t+  +  − =                                         (1) 

for [i = 1 ···N], where fi(x,t) is the probability to have 

a set of particles at location x and time t, ci are the 

discrete lattice velocities, N is the number of discrete 

velocities and Ωi is the collision operator. The 

modelling of the collision term depends on the 

particular scheme BGK, MRT or RLB (Nathen et al. 

2018). The macroscopic variables such as the fluid 

density (ρ) and the momentum (ρu) are computed in 

terms of the particle distribution functions fi, as: 

1 1

                  

N N

i i i

i i

f u f c 

= =

= =                      (2) 

The velocity distribution functions are expanded in a 

discrete Taylor series: 

(0) (1) (2)2
i i i if f f f= + + +ò ò                              (3) 

where ε is the Knudsen number. When the BGK 

assumption is made, Ωi is expressed in term of fi and 

an equilibrium state fi
eq as: 

0

)
1

(
eq

i i if f


 = − −                                             (4) 

where τ0 is the molecular relaxation time and fi
eq 

writes: 

( )2

2 4

1
1

2

eq i
i si

s s

c u
f uu c uu

c c
 

 
= + + − 

  

 (5) 

ωi are constant weights, cs is the lattice speed of 

sound and δ is the Kronecker delta. 

In Regularized Lattice Boltzmann (RLB) method, an 

approximation of the first-order multi-scale 

expansion term is introduced (Nathen et al. (2018)): 

(1)

2
:

neq
i i ii

s

t
f f Q u

c
 




 = −                          (6) 

where, Qi is the first-order non equilibrium moment: 

neq
i i i iQ c c f=  (7) 

The non-equilibrium distribution function fi
neq is 

used to approximate the first-order multiscale 

expansion term in Eq. 3. This term is included in the 

BGK model, such that the regularized BGK 

algorithm writes: 

(1)
( , ) ( , ) (1 ) ( , )i i i if x c t t t f x t f x t+  +  − = − (8) 

3.2 Turbulence Model 

Turbulence is modeled using the static LES 

Smagorinski model where only the largest scale are 

simulated while the smallest one are filtered. The 

unresolved scales are modeled by an effective 

relaxation time 

0eff T  = +                                                        (9) 

where τ0 and τT are the molecular and turbulent 

relaxation time, respectively (Yu et al. 2005). The 

corresponding effective viscosity is 

0eff T  = +  (10) 

where ν0 is the molecular viscosity defined as : 

2
0 0

1 1

3 2
c t 

 
= −  

 
 (11) 

and νT is the turbulent viscosity: 
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21

3
T T c t =   (12) 

In the Smagorinsky model, the turbulent viscosity 

correction νT is given by the relationship (Nathen et 

al. 2013): 

2( ) | |T sC x =     (13) 

where Cs is the Smagorinsky constant, and 

| | ij ij =    is the second-order moment of the 

nonequilibrium term of the distribution functions. 

According to (Yu et al. 2005) the turbulent relaxation 

time is expressed as : 

2 2
0 0

1
4 2( ) | |

2

eff
T s

s

C x
c t


  

 
= +   −   

    (14) 

There is no specific indication for Cs value. In the 

literature, it is generally noted that the 

Smagorinsky’s constant varies between 0.1 and 0.4. 

3.3 Computational Domain and Grid 

All computations are carried out on a three-

dimensional rectangular domain (O,x,y,z). The 

freestream flow is aligned with the (x) direction, (y) 

 is the horizontal crosswise direction and (z) is the 

vertical crosswise one. The reference frame is 

centered on the center of the porous disk. The 

domain dimensions in the (x), (y) and (z) directions 

are, respectively, LX = 25D, LY = 5D and LZ = 5D. 

Upstream and downstream boundaries are located 

respectively at −5D and +20D from the disk. Lateral 

boundaries are located at about ±2.5D from the 

disk(Fig. 2). 

Immersed boundary condition is applied on a solid 

porous disk and grid refinement techniques is used 

for the generation of Cartesian grid level. To select 

the optimal lattice size, test computations were 

performed on grids with different refinement levels. 

The mesh used for the computations is composed of 

three uniform cartesian mesh level (Fig. 3). The grid 

size is reduced from ∆x = D/12.5 far from the porous 

disk to ∆x = D/50 around the porous disk and its 

wake. The total number of mesh nodes is about 

3.6·106. 

3.4 Boundary Conditions 

According to Latt and Chopard (2008), to improve 

the accuracy of the solution, the non local regularized 

boundary condition or Skordos model (Skordos 

(1993)) is recommended. 

 

 

Fig. 2. View of the computational domain. 

 

 

Fig. 3. View of the three level mesh refinement. 
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This approach is thus applied and the following 

boundary conditions are set for external walls: 

• Inlet Velocity condition is applied at Right 

boundary setting the Reynolds number Re, the 

free stream velocity U0, the lattice velocity ULB 

and the fluid density ρ = 1.225kg/m3. 

• Constant pressure is set at Left boundary. 

• Velocity Dirichlet condition is set on lateral 

boundaries. 

A sponge layer inside the computational domain is 

defined at the outlet boundary to avoid unphysical 

acoustic reflections (Wissocq et al. 2017). 

For the solid porous disk, the conditions of Filippova 

and Hanel (1998) and the second-order interpolation 

scheme of Bouzidi et al. (2001) are compared. 

4. RESULTS 

For these simulations, computing facilities available 

on the Algerian research network (ARN DZGrid) 

were used. Each calculation took 18 hours on 72 

processors. All computations are performed with the 

following parameters: the characteristic length that 

define the Reynolds number is fixed to Lref = D, the 

lattice velocity is setULB = 0.075 and the fluid density 

is ρ = 1.225kg/m3. 

Investigations are performed for different modeling 

parameters as the lattice velocity scheme, the value 

of the Smagorinsky’s constant and the type of 

boundary condition on the solid porous disk.  

4.1 Velocity Contours 

The computations are first perform with the 

application of Bouzidi et al. (2001) boundary 

contition on the solid porous disk. 

Figures 4 and 5 show, the obtained velocity contours 

for the lattice velocity schemes D3Q19 and D3Q27 

respectively, BC1 indicating Bouzidi et al. (2001) 

condition. These results are depicted for different 

values of the Smagorinsky’s constant, in areas 

around the porous disk in the plane (xz). 

All velocity contours show similar flow patterns with 

recirculating flows in the near wake of the disk 

surface that vanish at about a distance of one 

diameter from the disk, to give place to one central 

recirculating flow around the porous disk axis. 

However, the width of the circulatory flow and the 

maximal velocities computed with the different Cs 

values and the lattice velocity schemes are slightly 

different. The results show that the width of the 

circulatory flow increases when the Cs value 

increases while the maximal velocities slightly 

decrease. As for the influence of the lattice velocity 

schemes, it is found that the maximal velocities 

computed with both schemes are similar however the 

wakes are slightly larger in width and shorter in 

length with the D3Q27 scheme. 

The flow patterns are similar to those obtained with 

classical CFD techniques applied for the simulation 

of wind turbine wakes modelled by a solid porous 

disk (see for e.g Ranjbar et al. (2020)).  

 

 

 

Fig. 4. Contours of the normalized velocity 

magnitude around the disk in the plane (xz), 

obtained with BC1 condition and D3Q19 scheme. 

 

4.2 Contours of Vorticity 

The contours of the vorticity magnitude depicted in 

Figs. 6 and 7 show the influence of the value of the 

Smagorinski’s constant value for D3Q19 and D3Q27 

schemes, respectively. It is seen that the vorticity 

magnitude decreases as the Cs value increases and 

that lower values are found with the D3Q27 scheme. 

As noticed in (Porte-Agel et al. 2020), the figures 

show that the wake grow in vertical direction as it 

moves downstream. 

Figures 8 and 9, that depict the contours of the 

Zvorticity component, show the detachment of two  
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Fig. 5. Contours of the normalized velocity magnitude around the disk in the plane (xz), obtained 

with BC1 condition and D3Q27 scheme. 

 

  

 

Fig. 6. Contours of the normalized vorticity magnitude around the disk in the plane (xz), obtained 

with BC1 condition and D3Q19 scheme. 
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Fig. 7. Contours of the normalized vorticity magnitude around the disk in the plane (xz), obtained 

with BC1 condition and D3Q27 scheme. 

 

  

 

Fig. 8. Contours of the normalized z-vorticity component around the disk in the plane (xz), obtained 

with BC1 condition and D3Q19 scheme. 
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Fig. 9. Contours of the normalized z-vorticity component around the disk in the plane (xz), obtained 

with BC1 condition and D3Q27 scheme. 

 

contra-rotating vortices from the upper and lower 

bounds of the disk which propagate in the wake in 

the form of two longitudinal vortices. Smaller eddies 

detach from the disk meshes, but they disappear in 

the near wake. 

4.3 Influence of Solid Boundary Condition 

To study the influence of the boundary condition 

to apply on the solid porous disk, computations are 

also performed with Filippova and Hanel (1998) 

condition. The results obtained with D3Q27 

scheme and the different Smagorinsky’s constant 

values are depicted in Figs. 10 to 12. As 

previously, the velocity contours show that the 

width of the circulatory flow increases when the Cs 

value increase while the maximal velocities 

decrease, but the wake width and lenght are 

different to those obtained with Bouzidi et al. 

(2001) condition. The zcomponent vorticity 

contours show also two contrarotating vortices that 

detach from the upper and lower bounds and 

smaller eddies that detach from the disk surface. 

4.4 Velocity Profiles 

For a better analysis of the differences obtained with 

the parameters investigated in this study, the velocity 

profiles are compared to experimental data provided 

by S. Aubrun that are published in Sumner et al. 

(2013), and to the analytical model of Bastankhah 

and Porte-Agel (2014) which writes as: 

2
0

2 2

2 2

1 1
8( / )

( )
          exp

2 2

T

h

u C

U D

y z z



 

 
 = − − 
 
 

  −
 − + 
    

                    (15) 

Where 

x
k

D D


= +                                                      (16) 

  is the initial wake width, equal to 0.2   and 

1 1

2 1

T

T

C

C


+ −
=

−
                                                (17) 

The obtained results are depicted in Fig. 13 to 15 , at 

different locations in the porous disk wake. 

As this was reported in other studies of wind turbine 

wakes in uniform inflow (Porte-Agel et al. 2020), the 

figures show that the streamwise velocity profiles 

have an axisymmetric Gaussian distribution in the 

region of far wake with a slight disagreement 

between the velocity-deficit profiles and the 

Gaussian distribution at the wake edges.  

The figures show also that the different velocity 

profiles are in good agreement with experimental 

data, mainly with 0.14sC =  and 0.20 however, the  



D. Hamane et al. / JAFM, Vol. 14, No. 5, pp. 1521-1533, 2021.  

 

1529 

  

 

Fig. 10. Contours of the normalized velocity magnitude around the disk, in the plane (xz), obtained 

with BC2 condition and D3Q27 scheme. 

 

  

 

Fig. 11. Contours of the normalized vorticity magnitude around the disk, in the plane (xz), obtained 

with BC2 condition and D3Q27 scheme. 
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Fig. 12. Contours of the normalized z-vorticity component around the disk, in the plane (xz), 

obtained with BC2 condition and D3Q27 scheme. 

 

  

 

Fig. 13. Vertical velocity profiles of u/U0 component, at x = 6D downstream the dis. 
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Fig. 14. Vertical velocity profiles of u/U0 component, at x = 8D. 

 

  

 

Fig. 15. Vertical velocity profiles of u/U0 component, at x = 10D. 
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computed wake is larger. Moreover, the velocity 

deficit is better reproduced, compared to the 

analytical model. 

The horizontal velocity profiles in the vicinity of the 

disk are used to compute the induction factor. The 

obtained values  are given in Tables 1 and 2 for both 

types of boundary condition respectively. The errors 

are calculated with respect to data given by (Espana 

2009). It is seen that lower errors are found with 

(Bouzidi et al. 2001) condition and with 0.20sC = . 

 

Table 1 Induction factor - BC1 condition. 

Schemes D3Q19 D3Q27 

CS a error 

(%) 

a error 

(%) 

0.14 0.188 -3.59 0.199 2.05 

0.20 0.198 +1.54 0.203 4.10 

0.28 0.198 +1.54 0.208 6.67 

 

Table 2 Induction factor - BC2 condition. 

Schemes D3Q19 D3Q27 

CS a error 

(%) 

a error 

(%) 

0.14 - - 0.183 -6.15 

0.20 0.174 -10.77 0.184 -5.64 

0.28 0.179 -8.21 0.179 -8.21 

 

5. SUMMARY AND CONCLUSION 

This study shows the ability of the LBM to reproduce 

the wind turbine wake. On the whole, these results 

show flow patterns similar to those obtained with 

others computations techniques applied for the 

simulation of wind turbine wakes. But the results 

vary somewhat with the type of boundary condition, 

the lattice velocity scheme and the Cs value. In 

summary: 

• The width of the circulatory flow increase when 

the Cs value increases. 

• The maximal velocities decrease when the Cs 

value increases. 

• The width of the circulatory flow computed 

using Filippova boundary condition (BC2) on a 

solid porous disk is larger than that get in 

Bouzidi boundary condition (BC1). • Slightly 

higher maximal velocities are found with 

Bouzidi boundary conditions (BC1). 

As for the velocity profiles, the obtained results are 

in good agreement with experimental data, and lower 

errors are found for the induction factor with Bouzidi 

condition (BC1) and with Cs = 0.20. 
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