Pore Network Modeling to Study the Impacts of ‎Geometric Parameters on Water Transport inside Gas ‎Diffusion Layers

Authors

1 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran

2 International Campus, Amirkabir University of Technology, Tehran, 15875-4413, Iran

Abstract

A pore network model (PNM) is proposed for the simulation of water transport inside the cathode side ‎gas diffusion layer (GDL) of polymer electrolyte fuel cells (PEFCs) during the transient start-up period as ‎well as the steady state. Numerous two-dimensional random networks representing GDL are generated ‎followed by statistical averaging of the results (Monte Carlo methods) to circumvent the uncertainties ‎imposed by random pore size distributions. The resulting liquid water saturation profiles within GDLs ‎exhibit concave patterns which is typically encountered in capillary fingering flow regimes in porous ‎media. The effect of GDL thickness and current collector rib width as two geometric parameters on water ‎transport dynamics are separately investigated. It turns out that thin and thick GDLs compared to the base ‎case can have contradicting outcomes on the account of total water saturation in the network. On the ‎other hand, wide current collector ribs give rise to liquid water saturation and build-up within GDL which ‎can lead to flooding. At the end, three-dimensional networks are generated demonstrating higher pore ‎connectivity which results in higher percolation times and different invasion patterns.‎

Keywords