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ABSTRACT 
Aim of the paper is to investigate effects of variable thermal conductivity and heat source/sink on flow of a viscous 
incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream 
near a stagnation point on a non-conducting stretching sheet. The equations of continuity, momentum and energy are 
transformed into ordinary differential equations and solved numerically using shooting method. The velocity and 
temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt 
number at the sheet are derived, discussed numerically and their numerical values for various values of physical parameter 
are presented through Tables.  
 
Keywords: Steady, boundary layer, MHD, variable thermal conductivity, stagnation point, source/sink, stretching sheet, 
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NOMENCLATURE  
 

b  free stream velocity parameter  
Bo magnetic field intensity  
c stretching sheet parameter 
Cf  skin-friction coefficient 
Cp  specific heat at constant pressure  
M  Hartmann number {=  ( σ Bo

2
 / ρ c )1/2 } 

Nu Nusselt number  
Pr Prandtl number (= μ Cp /κ ) 
qw rate of heat transfer 
Q volumetric rate of heat  
                 generation/absorption 
S  heat source/sink parameter {= Q/ρ Cp c } 
T  fluid temperature 
T∞  free stream temperature  
Tw  temperature of stretching sheet 
u, v velocity components along x- and y- axes,  
                 respectively  
uw (x) velocity of stretching sheet 
U(x)  free stream velocity (= bx) 
x, y  Cartesian coordinates along x-, y- axes,  

  respectively 
 

Greek Letters 
ε  perturbation parameter 
η  similarity parameter { = (c/ν)½ y} 
η∞ value of η at which boundary conditions is    
                 achieved 
κ  uniform thermal conductivity 
κ∗  variable thermal conductivity 
λ  ratio of free stream velocity parameter to  
                stretching sheet parameter {= b/c} 
μ  coefficient of viscosity 
ν  kinematic viscosity  
ρ  density of fluid 
ψ  stream function 
σ  electrical conductivity 
θ  dimensionless temperature  
                { = ( T -T∞ ) / ( Tw -T∞ )} 
τw  shear stress 

1.   INTRODUCTION 
Study of heat transfer in boundary layer over stretching 
surface find applications in extrusion of plastic sheets, 
polymer, spinning of fibers, cooling of elastic sheets etc. 

The quality of final product depends on the rate of heat 
transfer and therefore cooling procedure has to be 
controlled effectively. The MHD flow in electrically 
conducting fluid can control the rate of cooling and the 
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desired quality of product can be achieved [Chakrabarti and 
Gupta (1979)]. Liquid metals have small Prandtl number of 
order 0.01~ 0.1(e.g. Pr = 0.01 is for Bismuth, Pr = 0.023 for 
mercury etc.) and are generally used as coolants because of 
very large thermal conductivity.  
 
Flow in the neighborhood of a stagnation point in a plane 
was initiated by Hiemenz (1911). Stagnation point flows 
have been discussed by Pai (1956), Schlichting (1968) and 
Bansal (1977) etc. Kay (1966) reported that thermal 
conductivity of liquids with low Prandtl number varies 
linearly with temperature in range of 0°F to 400°F.     
Crane (1970) presented the flow over a stretching sheet and 
obtained similarity solution in closed analytical form. 
Arunachalam and Rajappa (1978) considered forced 
convection in liquid metals (fluid with low Prandtl number) 
with variable thermal conductivity and capacity in potential 
flow and derived explicit closed form of analytical solution. 
Fluid flow and heat transfer characteristics on stretching 
sheet with variable temperature condition have been 
investigated by Grubka and Bobba (1985). Watanabe 
(1986, 1988) discussed stability of boundary layer and 
effect of suction/injection in MHD flow under pressure 
gradient. Noor (1992) studied the characteristics of heat 
transfer on stretching sheet. Convective heat transfer at a 
stretching sheet has been presented by Vajravelu and 
Nayfeh (1993). Sharma and Jat (1994) analysed flow and 
heat transfer between two vertical plates under viscous 
fluid injection through porous plate, the other being a 
stretching sheet. Chiam (1997) discussed the heat transfer 
in fluid flow on stretching sheet at stagnation point in 
presence of internal dissipation, heat source/sink and stress 
with constant fluid properties. Chen (1998) considered 
laminar mixed convection adjacent to vertical, continuously 
stretching sheet. Chaim (1998) studied heat transfer in fluid 
flow of low Prandtl number with variable thermal 
conductivity, induced due to stretching sheet and compared 
the numerical results with perturbation solution.      
Chamka and Khaled (2000) considered Hiemenz flow in 
the presence of magnetic field through porous media. 
Sharma and Mishra (2001) investigated steady MHD flow 
through horizontal channel: lower being a stretching sheet 
and upper being a permeable plate bounded by porous 
medium. Sriramalu et.al. (2001) studied steady flow and 
heat transfer of a viscous incompressible fluid flow through 
porous medium over a stretching sheet. Mahapatra and 
Gupta (2001) investigated the magnetohydrodynamic 
stagnation-point flow towards isothermal stretching sheet 
and pointed that velocity decreases/increases with the 
increase in magnetic field intensity when free stream 
velocity is smaller/greater, repectively than the stretching 
velocity. Mahapatra and Gupta (2002) studied heat transfer 
in stagnation-point flow towards stretching sheet with 
viscous dissipation effect. Khan et.al. (2003) presented 
viscoelastic MHD flow, heat and mass transfer over a 
porous stretching sheet with dissipation energy and stress 
work. Pop et.al. (2004) discussed the flow over stretching 
sheet near a stagnation point taking radiation effect. 
Seddeek and Salem (2005) investigated the heat and mass 
transfer distributions on stretching surface with variable 
viscosity and thermal diffusivity. 

Aim of the present paper is to investigate effects of variable 
thermal conductivity, heat source/sink and variable free 
stream on flow of a viscous incompressible electrically 
conducting fluid and heat transfer on a non-conducting 
stretching sheet in the presence of transverse magnetic field 
near a stagnation point. Linear stretching of the sheet is 
considered because of its simplicity in modelling of the 
flow and heat transfer over stretching surface and further it 
permits the similarity solution, which are useful in 
understanding the interaction of flow field with temperature 
field. The heat source and sink is included in the work to 
understand the effect of internal heat generation and 
absorption [Chaim (1998)]. 
 

2.  FORMULATION OF THE PROBLEM 
Consider steady two-dimensional flow of a viscous 
incompressible electrically conducting fluid of variable 
thermal conductivity in the vicinity of a stagnation point on 
a non-conducting stretching sheet in the presence of 
transverse magnetic field and volumetric rate of heat 
generation/absorption. The stretching sheet has uniform 
temperature Tw, linear velocity uw(x). It is assumed that 
external field is zero, the electric field owing to polarization 
of charges and Hall effect are neglected. Stretching sheet is 
placed in the plane y = 0 and x-axis is taken along the sheet 
as shown in the Fig. 1. The fluid occupies the upper half 
plane i.e. y> 0. 

 
The governing equations of continuity, momentum and 
energy under the influence of externally imposed transverse 
magnetic field [Bansal (1994)] with variable thermal 
conductivity in the boundary layer are  
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The second derivatives of u and T w.r.t x have been 
eliminated on the basis of magnitude analysis considering 
that Reynolds number is high. Hence the Navier-Stokes 
equation modifies into Prandtl’s boundary layer equation. 
 
In the free stream u = U(x) = bx, the equation (2) reduces to 
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The boundary conditions are 
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ww TTvcxxuuy ===== ,0,)(:0 ,   

∞===∞→ TTbxxUuy ,)(: .             (6) 
 
Following Arunachalam and Rajappa (1978) and Chaim 
(1998), the thermal conductivity κ∗ is taken of form as 
given below 

( )εθκκ +=∗ 1 .                                 (7) 
 

3.  METHOD OF SOLUTION  

Introducing the stream function ψ (x, y) as defined by  

x
vand

y
u

∂
∂

−=
∂
∂

=
ψψ

,              (8) 

 the similarity variable ( ) yc 2/1νη = and   

( ) ( ) )(, 2/1 ηνψ xfcyx = ,              (9) 
 into the equations (3) and (5), we get 

( ) ( ) 0222 =+−′−′−′′+′′′ λλfMffff ,          (10) 
and 
( ) 0PrPr)(1 2 =+′+′+′′+ θθθεθεθ Sf .          (11) 

It is noted that equation (1) is identically satisfied. The 
corresponding boundary conditions are reduced 
to
( ) ( ) ( ) ( ) ( ) 0,10,10,00 =∞=∞′==′= θλθ andfff . 

            (12)  
 
The governing boundary layer and thermal boundary layer 
equations (10) and (11) with the boundary conditions (12) 
are solved using Runge-Kutta fourth order technique along 
with shooting method [Conte and Boor (1981)]. First of all, 
higher order non–linear differential equations (10) and (11) 
are converted into simultaneous linear differential 
equations of order first and they are further transformed 
into initial value problem applying the shooting technique. 
Once the problem is reduced to initial value problem, then 
it is solved using Runge-Kutta fourth order technique [Jain 
(1984), Jain, Iyengar and Jain (1985), Krishnamurthy and 
Sen (1986)]. 
 

4.  SKIN-FRICTION 
Skin-friction coefficient at the sheet is given by 
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5.  NUSSELT NUMBER 
The rate of heat transfer in terms of the Nusselt number at 
the sheet is given by  
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6.  PARTICULAR CASES 

(i) In the absence of magnetic field i.e M = 0, the results of 
the present paper are reduced to those obtained by Pop, 
Grosan, Pop (2004) and Mahapatra and Gupta (2002). 
 
(ii) In the absence of magnetic field, heat source/sink and 
the free stream i.e. M = 0, S = 0 and b = 0, respectively; the 
results of the present paper are   reduced to those obtained 
by Chiam (1998) for impermeable sheet. 
 
(iii) In the absence of magnetic field, heat source/sink and 
constant thermal conductivity i.e. M = 0, S = 0 and ε = 0, 
the results of the present paper are reduced to those 
obtained by Pop, Grosan, Pop (2004) in the absence of   
radiation effect with constant thermal conductivity and 
Mahapatra and Gupta (2002) in absence of viscous 
dissipation and constant thermal conductivity. 
 

7.  RESULTS AND DISCUSSION  
Equations (10) and (11) are solved using Runge-Kutta 
fourth order method for different values of M, λ, ε, S and Pr 
taking step size 0.05. While numerical simulation, step size 
0.01, 0.02 and 0.03 were all checked and values of f ″(0) 
and θ ′(0) were found in each case correct up to five 
decimal places. Hence the scheme used in this paper stable 
and accurate. 
 
It is observed from Table 1 that the numerical values of       
f ′′(0) in the present paper when M = 0 are in good 
agreement with results obtained by Pop, Grosan and Pop 
(2004) and Mahapatra and Gupta (2002). Former have used 
Runge-Kutta fourth order method and shooting technique, 
while the later have used finite difference technique and 
Thomas algorithm. The scheme exploited in the present 
paper is Runge Kutta fourth order method along with 
shooting technique. It is noted from Table 2 that the 
numerical values of -θ ′(0) in the present paper when        
M = 0, λ = 0,     S = 0 and Pr = 0.023 are in good agreement 
with the results obtained by Chiam (1998). 
 
It is seen from Table 3 that the numerical values of    -θ ′(0) 
in the present paper when M = 0, S = 0 and ε = 0 and        
Pr = 0.05 are in agreement with those obtained by Pop, 
Grosan, Pop (2004) and Mahapatra and Gupta (2002).  
 
The skin-friction coefficient and Nusselt number are 
presented by equations (13) and (14) and are directly 
proportional f ″(0) and -θ ′(0), respectively. The effects of 
M, ε, λ and S on f ″(0) and θ ′(0) have been presented 
through Table 4 and Table 5, receptively. 
 
Figure 2 shows that the boundary layer thickness decreases 
considerably as λ increases which is shown with the help of 
dotted vertical lines at the points where f′(η) reaches the 
boundary condition. The increase in the value of λ implies 
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that free stream velocity increases in comparison to 
stretching velocity, which results in the increase in pressure 
and straining motion near stagnation point and hence 
thinning of boundary layer takes place. The phenomenon of 
thinning of boundary layer thus implies increased shear 
stress at the sheet, which is seen in Table 4 when M = 0. It 
is important to note for  λ =1, that there is no formation of 
boundary layer because the sheet velocity is equal to free 
stream velocity. 
 
The Hartmann number represents the importance of 
magnetic field on the flow. The presence of transverse 
magnetic field sets in Lorentz force, which results in 
retarding force on the velocity field and therefore as 
Hartmann number increases, so does the retarding force 
and hence the velocity profiles decrease. This is shown in 
Fig. 3 when λ <1. In case when λ >1, which is just opposite 
to λ <1, as expected that the velocity profiles increase with 
the increase in the Hartmann number (Fig. 4). The direct 
implication of the above discussion, explains the results 
presented in Table 4, is that the shear stress at the sheet 
decreases due to increase in the Hartmann number when    
λ < 1, while it increases with the increase in the Hartmann 
number when λ > 1[Mahapatra and Gupta (2001)]. 
 
It is noted from Table 5 that the rate of heat transfer at the 
sheet increases due to increase in the Prandtl number in the 
absence of magnetic field when thermal conductivity of the 
fluid is constant or variable in the presence/absence of the 
source/sink parameter. This is attributed to the fact that the 
thermal boundary layer for low Prandtl number fluid is 
thick and consequently the temperature gradient decreases 
with the decrease in Prandtl number. The rate of heat 
transfer at the sheet decreases due to increase in the 
Hartmann number when λ = 0.1 or 0.5, while the rate of 
heat transfer increases due to increase of the Hartmann 
number when λ = 2; this is because of the magnetic field 
modifies the fluid velocity profile. The rate of heat transfer 
at the sheet increases due to increase in λ, which is due to 
the fact that thermal boundary thickness decreases due to 
increase in λ and is also depicted in Fig. 10. 
 
Figures 5 and 6 show that with the increase in the value of 
ε, temperature profile increases hence considering the 
thermal conductivity constant would lead to lower 
approximation of the temperature profile. It is observed 
from Figs. 7,8 and 9 that fluid temperature increases due to 
increase in the volumetric rate of heat generation, while it 
decreases in the case of volumetric rate of heat absorption 
for   λ = 0.1, 0.5 and 2.0. It is also noted that the effect of 
volumetric rate of heat generation/absorption diminishes 
with the increase in λ, hence it can be concluded that with 
the decrease in boundary layer thickness, the effect of 
volumetric rate of heat generation/absorption on 
temperature profile also decreases in the case of low 
Prandtl number.  
 
It is seen from Fig. 10 that fluid temperature decreases due 
to increase in λ. It is observed from Fig.11 that with the 
increase in Prandtl number, temperature profile decreases. 
This is because of the fact that with the increase in Prandtl 

number, thermal boundary layer thickness reduces. The 
effect is even more pronounced for small Prandtl number 
because the thermal boundary layer thickness is 
comparatively large. Figure 12 shows the effect of the 
Hartmann number on temperature profile for λ = 0.5, which 
increases with the increase in the Hartmann number 
because the magnetic field retards the velocity of fluid and 
therefore temperature of fluid near the sheet is higher. 
 

8.  CONCLUSIONS  
(i) Fluid velocity decreases due to increase in the Hartmann 
number for λ <1, while reverse effect is observed when      
λ >1. There is no boundary layer formation when λ =1. 
 
(ii) Boundary layer thickness decreases due to increase in 
λ. 
 
(iii) Fluid temperature increases due to increase in the 
thermal conductivity parameter, the Hartmann number or 
volumetric rate of heat source parameter, while it decreases 
due to increase in the Prandtl number, λ or volumetric rate 
of sink parameter. 
 
(iv) Shear stress at the sheet increases due to increase in λ, 
while it decreases due to increase in the Hartmann number 
when λ <1, but opposite behaviour is noted when λ >1. 
 
(v) Rate of heat transfer at the sheet increases due to 
increase in the thermal conductivity parameter, while it 
decreases due to increase in λ in absence of magnetic field 
and volumetric rate of heat source/sink parameter. 
 
(vi) Rate of heat transfer at the sheet increases due to 
increase in the Prandtl number or λ, while it decreases due 
to increase in the Hartmann number. 
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Table 1 Values of f ′′(0) for different values of λ are compared with the results obtained by Pop, Grosan and Pop (2004) and 

Mahapatra and Gupta (2002). 

λ 
f ′′(0) 

Pop, Grosan and Pop 
(2004) 

Mahapatra and Gupta 
(2002) Present paper 

0.1 -0.9694 -0.9694 -0.969386 
0.2 -0.9181 -0.9181 -0.9181069 
0.5 -0.6673 -0.6673 -0.667263 
2.0 2.0174 2.0175 2.01749079 
3.0 4.7290 4.7293 4.72922695 

 
 

Table 2 Values of θ′(0) for different values of ε  are compared with the results obtained by Chiam (1998). 

 -θ ′(0) 
ε Chiam (1998) Present paper 

0.0 0.224886 0.22489 
0.05 0.214397 0.21440 
0.1 0.204844 0.20485 

  
 
Table 3 Values of θ ′(0) for different values of λ are compared with the results obtained by Pop, Grosan and Pop (2004) and 

Mahapatra and Gupta (2002). 

λ 
-θ ′(0) 

Pop, Grosan and Pop (2004) Mahapatra and Gupta 
(2002) Present paper 

0.1 0.081 0.081 0.081245 
0.5 0.135 0.136 0.135571 
2.0 0.241 0.241 0.241025 

 
 

Table 4 Values of f ′′(0) for different values of λ and M. 

λ f ′′(0)  
M = 0.0 M = 0.1 M = 0.5 M = 1.0 M = 1.5 

0.1 -0.969386(η∞ ≈ 10) -0.97350851 -1.067898 -1.321111 -1.66020742 
0.2 -0.9181069(η∞ ≈ 7) -0.921466 -1.00469 -1.2156222 -1.50849937 
0.5 -0.667263(η∞ ≈ 6) -0.669102 -0.71189085 -0.83212508 -1.00168146 
2.0 2.01749079(η∞ ≈ 4) 2.01993243 2.07771118 2.2408579 2.50959738 
3.0 4.72922695(η∞ ≈ 3) 4.73339915 4.8325013 5.13030441 5.59253315 
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Table 5 Values of rate of heat transfer for different values of M,λ,ε, S and Pr.  

 M = 0.0 and λ = 0.1 
    -θ ′(0)  (η∞ ≈ 100) 

M = 0.5 and λ = 0.1 
-θ ′(0)   

ε S Pr = 0.01 Pr = 0.023 Pr = 0.01 Pr = 0.023 
0.0 0.0 0.030282 0.049828 0.029868 0.048889 
0.1 0.0 0.028235 0.046372 0.027859 0.045517 
0.0 0.1 0.007862 0.017913 0.007223 0.016482 
0.1 0.1 0.007172 0.016308 0.006570 0.015002 
0.0 -0.1 0.044047 0.070101 0.043692 0.069310 
0.1 -0.1 0.041177 0.065452 0.043692 0.069310 

  M = 0.0 and λ = 0.5 
    -θ ′(0)  (η∞ ≈ 75) 

M = 0.5 and λ = 0.5 
-θ ′(0)   

ε S Pr = 0.01 Pr = 0.023 Pr = 0.01 Pr = 0.023 
0.0 0.0 0.058418 0.090049 0.058323 0.089842 
0.1 0.0 0.054711 0.087048 0.054624 0.084109 
0.0 0.1 0.050281 0.077804 0.050180 0.077582 
0.1 0.1 0.047069 0.072796 0.046977 0.072594 
0.0 -0.1 0.065803 0.101174 0.065712 0.100977 
0.1 -0.1 0.061647 0.094749 0.061564 0.094570 

  M = 0.0 and λ = 2.0 
    -θ ′(0) (η∞ ≈ 30)  

M = 0.5 and λ = 2.0 
-θ ′(0)   

ε S Pr = 0.01 Pr = 0.023 Pr = 0.01 Pr = 0.023 
0.0 0.0 0.110397 0.165693 0.110445 0.165796 
0.1 0.0 0.103574 0.155495 0.103618 0.155590 
0.0 0.1 0.106408 0.159612 0.106456 0.159719 
0.1 0.1 0.099829 0.149789 0.099873 0.149886 
0.0 -0.1 0.114288 0.171621 0.114336 0.171723 
0.1 -0.1 0.107227 0.161059 0.107270 0.161152 

 
 
 

 
 

Fig. 1. Physical model 
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Fig. 2. Velocity distribution versus η when M = 0.0. Fig. 3. Velocity distribution versus η when λ = 0.1. 
 

 
Fig. 4. Velocity distribution versus η when λ = 2.0. Fig. 5. Temperature distribution versus η when M = 0.0,     

λ = 0.1 and S = 0.0. 
 

Fig. 6. Temperature distribution versus η when M = 0.0,      
λ = 2.0, S = 0.0 and Pr = 0.01. 

Fig. 7. Temperature distribution versus η when M = 0.0,      
λ = 0.1, ε = 0.0 and Pr = 0.01. 
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Fig. 8. Temperature distribution versus η when M = 0.0,         
λ = 0.5 ε = 0.0 and Pr = 0.01. 

Fig. 9. Temperature distribution versus η when M = 0.0,      
λ = 2.0, ε = 0.0 and Pr = 0.01. 

 
 

Fig. 10. Temperature distribution versus η when M = 0.0, S= 
0.0, ε = 0.0 and Pr = 0.01. 

Fig. 11. Temperature distribution versus η when M = 0.0,     S 
= 0.0, ε = 0.0 and λ = 0.1. 

 
 

Fig. 12. Temperature distribution versus η when  λ = 0.5,    
ε = 0.0, S = 0.1 and Pr = 0.023. 

 

 


