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ABSTRACT 
In this work, a 19-bit Incompressible Generalized Lattice Boltzmann (IGLB) method has been proposed for three-
dimensional incompressible fluid flow simulation, for the first time. Equilibrium moments in moment space are derived 
from an incompressible BGKLB method. The incompressible Navier–Stokes equations can be recovered through the 
Chapman-Enskog multi-scale expansion without artificial compressible effects. To compare the performance of proposed 
model, several benchmark problems (such as a cubic lid-driven cavity flow, flow over a backward-facing step, and a double 
shear flow) are solved and the results are compared with those of both 19-bit Incompressible BGK Lattice Boltzmann 
(IBGKLB) method and existing CFD simulations. It is shown that the stability and accuracy of the 19-bit IGLB method is 
better than those of the 19-bit IBGKLB method; in fact with the IGLB model we can increase the Reynolds number by 
factor of 2.5 and still get stable results. The proposed 3-D IGLB method is successfully expanded and applied to simulation 
of the 3-D incompressible buoyancy driven flows. The results of the 3-D steady-state natural convection in an air-filled 
differentially heated cubic cavity obtained by the extended model comply well with the existing data in literature. In 
addition, natural convection from a discrete heat source which is mounted flush with the bottom wall of a horizontal 
enclosure is simulated. The obtained results indicate that the proposed method is very convenient for simulation of thermally 
driven flow problems.  
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NOMENCLATURE 
B   total number of lattice streaming 
  vectors  
c  magnitude of lattice streaming 
  vectors 

sc   speed of sound  
D   dimension of system 

ie   lattice streaming vector in i 
  direction 
e  kinetic energy 
F  external force  

if   density distribution function 
eq

if   equilibrium density distribution
  function 
g  acceleration due to gravity 
H  height 
M   moment space 
M  transformation matrix 
m  moment 
p  pressure 
Pr  u a  , Prandtl number 

q  heat flux vector 
r   position vector 

Ra  
3g THb

ua
D , Rayleigh number 

U   maximum velocity at the inlet 
0U   top lid velocity  
, ,u v w   x, y and z components of flow 

  velocity vector 
V   discrete velocity space 
u  flow velocity vector 
Ŝ   relaxation matrix 
S  step height 
t  time 
T  temperature 
x, y, z                  Cartesian coordinate system 
Greek  symbols 
a   fluid thermal diffusivity 
b   thermal expansion coefficient 

rδ   lattice spacing 
tδ   time step 
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ε   square of kinetic energy 
εω , ,jεω xxω  free parameters 

ρ   local density 
τ   local relaxation time 

υ   kinematic viscosity 
Subscripts and superscripts 
eq  equilibrium  state 
i   lattice streaming vector direction 

 
1. INTRODUCTION 

The Lattice Boltzman Method (LBM) (McNamara and 
Zanetti. 1988; Chen and Doolen 1998), a derivative of 
lattice gas automaton method (Wolfram 1986; Frisch et al. 
1986; Higuera and Jimenez 1989), is a relatively new 
numerical approach for fluid flow simulation. Due to its 
micro and meso scale theoretical bases as well as its ease 
of numerical implementation, it has gained a fast growing 
popularity in science and engineering, particularly for 
complex fluid flows (Shan and Chen. 1993; Ladd 1994; 
Chen et al. 1995; Boon et al. 1996; Pan et al. 2004; Zheng 
et al. 2006; Rahmati and Ashrafizaadeh 2007; Rahmati et 
al. 2008a,b,c,d,e,f,g). 
 
Perhaps, the simplest and consequently the most popular 
form of the LBM is the BGK Lattice Boltzmann method 
(BGKLB) (Qian et al. 1992; Chen et al. 1992). However, 
this simplicity comes at the expense of some deficiencies 
(e.g. numerical instability and inaccuracy in implementing 
boundary conditions). To overcome some of the BGKLB 
deficiencies, the Generatlized Lattice Boltzmann (GLB) 
method (D’Humières 1992) has been developed. 
 
Most of the existing GLB models have been constructed 
for the compressible Navier-Stokes equations in the low 
Mach number limit. As a result, the recovered macroscopic 
equations through the Chapman-Enskog multi-scale 
expansion are the nearly incompressible Navier-Stokes 
equations. Therefore, some compressibility errors can exist 
when incompressible flows are simulated. In this paper, we 
present some results to demonstrate compressible errors of 
a BGKLB model in comparison with those of an 
incompressible BGKLB (IBGKLB) model. On the other 
hand, the incompressible Navier-Stokes equations are of 
great importance in theory and application. Hence, it is 
necessary to develop exact incompressible LB models. 
 
Du et al. (2006) showed that IGLB models are more 
accurate than IBGKLB models using a two-dimensional 
lid-driven cavity simulation. Following the method of GLB 
model, a three- dimensional incompressible GLB (IGLB) 
model is proposed in the present work. In this model the 
equilibrium moments in moment space are derived from an 
earlier incompressible BGK method by Guo et al. (2000). 
The Navier-Stokes equations can be recovered through the 
Chapman-Enskog multi-scale expansion without artificial 
compressibility effects. To compare the performance of the 
new IGLB model with that of the IBGKLB model, 
numerical models have been developed using a D3Q19 
lattice. The numerical stability and performance of these 
models are investigated through several well-known fluid 
flow benchmarks including a three-dimensional lid-driven 
cavity flow, flow over a backward-facing step, and a 
double shear flow. 

 
The proposed 3-D IGLB method is successfully extended 
and utilized in simulation of the three-dimensional 
incompressible buoyancy induced flows. Natural 
convection in an air-filled side-heated cubic cavity and 
natural convection from a heat source mounted on the 
bottom wall of a horizontal enclosure are simulated by the 
extended model.  
 
The rest of this paper is organized as follows. Section two 
describes governing equations associated with both the 
incompressible BGK lattice Boltzmann and the 
incompressible generalized lattice Boltzmann methods. 
Section three explains the hybrid thermal lattice Boltzmann 
method. Results and Discussions are presented in section 
four and followed by conclusion in the last section. 
 

2. GOVERNING EQUATIONS 

2.1 Incompressible BGK Lattice Boltzmann 
Method 
The LBM utilizes a particle distribution function to 
describe the collective behavior of fluid molecules. In LB 
methods, particles are assumed to move synchronously 
along the bonds of a regular lattice, and satisfy the discrete 
form of the lattice Boltzmann equation. Basically, this 
method consists of the following two phases: 
(i) Streaming: in this phase, particles move along lattice 

bonds to the neighboring lattice nodes. 
(ii) Collision: in this phase, particles on the same lattice 

node shuffle their velocities locally such that mass 
and momentum are conserved. 

One of the most widely used collision model is the 
Bhatnagar-Gross-Krook (BGK) collision operator 
(Bhatnagar et al. 1954), which applies the single time 
relaxation approximation. The collision step occurs locally 
in the sense that it does not require any spatial and 
temporal derivatives. The streaming step following the 
collision moves the updated distribution functions to 
neighboring nodes by perfect shift on a uniform lattice. 
 
For flow field, the evolution equation using the density 
distribution function, fi, and the collision operator )( fiΩ  
is given as the following form (Hou 1995): 
 

( , ) ( , ) ( ),i i n i n if t t t f t fr e rδ δ+ + − = Ω                             (1)  

here r  is the position of each lattice node, nt  is the 

discrete time, tδ is the time step, and ie is the particle 
speed in the i  direction. A simple model for collision 
operator )( fiΩ is BGK model (Bhatnagar et al. 1954) 
given by: 
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( , ) ( , )( ) ,
eq

i n i n
i

f t f tf r r
τ
−

Ω = −       (1) 

where t  is the relaxation time and eq
if  is the equilibrium 

density distribution function. 
 
Therefore, the BGK lattice Boltzmann equation can be 
written as (Hou 1995; He and Luo 1997): 
 

( , ) ( , )

( , ) ( , )
,

n n

eq
i n ni

f t t t f ti i i

f t f t

δ δ

τ

+ + =

−
−

r e r

r r   (2) 

For D3Q19 model (c.f. Fig. 1), the lattice velocities are 
defined as: 
 

( ) ( ) ( )
( ) ( ) ( )

0, 0,
1,0 , 0 , 0 , 1,0 , 0,0 , 1 , 1 6,

1, 1,0 , 1,0, 1 , 0, 1, 1 , 7 18.
i

i
c c c i to

c c c i to

e

⎧ =
⎪⎪= ± ± ± =⎨
⎪
± ± ± ± ± ± =⎪⎩

  (3) 

where c  is the particle velocity and is given by x tδ δ . In 
lattice units, the time step tδ  is set equal to 1, as is the 
lattice spacing ( 1x tδ δ= = ). 
 
For Incompressible BGKLB model which is proposed by 
Guo et al. (2000), the equilibrium functions for the density 
distribution function are given as: 
 

( ) ( )

( )

0 0 02

2

1 , 0,

, 1 18,

seq
i

i i
s

pw s i
c

f
pw s i to

c

u

u

ρ⎧ − − + =⎪
⎪= ⎨
⎪ + =
⎪⎩

 
    (4) 

where 0
1 ,
3

w =
1

18iw =  for i  =1 to 6 and 1
36iw =  for i  

=7 to 18. Also 0( )s u  and ( )is u are given by: 
 

( )
2

0 02 ,
2 s

s w
c

u
u = −   (5) 

( ) ( )2 23 . 4.5 . 1.5 .i i i is wu e u e u u⎡ ⎤= + −⎣ ⎦   (6) 

In addition, 0ρ , u and p  are calculated by: 
 

0
0

,
b

i
i

fρ
=

=∑     (7) 

1

,
b

i i
i

c f
=

=∑u e     (8) 

( )
2

0
0 1

,
1

b
s

i
i

cp f
w

s u
=

⎡ ⎤
⎢ ⎥= +

− ⎢ ⎥⎣ ⎦
∑   (9) 

where b is the number of directions in the lattice model. 
Furthermore, the sound speed is 3sc c= . 
 
In order to derive the incompressible Navier-Stokes 
equations, 

0
ρ  should be a fixed quantity, for example, 0ρ  

is equal with 0  (Guo et al. 2000). 
 
The incompressible Navier-Stokes equations can be 
derived from the IBGKLB model using a Chapmann-
Enzkog multi-scale expansion. From the expansion, these 
equations are given by the following expressions: 
 

. 0,u∇ =     (10) 

( ) ( ) ( )2. ,p
t
u

uu uν
∂ ⎡ ⎤+∇ = −∇ + ∇⎣ ⎦∂

    (11) 

where kinematic viscosity is calculated by : 
 

(2 1) / 6.ν τ= −  
    (12) 

The IBGKLB model has some deficiencies (Lallemand and 
Luo 2000). One of these deficiencies is the numerical 
instability, and as soon as the relaxation time approaches 
0.5, this model may lead to numerical instability. In order 
to alleviate this shortcoming of the IBGKLB model, the 
generalized lattice Boltzmann method can be used. 
 
2.2 Incompressible Generalized Lattice Boltzmann 

Method 

For a GLB model with B (=b+1) discrete 
velocities { }0,1,...,i i b=e , a set of density distribution 

functions ( ){ }, 0,...,i nf t i br =  is defined on each lattice 

node r . The collision step is executed in the moment 
space M , while the streaming step is performed in the 
velocity spaceV . The evolution equation for the GLB on a 
D-dimensional lattice with discrete time nt can be written 
as (D’Humières et al. 2002): 
 

( ) ( ) ( )

( ) ( ) ( )1

, , ,

, ,

i i n i n n

eq
i n i n

f e t t t f t t

M S m t m t

r r r

r r

δ δ

−

+ + − = Ω

⎡ ⎤= −⎢ ⎥⎣ ⎦
,   (13) 

where symbol .  denotes a column vector. Therefore 
 

( )

( ) ( )
( )

0 1 1

,

, ,
,

... ,

i i n

T
n n

b b n

f t t t

f t t f t t t

f t t t

r e

r r e

r e

δ δ

δ δ δ

δ δ

+ + =

⎛ ⎞+ + +
⎜ ⎟
⎜ ⎟+ +⎝ ⎠

     (14) 
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( ) ( ) ( ) ( )( )0 1, , , ... , ,
T

i n n n b nf t f t f t f tr r r r=      (15) 

( ) ( ) ( ) ( )( )0 2, , , , ,..., , ,
T

i n n n b nm t m t m t m tr r r r≡      (16) 

( ) ( ) ( ) ( )( )0 1, , , , ,..., , ,
Teq eq eq eq

i n n n b nm t m t m t m tr r r r≡      (17) 

where T is the transpose operator and im  is moment in the 

i  direction and eq
im  is its corresponding equilibrium state. 

M is a B B×  matrix which linearly transforms the 
distribution functions f ∈V  to the 

moments m M∈ and vice versa the moments m M∈  to 

the distribution functions f ∈V  , i.e. 
 

,m M f=   and    1 .f M m−=    (18) 

The transformation matrix M is constructed from the 
monomials of the discrete velocity components 

... ,m n l
i j ke e eα β γ where { }, , , ,and x y zα β γ ∈ by means of the 

Gram–Schmidt orthogonalization procedure (Lallemand 
and Luo 2000, 2003, Bouzidi et al. 2001). The row vectors 
of M are mutually orthogonal, that is, TM M is a diagonal 
matrix, but not normalized, so all the elements of matrix M 
are integers. 
 
The transformation matrix M for the nineteen velocity 
model in three dimensions (D3Q19) is given as 
(D’Humières et al. 2002): 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30 11 11 11 11 11 11 8 8 8 8 8 8 8 8 8 8 8 8
12 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 4 4 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 4 4 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0

− − − − − − −
− − − − − −

− − − − −
− − − − −

− − − − −
− − − − −

− − − − −
0 0 0 4 4 0 0 0 0 1 1 1 1 1 1 1 1

0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
0 4 4 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1

− − − − −
− − − − − − − −

− − − − − −
− − − − − −

− − − − − −
− −

− −
− −

− −

.

1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

  (19) 

The nineteen moments for the nineteen-velocity model in 
three dimensions (D3Q19) are: 
 

0 3
,

3

T
x x y y z z xx

xx ww ww xy yz xz x y z

e u q u q u q p
m

p p p p m m m

ρ ε

π π

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

where 0 0m ρ= is the mass density, 1m e=  is the energy, 

2m ε=  is the square of energy, 3,5,7 , ,x y zm u=  are the 

components of the velocity vector ( , , )x y zu u uu = , 

4,6,8 , ,x y zm q=  are components of the heat flux 

( , , ),x y zq q q=q  9 3 xxm p= , 11 wwm p=  and 

3,14,15 , ,xy yz zxm p=  are components of the traceless and 

symmetric strain-rate tensor, 10 3 xxm π= and 12 wwm π=  are 
the fourth-order moments, 16,17,18 , ,x y zm m= are the third-
order moments. Among these moments, the mass density 

0ρ and the velocity vector u  are invariant quantities and 
the rest of them are non-invariant quantities. 
 
The equilibria of the moments, ( )eqm , are the functions of 
the invariant moments, which are the mass density 0ρ  and 
the velocity vector u  for athermal fluids. However, in the 
current method, the pressure p  has been used instead of 

the mass density 0ρ , i.e., ( )( ) ,eq
nm tr =  

( ) ( )( )( ) , , ,eq
n nm p t u tr r . 

 
For the D3Q19 model, the equilibria for the non-conserved 
moments are given by the following relations   
(D’Humières et al. 2002): 
 

( )( ) 2 2 2
1 19 ,eq

x y ze p u u uγ= + + +  

( )( ) 2 2 2
2

11 ,
2

eq
x y zp u u uε γ= + + +  

( ) 2 ,
3

eq
x xq u−

=  

( ) 2 ,
3

eq
y yq u−

=  

( ) 2 ,
3

eq
z zq u−

=  

( )( ) 2 2 2 21 ,
3

eq
xx x x y zp u u u u= − + +  

( ) 2 2 ,eq
ww y zp u u= −  
( ) ,eq
xy x yp u u=  
( ) ,eq
yz y zp u u=  
( ) ,eq
xz x zp u u=  

( )( ) 1 ,
2

eqeq
xx xxpπ −

=  

( ) ( )1 ,
2

eq eq
ww wwpπ −

=  

( ) ( ) ( ) 0.eq eq eq
x y zm m m= = =  

    (20) 

In the present work, 1γ and 2γ  are calculated so that the 
incompressible Navier-Stokes equations can be derived 
correctly. These quantities are as follows: 
 

1

2

57,
27.

γ
γ
=
= −

     (21) 

The relaxation matrix Ŝ  is diagonal in the moment 
space M : 
 

1 2 4 4 4 9

10 9 10 13 13 13 16 16 16

1 1 1 1ˆ .
s s s s s s

S diag
s s s s s s s s s

⎛ ⎞
≡ ⎜ ⎟⎜ ⎟

⎝ ⎠
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The speed of sound in the model is 3sc c= . 
 
The incompressible Navier- stokes equations can be 
derived from this method using a Chapmann-Enzkog 
multi-scale expansion. More details are presented in Ref. 
(Du et al. 2006). From this expansion, the kinematic 
viscosity ν  is given as: 
 

9 13

1 1 1 1 1 1 .
3 2 3 2s s

ν
⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (22) 

It should be noted that the present model reduces to the 
IBGKLB model if we use a single relaxation parameter for 
all the moments, i.e. 1 .is τ=  In the next section, the 
thermal lattice Boltzmann methods are explained. 
 

3. HYBRID THERMAL LATTICE BOLTZMANN 
METHOD 

Although the kinetic-based lattice Boltzmann method has 
attained considerable success in simulating fluid flows and 
modeling the physics in fluids (Rahmati and Ashrafizaadeh 
2007; Rahmati et al. 2008a,b,c,d,e,f,g). However, the 
application of lattice Boltzmann model to thermal 
problems has not achieved great prosperity for the thermal 
models due to the severe numerical instability caused by 
breaking the isothermal condition (Lallemand and Luo 
2003). 
 
Constructing LB models for thermal flows remains 
challenging in the LBM community, although some efforts 
have been made from various viewpoints. A recent 
comprehensive review on this topic can be found elsewhere 
(Lallemand and Luo 2003a,b).  
 
The existing approaches for thermal LB models can be 
categorized into three categories, i.e., the multi-speed 
lattice Boltzmann scheme (Teixeira et al. 2000), the 
double-density-distribution-function lattice Boltzmann 
(DDDFLB) approach (Chen and Doolen 1998; Peng et al. 
2003), and the hybrid thermal lattice Boltzmann (HTLB) 
technique (Lallemand and Luo 2003a,b; van Treeck et al 
2006; Mezrhab et al. 2004). The multi-speed scheme is a 
straightforward extension of the isothermal LB models, in 
which only the density distribution function is used; the 
DDDFLB approach uses two different density distribution 
functions, one for the velocity field and the other for the 
internal energy field; and the HTLB technique is similar to 
the DDDFLB approach except that the internal energy 
equation is solved by finite-difference methods, rather than 
by solving the LB model (Lallemand and Luo 2003a,b).  
 
In the present study, the proposed IGLB method is 
extended based on HTLB technique (Lallemand and Luo 
2003a,b; van Treeck et al. 2006) for simulation of thermal 
flows and successfully applied to simulate natural 
convection in a differentially heated cubic cavity and to 
simulate natural convection from a discrete heat source on 
the bottom of a horizontal enclosure.  
 

The equation used for solving the temperature field is 
given by: 
 

2 2 2

2 2 2 ,

T T T Tu v w
t x y z

T T T
x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂
α + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

     (23) 

where α is the fluid thermal diffusivity. The energy 
equation is discretized by the finite-difference technique. In 
this scheme, x, y and z components of heat flux and 
Laplassian operator can be discretized as the following 
formulae (Lalleman and Lou, 2003b): 
 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

, ,
1, , 1, ,

1 [ 1, 1, 1, 1,
8

1, 1, 1, 1,

1, , 1 1, , 1

1, , 1 1, , 1 ],

T x y z
T x y z T x y z

x

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

∂
= + − − −

∂

+ + − − + +

+ − − − − +

+ + − − + +

+ − − − −

 
(24) 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

, ,
, 1, , 1,

1[ 1, 1, 1, 1,
8

1, 1, 1, 1,

, 1, 1 , 1, 1

, 1, 1 , 1, 1 ],

T x y z
T x y z T x y z

y

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

∂
= + − − −

∂

+ + − + − +

− + − − − +

+ + − − + +

+ − − − −

 
  (25) 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

, ,
, , 1 , , 1

1[ 1, , 1 1, , 1
8

1, , 1 1, , 1

, 1, 1 , 1, 1

, 1, 1 , 1, 1 ],

T x y z
T x y z T x y z

z

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

∂
= + − − −

∂

+ + − + − +

− + − − − +

+ + − + − +

− + − − −

 
  (26) 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

2 2 2

2 2 2
, , , , , ,

2[ 1, , 1, , , 1,

, 1, , , 1 , , 1 ]
1 [ 1, 1, 1, 1,
4

1, 1, 1, 1,

, 1, 1 , 1, 1

, 1, 1 , 1, 1

1, ,

T x y z T x y z T x y z
x y z

T x y z T x y z T x y z

T x y z T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z

⎛ ⎞∂ ∂ ∂
⎜ ⎟+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

+ + − + + +

− + + + − −

+ + + − + +

+ − + − − +

+ + + − + +

+ − + − − +

+( ) ( )
( ) ( ) ( )

1 1, , 1

1, , 1 1, , 1 ] 9 , .

T x y z

T x y z T x y z T x y

+ + − + +

+ − + − − −

 
 (27) 

It should be noted that the stencil used for finite difference 
operator must have the same symmetries as those of the 
discrete velocity set of the model, i.e. it is a nineteen-point 
stencil for the D3Q19 model. This stencil helps to improve 
the numerical stability of the scheme. 
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The lattice Boltzmann equation may include external 
forces such as gravity force and buoyancy force. For a 
force term F, one can add it to the momentum. In order to 
conserve mass up to a second order one in Chapman-
Enskog analysis, the net effect of force term F is such that 
the resultant momentum is equal to / 2V F td+ . 
Preferably, it is better to add one-half of the force term 
before the relaxation, and one-half after it.  
 

4. RESULTS 

4.1 Description of the Errors Due to 
Compressibility 

In order to illustrate the error due to compressibility, a 
cubic cavity flow (c.f. Fig. 2) is simulated by both 
compressible BGKLB (CBGKLB) and incompressible 
BGKLB (IBGKLB) models. In these simulations, an 
81×81×81 lattice is used. In order to investigate the 
compressibility error, velocity at the top edge of the cavity 
is varied. The Reynolds number is about 400. 
 
Tables 1 and 2 show both maximum and minimum values 
of the x and z components of velocity and those of          
Ku et al. (1987). As shown in the tables, the results of the 
incompressible model are more compatible with Ku’s 
results (Ku et al. 1987) compared to those of the 
compressible model. 
 
In the case of the compressible model, it is seen that the 
accuracy of the results deteriorates by increasing the 
velocity at the top plate of the cavity. While the flow field 
is simulated by an incompressible lattice Boltzmann 
method, the compressibility error is removed and it is 
possible to increase the velocity at the top wall of the 
cavity for the simulation of the flow field in higher 
Reynolds number. 
 
In the next section, the three-dimensional lid-driven cavity 
flow, three-dimensional flow over backward-facing step, 
and three-dimensional double shear flow problems are 
simulated by the proposed model, i.e., IGLB model, and 
the obtained results are compared to the IBGKLB results 
and the existing CFD numerical data. 
 
4.2 Simulation of Isothermal Fluid Flows  

4.2.1 Cubic Cavity Flow 
Figure 2 shows a schematic view of the three-dimensional 
cavity geometry and boundary conditions used for the 
simulation. The model problem consists of a cubic cavity 
with a constant velocity moving top lid. The cavity is filled 
with an incompressible viscous fluid. This test case is a 
classic benchmark for which many simulation results exist 
in the literature. In this simulation, an 81-cubic lattice is 
used. 
 
Initially a constant pressure 1/ 3p =  is prescribed for the 
whole cavity field, and the velocities in the interior of the 
cavity are set to zero. On the top face, the x component of 
velocity is 0U , which is set to 0.1, and the y and z 

components of velocity are zero. The no-slip boundary 
condition is imposed on other walls. The results are 
presented for two Reynolds numbers (400 and 1000) and 
compared with those of Ku et al. (1987). 
 
To investigate the performance of the IGLB model and 
compare its stability with that of an IBGKLB model, the 
three-dimensional lid-driven cavity flow has been 
simulated using a D3Q19 model. The set of model 
parameters used for the IGLB model is as follows: 
 

5 11 17

2 5

3 2

1.2,

0.1 1.1,
0.1 1.0.

s s s

s s
s s

= = =

= − =

= − =

    (28) 

The relaxation parameters 9 13s s=  are determined by the 
viscosity from Eq.     (22). 
 
Although the computations are performed with a fully 
explicit scheme in time, only steady state solutions are 
presented here. In order to define steady state situation, the 
following expression is used: 
 

1 2 1 2 1 2

1

1 ( ) ( ) (w w ) ,
N

n n n n n n

i

u u v v
N

δ + + +

=

= − + − + −∑       (29) 

where N  is the total number of nodes in the solution 
domain; n is old time level; and 1( , ),n nu u +  1( , ),n nv v + and 

1( , )n nw w + are x, y and z components of the velocity for the 
old and new time levels, respectively. The steady-state 
results are obtained when δ  becomes smaller than 1010− . 
 
Figure 3 shows time history of relative error of the velocity 
distribution at Reynolds number of Re = 100, 400, and 
1000. From Fig. 3, it can be observed that both IBGKLB 
and IGLB models need approximately the same time step 
or iteration number to reach the steady state at Re = 100. 
Furthermore, for Re = 400 and 1000, the number of 
iteration for IGLB model, which is required to achieve the 
steady sate, is more than that of IBGKB model.  
 
The grid dependency studies for cases of Re = 100, 400, 
1000 are conducted first. The mesh size in the 
computational domain is varied from 21×21×21 to 
81×81×81. The results of the grid dependency study are 
exhibited in Table 3 in terms of min ,u min ,w maxw at the 
mid-plane of Y = 0.5. In addition, Figs. 4 and 5 display the 
x and z components of the velocity distributions along the 
vertical and horizontal centerline of the cavity for Re = 400 
and 1000 at different mesh sizes, respectively. As shown in 
Table 3 and in Figs. 4 and 5, with increasing of mesh size 
from 21×21×21 to 81×81×81, the differences between 
presented IGLB results are decreased from 2.44% to 
0.47%, 1.29% to 0.13%, and 10.10% to 0.39% for 
Reynolds numbers of Re = 100, 400, and 1000, 
respectively. These findings manifest that the utilization of 
81×81×81 mesh points by IGLB model can produce very 
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accurate numerical results, hence it is used in the numerical 
simulations. 
 
Figures 6 to 11 present the velocity profiles of the u 
component on the vertical central line and the w 
component on the horizontal central line on the plane of    
Y = 0.5 in a cubic cavity for Re = 100, 400 and 1000, 
respectively. As shown in those figures, all the IGLB 
results are in good agreement with both IBGKLB and Ku’s 
results (Ku et al. 1987) 
 
Figures 12 to 17 illustrate the comparison of x and z 
components of the velocity distributions very close to the 
left vertical wall (i = 2 lattice point) for IBGKLB and 
IGLB models at various Reynolds numbers (Re = 100, 400 
and 1000). Results clearly show that the velocity 
distributions (both x and z components) by IBGKLB model 
present obvious spatial oscillations close to the upper-left 
corner, while the velocity distributions by IGLB model 
display much less spatial oscillations in the same region of 
interest. 
 
In general, the spatial oscillations of solution around the 
upper-left corner intensify as the Reynolds number 
increases. The difference represents that IGLB model is 
more suitable, as compared to IBGKLB model, for 
simulation of fluid flow around geometrical singularity and 
potentially higher Reynolds-number fluid flows. 
 
Figures 18 to 20 show the pressure contours at middle 
plane of Y = 0.5 for different models at Reynolds numbers 
of 100, 400 and 1000. The pressure contours near the top 
corners show that the IGLB results have less spatial 
oscillation, and have improved the quality of the flow field 
which is more significant at higher Reynolds numbers. 
 
Figure 21 reveals the streamlines projected onto three 
orthogonal mid-planes of (a) Z = 0.5, (b) X = 0.5 and (c) Y 
= 0.5 for Re = 100, 400 and 1000, respectively. Notice that 
the streamlines are created by the velocity vectors on the 
pertinent mid-plane. Therefore, they can be regarded as 
projection of streamlines. As it is seen in the plots of Y = 
0.5 for Re = 100, 400 and 1000, the 3-D results are quite 
different from the 2-D ones due to the boundary layer 
effect by the lateral wall. Although the streamlines in the 
mid plane of Y = 0.5 are similar to those of a two-
dimensional case, the strength of the main vortex is 
decreased. As Reynolds number is increased from 100 to 
1000, the main vortex gradually moves toward the center 
and its strength is also intensified. Additionally, a second 
vortex is formed at the lower right corner at Re = 1000.  
 
For the plots of Z = 0.5 and X = 0.5, it is observed that, 
above Re = 400, a couple of transversal vortices are 
produced near the lower right and left corners at each 
plane, and with an increase of the Reynolds number, their 
locations gradually move to the lower bottom wall. 
Furthermore, their strengths are enhanced.  
 
By accurately monitoring plots of X = 0.5 for Re = 100, 
400, and 1000, one can see that a pair of secondary vortices 
at the corners of the top wall becomes more obvious over 

Re = 400. Besides, for Re = 1000, as shown in plot of X = 
0.5, the vortices at the bottom wall are observed to bulge to 
the center, demonstrating the formation of a couple of 
Taylor–Görtler-like (TGL) vortices. The TGL vortices are 
formed due to the concave surface produced by the 
downstream secondary vortex at the bottom of the cavity 
(mid-plane of Y = 0.5). 
 
Table 4 presents the locations of the main vortex core at 
the mid-plane of Y = 0.5 and the transversal vortex core at 
the mid-plane of X = 0.5 between the proposed IGLB 
results and those of Ku et al. (1987). From this table, one 
can observe that our GLB results conform well to those of 
Ku et al. (1987). 
 
The numerical experiments show that when the Reynolds 
number is increased to 2000, the pressure field obtained by 
using the IGLB scheme still bears useful information, at 
least at some distance from the top corner singularities. In 
contrast with the entire pressure field acquired by IBGKLB 
model conveys the severe spurious oscillations at Re = 
2000. As the Reynolds number is increased up to 4000, in 
which the flow field becomes unsteady and complex three-
dimensional vortex shedding is observed, the IBGKLB 
code blows up due to the numerical instability while the 
IGLB code is stable although the results are not convergent 
to the required criteria.  
 
Figures 22 and 23 display the results of IGLB model for 
time step of 225000 at Reynolds number of Re = 4000. By 
noticing Fig. 23, the TGL vortices can be observed in mid-
plane of Z = 0.5 and X = 0.5. 
 
In order to study the stability of the method, we perform 
high Reynolds number simulations with a smaller grid size. 
It is found that the present method can perform simulations 
at low values of the viscosity (thus, high Reynolds number) 
without any numerical instability.  
 
As the width of the system is approximately 50 lattice 
units, the Reynolds number is set by varying the viscosity. 
We compute the lower bounds of the viscosity for this 
particular flow by using the IGLB and IBGKLB schemes. 
The lower bounds are 1.0×10-3 for the IGLB scheme and 
2.5×10-3 for the IBGKLB scheme with identical 
discretization, and initial and boundary conditions; 
Viscosities smaller than these bounds lead to numerical 
instability in the simulation. Hence for our test problem 
with the same grid size, the maximum Reynolds number 
attainable by using the IGLB model is about 2.5 times that 
achievable using the IBGKLB model. 
 
The number of sites updated per second of the D3Q19-
IGLB method for our test case conducted using a personal 
computer with an AMD Athlon (tm) 64 3200+ 2.01 GHz 
processor is about 0.149862×106 in comparison with 
0.155774×106 for the D3Q19-IBGKLB method. Therefore, 
the IGLB scheme is approximately 4% slower than the 
IBGKLB counterpart. Hence, the computational overhead 
due to the projections between V  and M  is not heavy. It 
is generally about 5% of the IBGKLB algorithm. However, 
it is important to mention that, with the same 
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computational effort and near the limit of numerical 
stability, the results obtained by using the IGLB scheme 
are more accurate. 
 
4.2.2 Backward-Facing Step Flow 
The backward-facing step flow is a second well 
documented test case (Chiang et al. 1999). By imposing 
periodic conditions on the front and back faces of a three-
dimensional channel (c.f. Fig. 24), one may simulate the 
two-dimensional flow using a three-dimensional geometry 
and flow solver. To perform this simulation, the grid 
dependency study is performed and a suitable lattice 
(945×13×63) is appointed. At the channel inlet, a 
quadrature velocity profile is imposed. At the outlet flow 
boundary, a fixed pressure is imposed and velocity 
components are extrapolated downstream. Furthermore, the 
no-slip boundary condition is imposed on the solid walls. 
 
The size of the step is such that 31 63S H =  (c.f. Fig. 24), 
and the Reynolds number is defined by: 
Re 4 ( ) / 3U H S υ= − (Chiang et al. 1999), which is 200 
here. In this definition, U is the maximum inlet velocity. 
 
One of the most representative and sensitive flow 
characteristics is the recirculation zone length. Table 5 
presents the results for the normalized recirculation zone 
length (x /S). Considering the presented results in Table 5, 
it is shown that the result of IGLB model is more accurate 
than that of IBGKLB model. Also, the slight discrepancy 
between present results and those of Ref. (Chiang et al. 
1999) can be due to the slight difference between S H  
values in the channel geometry. In the present model 

31 63,S H =  whereas in Ref. (Chiang et al. 1999) 
49 101.S H =  

 
The results for the backwards-facing step flow at Re = 200 
are shown in Figs. 25 to 29. Figures 25 and 27 show the 
pressure contours at Y = 0.5 for the D3Q19 IBGKLB and 
IGLB models, respectively. Also, Figs. 26 and 28 show the 
pressure contours near the step. Once again, it is shown 
that the contour lines are much smoother near the corners 
for the IGLB model, which demonstrates the improved 
stability of the IGLB model. 
 
4.2.3 Double Shear Flow 
The double shear flow is a standard test case to check the 
accuracy of different schemes used in incompressible flows 
(Di et al. 2005). This problem is governed by the 
incompressible Navier–Stokes equations. The shear layers 
are perturbed at the initial time. The initial perturbation 
evolves with time and eventually large vertical structures 
appear. The initial conditions are given by: 
 

( )
( )( )
( )( )0

tanh 0.25 , 0.5,
,

tanh 0.75 , 0.5,

z z
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( ) ( )0 , sin 2 ,w x z xδ π=  

    (30) 

 

where ( ) ( ), 0 1 .x z ∈ The parameter k  and δ  represent 
the shear layer width and the size of the perturbation, 
respectively. In our computations, the shear layer width is k 
= 30 and the perturbation size used is 0.05δ = . In order to 
the grid dependency study, three meshes such as 
416×6×416, 576×6×576, and 768×6×768 are used. As 
shown in Figs. 30 to 33, both x and z components of the 
velocity vectors obtained by 576×6×576 and 768×6×768 
have good conformity with each other. So, a 576×6×576 
lattice is selected in the simulation. The Reynolds number 
defined as that of the previous test case is 10,000. 
Furthermore, the periodic boundary condition is used for 
all variables on the boundaries in the all directions, i.e., x, 
y, and z directions.  
 
Figures 34 and 35 show the vorticity contours, 

( ) ,x z z xu uω = ∂ − ∂  the pressure contours, and the 
streamlines of the double shear flow at t = 0.8, where layer 
width parameter, k, is 30, viscosity, υ, is 1 10,000 , 
respectively. The same contour levels are used to create all 
the figures. As the vorticity contours are illustrated in    
Fig. 34, both proposed generalized lattice Boltzmann and 
the moving mesh finite element methods (Di et al. 2005) 
produce the same structure.  
 
4.3 Simulation of Thermally Driven Flows  

4.3.1 Simulation of Natural Convection in a 
Side-Heated Cubic Cavity  

Numerical simulation for the natural convection flow in a 
side-heated cubic cavity is carried out using the extension 
of the proposed IGLB method for simulation of thermal 
flow problems, i.e. Hybrid Thermal IGLB (HTIGLB) 
model. Figure 36 shows a schematic configuration of the 
setup in the simulation. No-slip boundary conditions are 
imposed on all the faces of the cube. Two opposite vertical 
walls of cube are maintained respectively at +T0 (for x = 
0.5) and -T0 (for x =Lx - 0.5). The four other faces are 
adiabatic.  With respect to the LB scheme, we use the 
bounce back scheme at all solid walls to satisfy the no-slip 
condition together with the extrapolation scheme to obtain 
values for T at the boundaries. Initially, the fluid is at rest 
and a temperature field is varied linearly from the hot plate 
to the cold plate. 
 
The temperature difference between the hot and cold walls 
introduces a temperature gradient in a fluid, and the 
consequent density difference induces a fluid motion, that 
is, convection. In the simulation, the Boussinesq 
approximation is applied to the buoyancy force term. 
 

( ) ,mg T Tr rb= -G j    (31) 

where β is the thermal expansion coefficient, g is the 
acceleration due to gravity, Tm is the average temperature 
and j  is the vertical direction opposite to that of gravity.  
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The dynamical similarity depends on two dimensionless 
parameters: the Prandtl number Pr and the Rayleigh 
number Ra defined as: 
 

3
Pr , ,xg TLRa bu

a ua
D= =    (32) 

where Lx is the horizontal length of the cavity, and TD  
is the temperature difference between the hot and 
cold walls.  
 
We carefully choose the characteristic velocity 

c xV g TLb= D  so that the low-Mach-number 
approximation maintains. 
 
Nusselt number Nu is one of the most important 
dimensionless parameters in describing the convective heat 
transport. The volume-averaged Nusselt number can be 
defined as the following relation: 
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where ( , , ) ( , , ) ( ) ( , , )xq x y z uT x y z x T x y za= - ¶ ¶  is the 
local heat flux in the horizontal direction. 
A uniform grid is used throughout the current numerical 
simulations. The convergence criteria in each case are as 
follows: 
 

1 2 1 2 1 2 51 ( ) ( ) (w w ) 10 ,n n n n n nu u v v
N

+ + + −− + − + − ≤∑     (34) 

1 2 51 ( ) 10 .n nT T
N

+ −− ≤∑     (35) 

In all simulations, Pr is set to be 0.71, and due to the 
restriction of computer capability, the grid size of 
127×127×127 is used for Ra = 103, 104, 105, and 106. In 
order to study the dependency of  the calculations on the 
grid size, the numerical simulations for Ra = 104 using 
HTIGLB method are conducted on seven grid sizes: 
21×21×21, 41×41×41, 51×51×51, 61×61×61, 81×81×81, 
101×101×101, and 127×127×127. The result is given in 
Table 6. This table contains the numerical result of the 
maximum of x and z components of the velocity in the 
cavity, with its location and the averaged Nusselt number 
at the entire system. It should be noted that the velocity 
shown in the table is normalized by the reference velocity 
of α/Lx (velocity reference of Vref is given 
as / / Prx xL g TL Raa b= D ). From the results presented 
in Table 6, it can be clearly observed that, as we increase 
the size of the grid, the difference between the computed 
quantities is alleviated from 6.253% to 0.625% for 

max / refu V , 7.868% to 0.748% for max / refw V , and from 
14.570% to 1.49% for Nusselt number. This indicates that 

the utilization of 127 × 127 × 127 grid in our proposed 
model can give very accurate numerical results. 
 
In Fig. 37, we show the time history of the Nusselt number 
for Ra = 104 and 105. This figure shows that the required 
time step to reach the steady state for Rayleigh number of 
Ra = 105 is more than that of Ra = 104. 
 
Figure 38 displays temperature contours and streamlines 
for the cubic differentially heated buoyant cavity flow in 
final steady states at middle plane of Y = 0.5 for Rayleigh 
numbers of Ra = 103, 104, 105, and 106, respectively. At Ra 
= 103, streamlines are those of a single vortex. The center 
of which is in the center of the cavity. The corresponding 
temperature contours are parallel to both hot and cold walls, 
manifesting that most of the heat transfer mechanism is by 
heat conduction. As the Rayleigh number is enhanced to 
Ra = 104, the central streamline is deformed into an elliptic 
shape and the effects of convection can be observed in the 
temperature contours. At Ra = 105, the central streamline is 
lengthened and two secondary vortices emerge inside it. 
The temperature distributions become horizontal in the 
middle of the system, indicating that the dominant of heat 
transfer mechanism is convection. At Ra = 106, two 
secondary vortices get stronger and the temperature 
distributions become more horizontal at the center of the 
cavity. Consequently, with regard to these figures, as the 
Rayleigh number increases, the fluid motion takes place 
near the vertical walls and the flow in the core of the cavity 
becomes quasi-stationary. Additionally, when the Rayleigh 
number increases, two tendencies are perceived for the 
temperature contours; 1) an increase in the temperature 
gradients close to the hot and cold boundaries, and 2) 
intensified mixing of the hot and cold fluids. Both 
inclinations enhance the heat transfer in the flow domain. 
Table 7 presents the simulated results obtained for the 
Nusselt number at Rayleigh numbers of Ra = 103, 104, 105, 
and 106, respectively, using 128×128 grid system. The 
equivalent Nusselt data presented by Tric et al. (2000) are 
also shown in Table 7 for comparison purposes. From this 
table, it can be observed that our results agree well with 
those by Tric et al. (2000) for Rayleigh numbers less than 
104. At higher Rayleigh numbers, the current LB 
simulation slightly underestimates the heat transfer due to 
insufficient spatial resolution. 
 
The above results indicate that our new 3-D hybrid thermal 
IGLB model is capable of solving the thermal flow 
problems. 
 
4.3.2 Simulation of Natural Convection from a 

Discrete Heat Source on the Bottom of a 
Horizontal Enclosure 

Natural convection (Bejan 1984) has been regarded as an 
efficient procedure for cooling electronic devices due to its 
high credibility, low maintenance cost, and absence of 
noise. Natural convection from vertical enclosures with 
discrete heat sources attached on the vertical wall 
(Mathews et al. 2007; Keyhani et al. 1988; Heindel et al. 
1996; Linhui et al. 2006; Mobedi and Sunden 2006) has 
been given a sizeable attention. The problem of discrete 
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heat source related to a horizontal surface of an electronic 
package (Deng et al. 2002; Sezai and Mohamad 2000; 
Ichimiya and Saiki 2005) is of at least comparable 
significance and found in various engineering applications, 
such as cooling of electronic equipment and air-
conditioning of buildings with chilled ceilings. From the 
point of view of the flow pattern and heat transfer features, 
natural convection of discrete heat source in horizontal 
enclosures can be much more complex than that happening 
in vertical enclosures or along vertical plates. 
 
Polentini et al. (1993) explain that a horizontal 
arrangement of discrete heat sources is preferred when 
uniform heat transfer rates are wanted from diverse rows, 
which is most often the case for cooling of electronic 
components. 
 
The natural convection from a discrete flush-mounted 
rectangular heat source on the bottom of a horizontal 
enclosure is similar to Raleigh-Bénard problem (Pallares et 
al. 1995, Ouertatani et al. 2008, Calcagni et al. 2005), 
which consists of an enclosure heated from below and 
cooled from top. The induced flow pattern includes 
rotating rolls or mushroom type construction depending on 
Rayleigh number, Prantdl number, and geometrical 
restrictions.  
 
In order to study Rayleigh–Bénard convection, diverse 
numerical simulations have been conducted using different 
thermal LB models (Chen and Doolen 1998; Shan 1997; 
Xu and Lui 1999; Inamuro et al. 2002; Kao and Yang 
2007). However, the heat transfer and natural convection 
due to a discrete heat source which is mounted flush with 
the bottom wall of a horizontal enclosure has not been 
inspected and analyzed by thermal LB models. The present 
study utilizes the proposed HTIGLB model to simulate the 
natural convection from a discrete heat source on the 
bottom wall of a horizontal enclosure. 
 
Figure 39 displays the schematic illustration of the physical 
configuration and the coordinate system. The problem 
comprises a chip of constant surface temperature in an 
enclosure with the width of Lx, depth of Ly, and height of H. 
The aspect ratios ARx = Lx / H and ARy = Ly / H of the 
rectangular cavity are equal to 4. The chip with surface 
temperature Thot is on the bottom horizontal wall and has 
dimensions lx and ly in x and y directions respectively. The 
longitudinal aspect ratio arx = lx / H and the lateral aspect 
ratio ary = ly / H of the chip are unity. The bottom wall 
surface is presumed to be adiabatic except for the chip, 
while the upper wall surface is kept at temperature Tcold . 
The sidewalls of the enclosure are supposed to be adiabatic.  
The cooling fluid is air which has a Prandtl number of 0.71. 
The Rayleigh numbers of 103 and 105 are considered in this 
research. 
 
In LBM calculation, the characteristic velocity is assumed 
to be equal to 0.1. Besides, to perform this problem, a 
161×161×40 lattice is used.  
 
Figures 40 and 41 reveal the streamlines and the 
temperature contours of discrete heat source, which is set 

up flush with the bottom wall of the horizontal cavity, on 
the symmetry plane of Y = 0.5 for Rayleigh numbers of 103 
and 105. Furthermore, the results of Sezai and Mohamad 
(2000) are shown in these figures for comparison. As it is 
shown, the obtained results agree well with those of    
Sezai and Mohamad (2000). Note that the streamlines of 
mid plane of Y = 0.5 are obtained from the x and z 
components of the velocity vector at that plane.  
 
From Figs. 40 and 41, it can be observed that the flow 
pattern is identified by a single roll cell of nearly toroidal 
shape. As Rayleigh number increases from 103 to 105, 
centers of rotation in the two sections of the toroid moves 
towards lateral walls. This flow structure has a vertical 
symmetry axis which passes through the center of 
enclosure.  
 
The hot fluid ascends in the central section due to 
buoyancy forces, until it reaches close to the top wall 
where it turns radially outward, towards the lateral walls 
while it is cooled. Then, it turns downward near the 
sidewalls. Ultimately, the limitation applied by the bottom 
wall enforces the fluid to turn radially inward, receiving 
heat when it approaches the discrete heat source. The flow 
path is completed as the colder fluid is entrained to the 
ascending flow at the center of the enclosure.  
 
At Rayleigh number of 103, heat transfer from the discrete 
heat source is dissipated by means of conduction-
dominated mechanism. For Rayleigh number of 105, the 
buoyancy driven flow in the central area between the rolls 
deforms the temperature contours. Furthermore, the heat 
transfer becomes increasingly advection dominated.  
 
Table 8 compares the positions of roll cell centers in the 
two sections of the toroid at the mid-plane of Y = 0.5, 
between the proposed HTIGLB results and those of     
Sezai and Mohamad (2000). As shown in Table 8, our 
HTIGLB results agree well when compared to those of 
Sezai and Mohamad (2000) and the relative errors 
percentage between the two sets of results which are given 
in parentheses are less than 1.64% at Ra = 103 and 3.7% for 
Ra = 105. 
 
Consequently, computations of natural convection from a 
discrete heat source on the bottom of a horizontal enclosure 
accurately predicted the flow characteristics for different 
Rayleigh numbers. The results also agree well with those 
of Sezai and Mohamad (2000). This shows that our 3-D 
HTIGLB model has the capability to simulate the thermally 
driven flow problems.  
 

5. CONCLUSION 
In this work, the compressibility effect of lattice 
Boltzmann methods on the simulation of incompressible 
flows has been investigated. Then, an incompressible 
generalized lattice Boltzmann method has been proposed 
for the simulation of three-dimensional flows. 
 
The proposed IGLB model is validated by its application to 
simulate three-dimensional lid-driven flow in a cubic 



A. R. Rahmati and M. Ashrafizaadeh  / JAFM, Vol. 2, No. 1, pp. 71-96, 2009. 

81 
 

cavity, a backward-facing step flow, and a double shear 
flow at different Reynolds numbers. 
 
It is found that the obtained results agree very well with 
those from Navier–Stokes solvers. This demonstrates that 
our proposed IGLB model can simulate three-dimensional 
incompressible flows. 
 
The stability of the model is also analyzed and compared 
with the IBGKLB model. It is found that the mechanism of 
separate relaxations for the kinetic modes results in a 
model which is much more stable than the BGK LB model. 
The proposed IGLB model compared to the IBGKLB 
model needs the transformations between the velocity 
space V  and the moment space M , back and forth in 
each step in the evolution equation. However, the extra 
computational cost due to this transformation is about 5% 
of the total computing time. Therefore the computational 
efficiency is similar to the IBGKLB model. 
 
The proposed three-dimensional generalized lattice 
Boltzmann method is successfully extended and applied to 
simulation of the three-dimensional incompressible 
buoyancy-induced flows. The numerical results of the 
three-dimensional steady-state natural convection of air in 
a cubical enclosure obtained by HTIGLB method agree 
well with the existing benchmark data. Additionally, 
natural convection from a discrete heat source flush-
mounted on the bottom of a horizontal cavity is simulated. 
It is shows that the proposed scheme is very suitable for 
simulation of buoyant flow problems. 
 
As mentioned above, the obtained results show that IGLB 
model is more accurate and stability compared to the 
incompressible BGK lattice Boltzmann method. Therefore, 
the current proposed method is potentially capable of 
simulating high Reynolds number flows which will be 
discussed in the subsequent work and a relevant turbulent 
model will be applied to the proposed method.  
 
The principal advantage of lattice Boltzmann method, 
which has not been evaluated in this article and will be 
studied in the future work, is the high parallelism of such 
an algorithm. This provides a chance to use such a method 
for the simulation of higher complexity fluid flows. It 
makes lattice Boltzmann methods competitive tools in 
contrast to conventional CFD techniques. 
 
It is important to note that the numerical tests considered 
here are simple, and our aim is just to validate the scheme. 
More demanding complex tests will be carried out in future 
work. 
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Table 1 Minimum x-component velocity for Re = 400. 

0U  CBGKLBu  IBGKLBu  ku et al.u  

0.1 -0.236514 -0.236678 -0.241597 

0.15 -0.236189 -0.236536 -0.241597 

 
 

Table 2 Minimum and maximum z-component velocity for Re = 400. 

0U  CBGKLBw  IBGKLBw  ku  et al .w  

0.1 Max : 0.2058725 
Min: -0.37169405 

Max : 0.2060855 
Min: -0.37212809 

Max : 0.2081399 
Min: -0.3790700 

0.15 Max : 0.20548716 
Min: -0.3711390 

Max : 0.205942258 
Min: -0.372070342 

Max : 0.2081399 
Min: -0.3790700 

 
 

Table 3 Grid dependency study of cubic cavity driven flow for Re = 100, 400 and 1000. 

Reynolds no. Mesh size 21×21×21 41×41×41 61×61×61 81×81×81 

100 

minu  -0.2049 -0.2099 -0.2119 -0.2129 

minw  -0.2087 -0.2294 -0.2358 -0.2392 

maxw  0.1301 0.1411 0.1449 0.1469 

400 

minu  -0.2406 -0.2375 -0.2367 -0.2364 

minw  -0.3306 -0.3596 -0.3679 -0.3720 

maxw  0.1998 0.2039 0.2051 0.2058 

1000 

minu  -0.3187 -0.2866 -0.2825 -0.2814 

minw  -0.3970 -0.4155 -0.4223 -0.4275 

maxw  0.2806 0.2520 0.2476 0.2466 

 
 

Table 4 Positions of the main vortex (mid-plane of Y = 0.5) and the transversal vortex (mid-plane of X = 0.5) centers. 

Reynolds no.  100 400 1000 

  Present work Ku et al. Present work Ku et al. Present work Ku et al. 

Main vortex  
in mid-plane of 

 Y = 0.5. 

z 0.765 0.75 0.578 0.6 0.468 0.5 

x 0.624 0.6 0.626 0.633 0.597 0.61 

Transversal vortex 
 in mid-plane of 

 X = 0.5. 

z 0.355 0.33 0.202 0.204 0.133 0.136 

y 0.378 0.378 0.225 0.233 0.155 0.167 

 
 

Table 5 Dimensionless recirculation zone length for flow over backward-facing step. 

Model IBGKLB model IGLB model Chiang’s work Reynolds number 

x /S 5.252 5.266 5.359 200 
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Table 6 Comparison of numerical results for Ra = 104 and different grid sizes. 

Grid size 21×21×21 41×41×41 51×51×51 61×61×61 81×81×81 101×101×101 127×127×127 

max / refu V  14.474 15.379 15.527 15.613 15.760 15.842 15.938 

x / lx 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

y / ly 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

z / lz 0.85 0.829 0.823 0.820 0.827 0.822 0.827 

max / refw V  15.861 17.109 17.389 17.569 17.778 17.918 18.046 

x / lx 0.143 0.146 0.137 0.131 0.123 0.129 0.126 

y / ly 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

z / lz 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Nu 1.537 1.761 1.818 1.859 1.914 1.948 1.975 

 
 
 

Table 7 Volume-averaged Nusselt number computed for different Ra. 
 

 
 
 
 
 
 
 
 

 
 

Table 8 Positions of roll cell centers in the two sections of the toroid at the mid-plane of Y = 0.5. 

Rayleigh no.  1000 100000 

  Present work Sezai  and Mohamad 
(2000) Present work Sezai and Mohamad 

(2000) 

Left roll cell 
center in mid-

plane of Y = 0.5. 

x 1.180  
(0.77%) 1.171 0.573 

(3.7%) 0.595 

z 0.495  
(1.64%) 0.487 0.562 

(0.54%) 0.559 

Right roll cell 
center in mid-

plane of Y = 0.5. 

x 2.869 
(1.63%) 2.823 3.477 

(2.54%) 3.391 

z 0.495 
(1.64%) 0.487 0.562 

(0.54%) 0.559 

 
 

Rayleigh no. Grid size Present work Tric’s work 

1000 127×127×127 1.07 1.07 

10000 127×127×127 1.975 2.0542 

100000 127×127×127 3.940 4.337 

1000000 127×127×127 7.291 8.641 
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Fig. 1. D3Q19 lattice used in this work. Fig. 2. Configuration of 3-D lid-driven cavity flow 
problem including the boundary conditions. 

Fig. 3. Time history of the relative error of the velocity profile for different Reynolds numbers. 
 

 
Fig. 4. X-component velocity along the cubic cavity 

vertical centerline for different mesh sizes. 
Fig. 5. Z-component velocity along the cubic cavity 

horizontal centerline for different mesh sizes. 
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Fig. 6. X-component velocity along the cubic cavity 
vertical centerline for Re = 100. 

Fig. 7. Z-component velocity along the cubic cavity 
horizontal centerline for Re = 100. 

Fig. 8. X-component velocity along the cubic cavity 
vertical centerline for Re = 400. 

Fig. 9. Z-component velocity along the cubic cavity 
horizontal centerline for Re = 400. 

 
Fig. 10. X-component velocity along the cubic cavity 

vertical centerline for Re = 1000. 
Fig. 11. Z-component velocity along the cubic cavity 

horizontal centerline for Re = 1000. 
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Fig. 12. X-component velocity profiles at i = 2, Re = 
100. 

Fig. 13. Z-component velocity profiles at i = 2, Re = 
100. 

Fig. 14. X-component velocity profiles at i = 2, Re = 
400. 

Fig. 15. Z-component velocity profiles at i = 2, Re = 
400. 

 

Fig. 16. X-component velocity profiles at i = 2, Re = 
1000. 

Fig. 17. Z-component velocity profiles at i = 2, Re = 
1000. 
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a) D3Q19-IBGKLB model b) D3Q19-IGLB model 
Fig. 18. Pressure contours at mid-plane of Y = 0.5 for driven cavity flow at Re = 100 using a) D3Q19-IBGKLB model 

and b) D3Q19-IGLB model with an 81×81×81 lattice. 
 
 

a) D3Q19-IBGKLB model b) D3Q19-IGLB model 
Fig. 19. Pressure contours at mid-plane of Y = 0.5 for driven cavity flow at Re = 400 using a) D3Q19-IBGKLB model 

and b) D3Q19-IGLB model with an 81×81×81 lattice. 

a) D3Q19-IBGKLB model b) D3Q19-IGLB model 
Fig. 20. Pressure contours at Y = 0.5 for driven cavity flow at Re = 1000 using a) D3Q19-IBGKLB model and b) 

D3Q19-IGLB model with an 81×81×81 lattice. 
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(a) Z = 0.5 (b) X = 0.5 (c) Y = 0.5 

Re = 100 

 
(a) Z = 0.5 (b) X = 0.5 (c) Y = 0.5 

Re = 400 
Continue … 

 
(a) Z = 0.5 (b) X = 0.5 (c) Y = 0.5 

Re = 1000 
Fig. 21. Streamlines at different Re using D3Q19 IGLB model and an 81×81×81 lattice. 

 
 

 
 

Fig. 22. Pressure contours at different planes for Re = 4000 at 225000-th time step using D3Q19 
IGLB model and an 81×81×81 lattice. 
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(a) Z = 0.5 (b) X = 0.5 (c) Y = 0.5 

Fig. 23. Streamlines at different planes for Re = 4000 at 225000-th time step using D3Q19 IGLB model and 
an 81×81×81 lattice. 

 
 

 
 

Fig. 24. Geometry of the backward-facing step channel. Flow is from left to right. 
 
 
 
 
 
 

Fig. 25. Pressure contours at Y = 0.5 for backward-facing 
step flow for Re = 200 using D3Q19 IBGKLB model and a 

945×13×63 lattice. 
Fig. 26. Enlarged region A in Fig. 25. 
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Fig. 27. Pressure contours at Y = 0.5 for backward-facing 
step flow for Re = 200 using D3Q19 IGLB model and a 

945×13×63 lattice. 
Fig. 28. Enlarged region B in Fig. 27. 

Fig. 29. Streamlines and velocity vectors at Y = 0.5 for backward-facing step flow for Re = 200 using D3Q19 
IGLB model and a 945×13×63 lattice. 

Fig. 30. Z-component velocity along the horizontal 
centerline of double shear flow for t = 0.8 and different mesh 

sizes. 
Fig. 31. Enlarged region C in Fig. 30. 
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Fig. 32. X-component velocity along the vertical centerline 
of double shear flow for t = 0.8 and different grid sizes. Fig. 33. Enlarged region D in Fig. 32. 

a) IGLB model 
 

 
 
b) Moving mesh finite-element method by Di et 

al. (Di et al. 2005) 

Fig. 34. Vorticity contours at t = 0.8 with k = 30 and viscosity = 1/10,000 at Y = 0.5 (all quantities are in lattice 
units). 

Fig. 35. Pressure contours (left side) and streamlines (right side) obtained by the IGLB model at t = 0.8 with k = 
30 viscosity = 1/10,000 at Y = 0.5 (all quantities are in lattice units). 

 



A. R. Rahmati and M. Ashrafizaadeh  / JAFM, Vol. 2, No. 1, pp. 71-96, 2009. 

94 
 

 
 

Fig. 36. Configuration of natural convection in a cubic cavity.
 
 
 

 
b) Ra = 105  a) Ra = 104 

Fig. 37. Time history of Nusselt number at different Ra.
 
 

 
a) Ra = 103

Continue … 



A. R. Rahmati and M. Ashrafizaadeh  / JAFM, Vol. 2, No. 1, pp. 71-96, 2009. 

95 
 

b) Ra = 104

c) Ra = 105

d) Ra = 106

Fig. 38. Temperature contours (left) and streamlines (right) for the cubic differentially heated buoyant cavity flow 
for steady states at different Ra at middle plane of Y = 0.5. 
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Fig. 39. Physical configuration and coordinate system used by Sezai 
and Mohamad (2000). 

 
 

 
a) 
 

 
b)

 
a) 
 

 
b) 

Fig. 40. Projection of streamlines (left) and isotherms (right) of a) Sezai and Mohamad (2000) and b) the present 
work on the mid-plane of Y = 0.5 for a discrete heater for Ra = 1000.

 

 
a) 
 

 
b)

 
a) 
 

 
 b) 
Fig. 41. Projection of streamlines (left) and isotherms (right) of a) Sezai and Mohamad (2000) and b) the present 

work on the mid-plane of Y = 0.5 for a discrete heater for Ra = 105.
 
 
 
 


