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ABSTRACT 
Radiation effects on boundary layer flow and heat transfer of a fluid with variable viscosity along a symmetric wedge is 
presented here. Fluid viscosity is assumed to vary as a linear function of temperature. The symmetry groups admitted 
by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. 
scaling group of transformations. A third order and a second order coupled ordinary differential equation system 
corresponding to the momentum and the energy equations are obtained. These equations are then solved numerically. 
With the increase of temperature-dependent fluid viscosity parameter (i.e. with decreasing viscosity), the fluid velocity 
increases up to the cross-over point ( 0ηη = ) ( 90.00 ≈η  is the nearest numerical value of the cross-over point) and 
after the crossing over point the fluid velocity is found to decrease but the temperature increases at a particular point. 
The significant finding of this study is that, due to variable fluid viscosity, flow separation is controlled. The 
temperature decreases with increasing value of radiation parameter and Prandtl number.   
 
Keywords: Scaling group of transformations, wedge flow, radiation effect, temperature dependent fluid viscosity.   
 

NOMENCLATURE 

 
A  fluid viscosity variation parameter 

pc  specific heat 

F  non dimensional stream function  
*k  absorption coefficient  

m  Falkner-Skan exponent 
Pr Prandtl number 
Q  radiative heating parameter 

rq   radiative heat flux 

,T ∞TTw , temperature of the fluid, wall, free stream 

Greek symbols 
 

γα ,  transformation parameters 
 η  similarity variable 
 κ  thermal conductivity 
µ , *µ  dynamic, reference viscosity 
ν  reference kinematic viscosity 
ψ  stream function 
σ  Stefan-Boltzman constant 
ρ  density of the fluid  
θ  non dimensional temperature 

 
1. INTRODUCTION 

The study of hydrodynamic flow and heat transfer along a 
symmetric wedge has gained considerable attention due to 
its vast applications in industry and its important bearings 
on several technological and natural processes. The 
momentum boundary layer equation for Falkner-Skan flow 
past a wedge with potential flow velocity was first studied 
by Falkner and Skan (1930). Hartree (1937) later 
investigated the same problem and found the similarity 
solutions. Koh and Hartnett (1959) have obtained the skin-
friction and heat transfer for flow over a porous wedge with 
suction subjected to variable wall temperature. There is a 
large number of investigations on free, forced and mixed 

convective flow over a wedge (Smith 1967, Williams and 
Rhyne 1980, Hossain et al. 2006).  
 
It is well known that the occurrence of flow separation has 
several undesirable effects in so far as it leads to an 
increase in the drag on a body immersed in the flow and 
adversely affects the heat transfer from the surface of the 
body. Several methods have been developed for the 
purpose of artificial control of flow separation.  
 
Radiative effects have important applications in physics 
and engineering. The radiation heat transfer effects on 
different flows are very important in space technology and 
high temperature processes. But very little is known about 
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the effects of radiation on the boundary layer. Thermal 
radiation effects may play an important role in controlling 
heat transfer in polymer processing industry where the 
quality of the final product depends on the heat controlling 
factors to some extent. High temperature plasmas, cooling 
of nuclear reactors, liquid metal fluids, power generation 
systems are some important applications of radiative heat 
transfer from a wall to conductive gray fluids. The effect of 
radiation on heat transfer problems have been studied by 
Hossain and Takhar (1996), Takhar et al. (1996). 
 
In all of the above mentioned studies, fluid viscosity was 
assumed to be constant.  However, it is known that the 
physical properties of the fluid may change significantly 
with temperature. For lubricating fluids, heat generated by 
the internal friction and the corresponding rise in 
temperature affects the viscosity of the fluid and so the fluid 
viscosity can no longer be assumed constant. The increase 
of temperature leads to a local increase in the transport 
phenomena by reducing the viscosity across the momentum 
boundary layer and so the heat transfer rate at the wall is 
also affected. When the fluid is assumed to have constant 
properties, the problem reduces to uncoupled laminar 
boundary layer-flow and the fluid velocity field is 
unaffected by the temperature changes but the problem 
becomes coupled when the thermo-physical properties 
depend on temperature. Such a flow has direct relevance in 
aerodynamics (Hossain et al. 2006). Therefore, to predict 
the flow behaviour accurately it is necessary to take into 
account the viscosity variation for incompressible fluids.  
 
Hossain et al. (2000) considered the flow of viscous 
incompressible fluid with temperature dependent viscosity 
and thermal conductivity past a permeable wedge with 
uniform surface heat flux. Of late, Pantokratoras (2006) 
studied the Falkner-Skan flow problem with variable fluid 
viscosity. A new dimension is added to the above 
mentioned problem by considering the thermal radiation. 
 
The present work deals with the flow of viscous 
incompressible fluid having variable viscosity and heat 
transfer along a symmetric wedge.  Using similarity variable 
and similarity solution solutions, a third order and a second 
order coupled ordinary differential equation system 
corresponding to the momentum and the energy equations 
are derived. These equations are solved numerically using a 
shooting method.  

The effects of the temperature-dependent fluid viscosity 
parameter, radiation parameter, the influence of Prandtl 
number on temperature fields of the fluid are investigated 
and analysed with the help of their graphical 
representations. 

 
2. EQUATIONS OF MOTION 

We consider a steady, two-dimensional, laminar boundary-
layer flow of viscous incompressible fluid past a 
symmetrical sharp wedge with velocity given by 

m
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when the viscous dissipation term in the energy equation 
is neglected. Here u andυ are the components of velocity 
respectively in the x and y directions. Using the Rosseland 
approximation for radiation (Brewster, 1972) we can write 
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. Assuming the temperature difference 

within the flow is such that 4T may be expanded in a 
Taylor series about ∞T  and neglecting higher orders we 

get  .34 434
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The appropriate boundary conditions for the problem are 
given by  
 

wTTu === ,0,0 υ at ,0=y                                      (5a)        

∞→→ TTxuu e ),( as y .∞→                                 (5b) 
 

3. METHOD OF SOLUTION 

]Introducing  
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In the above Eqs. (1), (2) and (4) we get 
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where ρµν *=  *µ is the constant value of the 
coefficient of viscosity far away from the surface. The 
boundary conditions Eqs. (5a) and (5b) now become 

wTTu === ,0,0 υ at ,0=y                                    (10a) 

∞→→ TTxuu e ),( as y .∞→                               (10b) 

The velocity of the fluid over the wedge is now given by 
,)( m

e xxu =  for 1≤m . 
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We now introduce the following relations for  υ,u   and θ   
as                
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I use the temperature dependent fluid viscosity given by 
(Mukhopadhyay et al. 2005), 
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where a ,b are constants and b>0. 
 
Using the Eqs. (11) and (12) in the boundary layer Eq. (8) 
and in the energy Eq. (9) we get the following equations 
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The boundary conditions Eqs. (10a) and (10b) then become 

,0=
∂
∂

y
ψ ,0=

∂
∂

x
ψ

 1=θ  at .0=y                           (15a)  

,)( m
e xxu

y
=→

∂
∂ψ 0→θ as .∞→y                     (15b) 

                   
Introduce the following relations  

)(),( ηψ α Fxyx = , ),(),( ηθ Gyx =  γη
x
y

=           (16)                            

in momentum and energy equations. Then the momentum 
and energy equations give γα −= 1  and the momentum 
equation also gives 123 −=− mγα , the solution of which 

is 
2

1 m+
=α ,  

2
1 m−

=γ and the resulting governing 

equations then become 
 

//////

/////2/

)(
2

1

AGFFAa

FAGmFFmmF

−++

−=
+

−
                           (17) 

 

0Pr
2

13)43( /// =⎟
⎠
⎞

⎜
⎝
⎛ +

++ FGmGQ                        (18) 

where κµ pc*Pr =  is the Prandtl number, 
*34 kTQ κσ ∞=  is the radiative heating parameter.  

The boundary conditions take the following form 
 

1,0,0/ === GFF at 0=η                                  (19)                                                                                                                 

and 0,1/ →→ GF as .∞→η                                  (20)             

The above Eqs. (17) and (18) along with boundary 
conditions are solved numerically by shooting method. 
 

4. RESULTS AND DISCUSSIONS  
In order to analyse the results, numerical computation has 
been carried out for various values of the temperature-
dependent viscosity parameter (A), Falkner-Skan 
exponent ( m ), radiative heating parameter ( Q ) and the 
Prandtl number Pr.  
 
For illustrations of the results, numerical values are 
plotted in the Fig. 1 to Fig. 6. In all cases we take a=1. 
 
To test the accuracy of the present method, results are 
compared with those available in the literature. We see 
that as viscosity becomes constant inside the boundary 
layer, our profiles tend to coincide with the similarity 
profiles shown in the literature. 
 
In order to assess the accuracy of the method, the results 
(in the absence of radiation) are also compared with those 
of Pantokratoras (2006). Our results with A=0 (in the 
absence of thermal radiation) are found to agree well with 
those of Pantokratoras (2006) when the viscosity tends to 
become constant inside the boundary layer. For the sake of 
brevity, the comparison in detail is given in Table 1.  

Now, the result for the variation of the temperature-
dependent fluid viscosity parameter A is presented. In     
Fig. 1, velocity profiles are shown for different values of 
A (A=0, 5, 10, 20) with 2,5.0 == Qm and Pr=0.5. The 
velocity curves show that the rate of momentum transport 
increases with the increase in A.  
 
It clearly indicates that with the increasing value of A i.e. 
with the decreasing viscosity,  the fluid velocity increases 
up to the cross-over point (η = 0η 90.0≈ ) and after this 
point the velocity is found to decrease with increasing A at 
a particular value of η . This can be explained physically 
as the parameter A increases, the fluid viscosity decreases 
resulting the increment of the boundary layer thickness.  
 
But the temperature is found to increase for any non-zero 
fixed value of η  with the increase of A (A=0, 5, 10, 20) 
when 2,5.0 == Qm  and Pr=0.5 (Fig. 2).  It is very clear 
from the figure that the temperature decreases with the 
increasing value of η for all values of A considered here.  

Decrease in )(ηG means a decrease in the velocity of the 
fluid particles. So in this case the fluid particles encounter 
two different phenomena: (i) fluid velocity increases due 
to decrease in the fluid viscosity (with increasing A) and 
(ii) the fluid velocity decreases due to decrease in 
temperature )(ηG . Near the wall, as the temperature G  is 
high, the first cause dominates and far away from the wall, 
where G  is low, the second cause is dominant. 
 
Now we concentrate on the velocity and temperature 
distribution for the variation of Falkner-Skan exponent m  
in the absence and presence of temperature-dependent 
fluid viscosity parameter A.  
 
It is worth mentioning that β is a measure of the pressure 
gradient. If β is positive, the pressure gradient is negative 
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or favorable, and negative β denotes a positive pressure 
gradient (adverse).  
 
Fig. 3a presents the effects of increasing m  ( m =-0.091, -
0.06, 0, 0.1, 0.3, 0.5, 0.9) on the fluid velocity when the 
fluid viscosity is uniform i.e. A=0. With the increasing 
value of the exponent m  (A=0, Q =0, Pr=0.5), the velocity 
is found to increase. It is noted that the boundary layer 
thickness decreases as m increases, hence it gives rise to the 
velocity gradient, which in turn causes to increase the skin 
friction. As m decreases from zero, the positive value of 

22 yu ∂∂  at the wall increases and this, together with the 
constraint Uu →  as ,∞→y leads to a continual decrease 

of ( 0) =∂
∂

yy
u . At m =-0.091 (this is the smallest value of 

m  for which a complete numerical solution exists in this 
case) the velocity gradient at the wall vanishes i.e. the 
frictional force at the wall is zero. This is the criterion of the 
occurrence of flow separation. It is found that in case of 
accelerated flow ( m >0), the velocity profiles have no point 
of inflexion whereas in case of decelerated flow ( m <0), 
they exhibit a point of inflexion. Flow separation occurs at 
m =-0.091 (Fig. 3a). 
 
It is observed that for m =-0.0904 an isothermal Falkner-
Skan solution first encounters separation whereas it 
separates for m =-0.091 when Q =0. 
 
In presence of temperature dependent fluid viscosity 
(A=10), the effects of increasing m ( m =-0.091, -0.06, 0, 
0.3, 0.5, 0.9) are exhibited in Fig. 3b. In this case the 
velocity profiles have no point of inflexion in case of 
accelerated as well as decelerated flows. So a significant 
result is obtained that in presence of temperature dependent 
fluid viscosity, flow separation can be prevented.    
 
It is noticed that the temperature )(ηG  in boundary layer 
decreases with the increasing values of m  (in case of both 
uniform and non-uniform fluid viscosity) since the thermal 
boundary layer thickness increases with m  which causes a 
decrease in the rate of heat transfer.  
 
Figure 4 exhibits that flow separation can be controlled in 
presence of thermal radiation. This is in agreement with the 
result of Grosan and Pop (2007).  

Figure 5 demonstrates the effects of radiation parameter Q  
on temperature field in presence of variable fluid viscosity 
(A=10).  
The temperature )(ηG  increases as thermal 
radiation Q ( Q =0.2, 0.3, 0.5, 1) increases (Fig. 5). This is 
in agreement with the physical fact that the thermal 
boundary layer thickness decreases with increasing Q . The 
effect of radiation in the thermal boundary layer Eq. (9) is 
equivalent to an increased thermal diffusivity, i.e. 

)
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in Eq. (18) can be considered as an effective 

Prandtl number which reduces with increasing values of Q . 
The local Nusselt number for heat transfer in the present 
case is defined by 
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Figure 6 shows the variation of rate of heat transfer with 
the viscosity variation parameter A (for Pr=0.5). It is very 
clear that the rate of heat transfer decreases with viscosity 
variation parameter A, radiation parameter Q (for 
m =0.5). It also decreases with increasing values of m  
(for Q =2). The thermal boundary layer thickness 
increases with parameters related to viscosity variation & 
thermal radiation and also with the exponent m and 
reduces the heat transfer coefficient.       
 

5.  CONCLUSION 
The present study gives the similarity solutions for steady 
boundary layer flow and radiative heat transfer over a 
symmetric wedge in presence of temperature-dependent 
fluid viscosity. The effect of increasing temperature-
dependent fluid viscosity parameter on a viscous 
incompressible fluid is to increase the flow velocity up to 
the cross-over point 0η . The results pertaining to the 
present study indicate that due to radiation, the rate of heat 
transfer decreases. It is noticed that the fluid velocity 
increases with increasing m and flow separation can be 
controlled in presence of variable fluid viscosity. The 
temperature in the boundary layer decreases with 
increasing m .  
 

ACKNOWLEDGMENT 
The author gratefully acknowledges the financial support 
of University Grants Commission (UGC), Eastern 
Regional Office, Kolkata, W.B., India (Project No. F. 
PSW-104 /06-07) for pursuing this work. The author is 
thankful to the honorable reviewers for their constructive 
suggestions for improvement of the paper. 
 

REFERENCES 
Brewster, M. Q. (1972). Thermal   radiative transfer 

properties. John Wiley and Sons. 
 
Falkner, V.M. and S.W. Skan (1930). Some approximate 

solutions of the boundary-layer equations, 
Philosophical Magazine ARCRM 1314, 12, 865-896. 

 
Grosan, T. and I. Pop (2007). Thermal radiation effect n 

fully developed mixed convection flow in a vertical 
channel. Technische Mechanik 27 (1), 37-47. 

 
Hartree, D. R. (1937). On equations occurring in Falkner 

and Skan’s approximate treatment of the equations of 
boundary layer. Proceedings of Cambridge 
Philosophical Society 33, 223-239. 

 
Hossain, M.A., S. Bhowmik, and R.S.R. Gorla (2006).    

Unsteady mixed - convection boundary layer flow     
along a symmetric wedge with variable surface 
temperature. International Journal of Engineering 
Science 44, 607-620. 

 
Hossain, M.A., M.S. Munir, D.A.S. Rees (2000). Flow of 

viscous incompressible fluid with temperature 



S. Mukhopadhyay / JAFM, Vol. 2, No. 2, pp. 29-34, 2009. 
 

33 
 

dependent viscosity and thermal conductivity     past a 
permeable wedge with uniform surface heat flux. 
International Journal of Thermal Sciences 39, 635-
644. 

 
Hossain, M.A. and H.S. Takhar (1996). Radiation   effect   

on    mixed convection along a vertical plate with   
uniform surface temperature. International    Journal    
of    Heat   and    Mass Transfer 31, 243-248. 

 
Koh, J.C.Y. and J.P. Hartnett (1959). Skin-friction and heat 

transfer for incompressible laminar flow over porous 
wedges with suction and variable wall temperature. 
International Journal of Heat Mass Transfer 2, 185-
198. 

 
Mukhopadhyay, S., G.C. Layek, and S.A. Samad (2005). 

Study of MHD boundary layer flow over a heated 
stretching sheet with variable viscosity. International 
Journal of Heat Mass Transfer 48, 4460-4466.  

 
Pantokratoras, A. (2006). The Falkner-Skan flow with 

constant wall temperature and variable viscosity. 
International Journal of Thermal Sciences 45(4), 378-
389. 

 
Smith, S.H. (1967). The impulsive motion of a edge in a 

viscous fluid. Journal of Applied Mathematics Physics 
(ZAMP) 18, 508-522. 

 
Takhar, H.S., R.S.R. Gorla and V.M. Soundalgekar (1996). 

Radiation effects on MHD free convection flow of a 
gas past a semi-infinite vertical plate.  International 
Journal of Numerical Methods of Heat and Fluid Flow 
6(2),77-83. 

 
Williams, J.C. and T.B. Rhyne (1980). Boundary-layer 

development on a wedge impulsively set into motion. 
SIAM  Journal of Applied Mathematics 38, 215-224. 
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