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ABSTRACT

Effect of radiation and mass transfer on the transient free convection flow of a dissipative past semi-infinite vertical
plate with uniform heat and mass flux is analyzed, by taking into account the effect of viscous dissipation. This type
of problems finds application in many technological and engineering fields such as plasma studies, petroleum
industries, MHD energy generators, cooling of nuclear reactors, the boundary layer control in aerodynamics, crystal
growth and furnace engineering. The Rosseland approximation is used to describe the radiative heat transfer in the
limit of the optically thick fluid. The non-linear, coupled equations are solved using an implicit finite difference
scheme of Crank-Nicolson type. Transient temperature, concentration and velocity profiles, local and average skin-
friction coefficient, Nusselt number and Sherwood number are presented graphically and discussed. It is observed
that, when the radiation parameter increases the velocity and temperature decrease accompanied by simultaneous
reduction in both momentum and thermal boundary layers.

Keywords: Steady, Boundary Layer, MHD, Radiation, Heat and mass transfer, viscous dissipation.

NOMENCLATURE

C species concentration in fluid

C species concentration in fluid for away from
the plate

Cw species concentration at the plate
C non-dimensional species concentration
C p specific heat at constant pressure

 D the species diffusion coefficient
 Ec dissipation parameter
 F radiation parameter
 Gr thermal Grashof number
 g acceleration due to gravity
 k the thermal conductivity
 L length of the plate
 M magnetic parameter
 N buoyancy ratio parameter
NuX dimensionless local Nusselt number
Nu dimensionless average Nusselt number
 Pr prandtl number
 q heat flux per unit area at the plate

 qr radiativeheat flux
*qw mass flux per unit area

 Sc Schmidt number

ShX dimensionless local Sherwood number

Sh dimensionless average Sherwood  number
T dimensionless temperature
T temperature of the fluid
T temperature  of  the  fluid  far  away  from  the

plate
Tw the wall temperature
t dimensionless time
t time
 u, v velocity components in the x and y directions

respectively
 U, V dimensionless velocity components in the x

and y directions respectively
 x spatial coordinate along the plate
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 X dimensionless spatial coordinate along the
plate

 y spatial coordinate normal to the plate
Y dimensionless spatial coordinate normal to

the plate

Greek Symbols:
thermal diffusivity
volumetric coefficient of thermal expansion

* volumetric coefficient of thermal expansion
with concentration
electrical conductivity
dynamic viscosity
kinematic viscosity
density

X dimensional local skin-friction

dimensional average skin-friction

1. INTRODUCTION

Steady free convection flow of incompressible viscous
fluid past an infinite or semi-infinite vertical plate is
studied since long because of its technological
importance. Pohlhausen (1921) was the first to study it
for a flow past or semi- infinite vertical plate by integral
method.  Similarity solution to this problem was given
by Ostrach (1953). Siegel (1958) studied the transient
free convective flow past a semi- infinite vertical plate
by integral method. The same problem was studied by
Gebhart (1961) by an approximate method.

The study of magneto-hydrodynamic flow for
electrically conducting fluid past heated surface has
attracted the interest of many researches in view of its
important applications in many engineering problems
such as plasma studies, petroleum industries MHD
power generations, cooling of nuclear reactors, the
boundary layer control in aerodynamics and crystal
growth. Until recently this study has been largely
concerned with flow and heat transfer characteristics in
various physical situations. Watanabe and Pop (1994)
investigated the heat transfer in the thermal boundary
layer of magneto-hydrodynamic flow over a flat plate.
Michiyochi et al. (1976) considered natural convection
heat transfer from a horizontal cylinder to the mercury
under a magnetic field. Vajravelu and Nayfeh (1992)
studied hydro magnetic convection at a cone and a
wedge.  The study of magnetic-hydrodynamic free
convection through a viscous fluid past a semi- infinite
plate is considered very essential to understand the
behavior of the performance of the fluid motion in
several  applications.   It  serves  as  the  basis  for
understanding some of the important phenomena
occurring in heat exchange devices. MHD free
convection flows past a semi- infinite vertical plate
have been studied in different physical condition by
Sparrow and Cess (1961), Riley (1976) and others.

The Problems mentioned above are concerned with
thermal convection only. But in nature along with free
convection currents caused by the temperature
differences, the flow is also affected by the differences
in material constitution, for example, in atmospheric
flows there exist differences in H2O concentration and
hence the flow is affected by such concentration
difference. In many engineering applications, the
foreign  gases  are  injected.   This  causes  a  reduction  in
wall shear stress, the mass transfer conductance or the
rate of heat transfer.  Usually, H2O, CO2, etc are the
foreign gases, which are injected in the air flowing past
bodies.  The effects of foreign mass, also known as
diffusing  species concentration were studied  under

different conditions by Somers (1956), Mathers et al.
(1956), and others either by integral method or by
asymptotic   analysis.   But  the first  systematic  study of
mass transfer effects on free convection flow past a
semi infinite vertical plate was presented by Gebhart
and Pera (1971) who presented a similarity solution to
this problem and introduced a parameter N which is a
measure of relative importance of chemical and thermal
diffusion causing a density difference that drives the
flow the parameter N is positive when both effects
combined to drive the flow and it is negative when
these effects are opposed.  Unsteady free convective
flow on taking into account the mass transfer
phenomenon past an infinite vertical porous plate with
constant suction was studied by Soundalgekar and
Wavre (1977). Callahan and Manner (1976) first
considered the transient free convection flow past a
semi infinite plate by explicit finite difference method.
They also considered the presence of species
concentration.  However this analysis is not applicable
for other fluids whose Prandtl number is different from
unity. Soundalgekar and Ganesan (1981) analyzed
transient free convective flow past a semi infinite
vertical flat plate, taking into account mass transfer by
an implicit finite difference method of Crank-Nicolson
type.  In their analysis they observed that an increase in
the N leads to an increase in the velocity but a decrease
in the temperature and concentration. Elbashbeshy
(1997) studied  heat  and  mass  transfer  along  a  vertical
plate with variable surface temperature and
concentration in the presence of magnetic field.
Aboeldahab and Elbarbary (2001) took into account the
Hall current effect on the MHD free convection heat
and mass transfer over a semi infinite vertical plate
upon which the flow subjected to a strong external
magnetic field. Chen (2004) studied heat and
mass transfer in MHD flow by natural convection from
a permeable inclined surface with variable temperature
and concentration using Keller box finite difference
method and found that an increase in the value of
temperature exponent m leads to a decrease in the local
skin friction, Nusselt and Sherwood numbers.
Takhar et al. (1997) considered the unsteady free
convection flow over a semi infinite vertical plate.
Ganesan and Rani (2000) studied the unsteady free
convection on vertical cylinder with variable heat and
mass flux.

Heat transfer by simultaneous radiation and convection
has applications in numerous technological problems,
including combustion, furnace design, the design of
high temperature gas cooled nuclear reactors, nuclear
reactor safety, fluidized bed heat exchanger, fire
spreads, advance energy conversion devices such as
open cycle coal and natural gas fired MHD, solar fans,
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solar collectors natural convection in cavities, turbid
water bodies, photo chemical reactors and many others
when heat transfer by radiation is  of the same order of
magnitude as by convection, a  separate calculation of
radiation and convection and their superposition
without considering the interaction between them can
lead to significant errors in the results, because  of the
presence of the radiation in the medium, which alters
the temperature distribution within the fluid.  Therefore,
in such situation heat transfer by convection and
radiation should be solved for simultaneously.  In this
context, Abd El-Naby et al. (2003) studied the effects
of radiation on unsteady free convective flow past a
semi infinite vertical plate with variable surface
temperature using Crank-Nicolson finite difference
method.  They observed that, both the velocity and
temperature are found to decrease with an increase in
the temperature exponent. Chamkha et al. (2001)
analyzed the effects of radiation on free convection
flow past a semi-infinite vertical plate with mass
transfer by taking into account the buoyancy ratio
parameter N.  In their analysis they found that, as the
distance from the leading edge increase, both the
velocity and temperature decrease, where as the
concentration increases. Ganesan and Loganadhan
(2002) studied the radiation and mass transfer effects on
flow of incompressible viscous fluid past a moving
vertical cylinder using Resseland approximation by The
Crank-Nicolson finite difference method. Takhar et al.
(1996) considered the effects of radiation on MHD free
convection flow of a radiating gas past a semi infinite
vertical plate.

In most of the studies mentioned above, viscous
dissipation is neglected. Gebhart (1962) has shown the
importance  of viscous  dissipative  heat in free
convection flow along a semi infinite vertical
isothermal  plate and presented similarity  solution by a

defining a dissipation parameter g LEc
Cp

,  which is

the ratio of kinetic energy of the flow to the heat
transformed to the fluid. Gebhart and Mollendorf
(1969) considered the effects of viscous dissipation for
external natural convection flow over a surface.
Soundalgekar (1972) analyzed viscous dissipative heat
on the two dimensional unsteady flow past an infinite
vertical porous plate when the temperature oscillates in
time there is constant suction on the plate. Israel-
Cookey et al. (2003) investigated the influence of
viscous dissipation and radiation on MHD free
convection flow past an infinite heated vertical plate in
a porous medium with time dependent suction. Gokhale
and Samman (2003) studied the effects of mass transfer
on the transient free convection flow of a dissipative
fluid along a semi infinite vertical plate with constant
heat flux.

The aim of the present chapter is to study the thermal
radiation effects on unsteady two dimensional hydro
magnetic free convection flow of a viscous,
incompressible fluid, past the semi infinite vertical plate
with uniform heat and mass flux taking to account the
effects of viscous dissipation.  The equations of
continuity, linear momentum, energy and diffusion,
which governed flow field, are solved by using an

implicit finite difference method of Crank – Nicolson
type.

The behavior of the velocity, temperature concentration
skin friction, Nusselt and Sherwood numbers have been
discussed for variations in governing parameters.

2. MATHEMATICAL ANALYSIS

Consider a two dimensional transient hydro-magnetic
laminar natural convection flow of a viscous,
incompressible radiating fluid past a semi infinite
vertical plate, taking into account the effect of viscous
dissipation is considered. The x-axis is taken along the
plate in the vertically upward direction, and the y-axis
is taken normal to the plate. Initially, it is assumed that
the plate and the fluid are at the same temperature T
and the concentration level C everywhere in the fluid.
Time ' 0t , the temperature and the concentration level
near  the  plate  are  raised  at  the  constant  rate.  It  is
assumed that the concentration 'C  of the diffusing
species in the binary mixture is very less in comparison
to the other chemical species, which represent and
hence the Soret and Dufour effects are negligible then,
under the above assumption, the governing boundary
layer equations with Boussinesq’s approximation are

0u v
x y

     (1)

2

2

2
0

( )

*( )

u u u uu v g T T
t x y y

g C C u

                    (2)

2

2

2
1 r

p p

T T T Tu v
t x y y

u q
c y c y

     (3)

2

2

C C C Cu v D
t x y y

                     (4)

The initial and boundary conditions are

0, 0, 0, ,t u v T T C C  For all y

0, 0, 0, , 0t u v T T C C at x

* ( )0, 0, , 0wT q q xu v C at y
y k D

           (5)

0, ,u T T C C as y

Where u ,v are velocity components in x, y directions
respectively, t -  the  time,  g  –  the  acceleration  due   to
gravity, - the volumetric coefficient of thermal
expansion, * - the volumetric coefficient of expansion
with concentration, T - temperature of the fluid in the
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boundary layer, C – the species concentration in the

boundary layer, Tw  - the wall temperature, T  -  the
temperature of the fluid far away from the plate, Cw -

the concentration at the plate, C -  the   species
concentration in fluid for way from the plate - the
electrical conductivity, 0 - the magnetic induction,

- the density  of the fluid, -thermal diffusivity, k
the thermal conductivity , - the Kinematics  viscosity,

pC - the specific  heat at constant pressure , rq - the
radiation  heat flux and D - the species diffusion
coefficient.

The third term on the right hand side of the Eq. (3) is
the radiative heat flux term.  The second term is the
viscous dissipation term.
By using Rosseland approximation (Brewster, 1992)
the radiative, heat flux rq  is given by.

4

4 T
3

s
r

e

q
k y

                                                      (6)

Where s  is the Stefan Boltzmann constant and ek -
the mean absorption coefficient. It should be noted that
by using the Rosseland approximation the present
analysis is limited to optically thick fluids. It
temperature differences within the flow are sufficiently
small, then Eq. (6) can be linearized by  expanding

4T  into the Taylor series about T  , which after
neglecting higher order terms takes the form.

4 3 4

T 4 3T T T                      (7)

In the view of Eqs. (6) and (7), Eq. (3) reduces to

3 2

2

2

16
3

s

p e p

p

T T T k T Tu v
t x y c k c y

u
c y

          (8)

In order to write the governing equations and the
boundary conditions in dimensionless form, the
following non dimensional quantities are introduced.

1
2

uLU
Gr

; 1
4

vLV
Gr

; Pr  ; xX
L

;

1
4

T TT qL
kGr

; 1
4

yY
LGr

; ;

4

2

g L qGr
k

; Sc
D

; 34
e

s

k kF
T

 ;                        (9)

p

g LEc
C

;
* * 4

5 24

wg q LN
DGr

;
1

2

2

t Grt
L

Equations (1), (2), (8) and (4) are reduced to the
following non dimensional form,

0U V
X Y

                                   (10)

2 1
4

2

U U U UU V TGr
t X Y Y

NC MU
                      (11)

2

2

2
1

4

1 41
Pr 3

T T T TU V
t X Y F Y

UGr Ec
Y

                  (12)

2

2

1C C C CU V
t X Y Sc Y

                   (13)

The corresponding initial and boundary conditions in
non dimensional form are,

0,t     U=0, V=0, T=0,    C=0

t > 0,   U=0,  V=0,  T=0,  C=0, at X=0

U=0, V=0; 1; 1T C
Y Y

at Y=0                        (14)

U=0, T=0, C=0 as Y

where L- is the length of the plate, Gr- the Grashof
number, Pr- the Prandtl number, Sc- the Schmidt
number, F-the radiation parameter, N-the buoyancy
ratio parameter and M-the magnetic parameter.

Knowing the velocity, temperature and concentration
fields, it is interesting to find the Skin friction, Nusselt
number and Sherwood numbers. Following (15-20),
these are defined as follows,

 Local and average Skin-friction in non –dimensional
form is

3
4

0
X

Y

UGr
Y

                                   (15)

13
4

0
0Y

UGr dX
Y

                                           (16)

Local and average Nusselt numbers in non-dimensional
form are

1 4
X

w

XNu Gr                    (17)

1
1

4

0 w

dXNu Gr                                                         (18)

Local and average Sherwood numbers in non
dimensional form are

*

1
4

w

C CC
q L

DGr
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1 4
X

w

XSh Gr
C

                                                        (19)

1
1

4

0 w

dXSh Gr
C

                   (20)

3. NUMERICAL TECHNIQUE

In order to solve the unsteady, non-linear, coupled
Eqs. (10) to (13), under the boundary conditions (14),
an implicit finite difference scheme of Crank-Nicolson
type has been employed. The finite difference equations
corresponding to Eqs. (10) to (13) are as follows

1 1 1 1
, 1, , 1, , 1 1, 1 , 1 1, 1

1 1
, , 1 , , 1

4

0
2

n n n n n n n n
i j i j i j i j i j i j i j i j

n n n n
i j i j i j i j

U U U U U U U U
X

V V V V
X

       (21)

1 1 1
, , , 1, , 1,

,

1 1
, 1 , 1 . 1 , 1

,

1 1 1
, 1 , , 1 , 1 , . 1

2

1
1 ,4

2

4

2 2

2

n n n n n n
i j i j i j i j i j i jn

i j

n n n n
i j i j i j i jn

i j

n n n n n n
i j i j i j i j i j i j

n
i j

U U U U U U
U

t X

U U U U
V

Y

U U U U U U

Y

T
Gr

1
, , ,

1
, ,

2 2

2

n n n
i j i j i j

n n
i j i j

T C C
N

U U
M

    (22)

1 1 1
, , , 1, , 1,

,

1 1
. 1 , 1 , 1 . 1

,

1 1 1
, 1 , , 1 . 1 , . 1

2

2

1 41
4 Pr 3

2 2

2

n n n n n n
i j i j i j i j i j i jn

i j

n n n n
i j i j i j i jn

i j

n n n n n n
i j i j i j i j i j i j

T T T T T T
U

t X

T T T T
V

Y F

T T T T T T

Y
2

1 , 1 ,4
n n
i j i jU U

EcGr
Y

      (23)

1 1
, , , 1, , 1,

,

1 1
, 1 , 1 , 1 , 1

,

1 1 1
, 1 , , 1 , 1 , , 1

2

2

4

2 21
2

n n n i n n n
i j i j i j i j i j i jn

i j

n n n n
i j i j i j i jn

i j

n n n n n n
i j i j i j i j i j i j

C C C C C C
U

t X

C C C C
V

Y

C C C C C C
Sc Y

           (24)

The boundary condition at Y=0 for the temperature in
the finite difference form is

1 1
,1 , 1 ,1 , 1 1

4

n n n n
i i i iT T T T

Y
                                  (25)

At Y=0 (i.e. j=0) Eq. (23) becomes

1 1 1
,0 ,0 ,0 1,0 ,0 1,0

,0

1 1
,1 , 1 ,1 , 1

,0

1 1 1
, 1 ,0 ,1 , 1 ,0 ,1

2

1 ,14

2

4

2 21 41
Pr 3 2

n n n n n n
i i i i i in

i

n n n n
i i i in

i

n n n n n n
i i i i i i

i

T T T T T T
U

t X

T T T T
V

Y

T T T T T T
F Y

U
EcGr

2

,0
n n

iU
Y

 (26)

After eliminating n
i

n
i TT 1,

1
1,   using Eq. (25),

Eq. (26) reduces to the form

1 1 1
,0 ,0 ,0 1,0 ,0 1,0

,0

1 1
,1 ,0 ,1 ,0

2

2
1 ,1 ,04

2

21 41
Pr 3

n n n n n n
i i i i i in

i

n n n n
i i i i

n n
i i

T T T T T T
U

t X

T T T T Y
F Y

U U
EcGr

Y

             (27)

The boundary condition at Y=0 for the concentration in
the finite difference form is

1 1
,1 , 1 ,1 , 1 1

4

n n n n
i i i iC C C C

Y
                                             (28)

At Y=0 (i.e. j=0), Eq. (24) becomes

1 1 1
,0 ,0 ,0 1,0 ,0 1,0

,0

1 1
,1 , 1 ,1 , 1

,0

1 1 1
, 1 ,0 ,1 , 1 ,0 ,1

2

2

4

2 21
2( )

n n n n n n
i i i i i in

i

n n n n
i i i in

i

n n n n n n
i i i i i i

C C C C C C
U

t X

C C C C
V

Y

C C C C C C
Sc Y

              (29)

After eliminating n
i

n
i CC 1,

1
1,   using Eq. (28),

Eq. (29) reduces to the form

1 1 1
,0 ,0 ,0 1,0 ,0 1,0

,0

1 1
,1 ,0 ,1 ,0

2

2

21

n n n n n n
i i i i i in

i

n n n n
i i i i

C C C C C C
U

t X

C C C C Y
Sc Y

    (30)

The region of integration is considered as a rectangle
with sides max ( 1)X  and max ( 14)Y , where maxY
corresponds toY , which lies very well outside the
momentum, energy and concentration boundary layers.
The maximum of Y was chosen as 14 after some
preliminary investigation.  So that the last two of the
boundary conditions of Eq. (14) are satisfied. Here, the
subscription i- designates the grid point along the X-



B. Vasu et al. / JAFM, Vol. 4, No. 1, pp. 15-26, 2011.

20

direction, j-along the Y-direction and the superscript n
along the t- direction. An approximate mesh sizes
considered for the calculation is 0.05X , 0.25Y
and the time step  0.01t . During any one time step,
the coefficient ,

n
i jU  and ,

n
i jV  appearing in the

difference equation are treated as constants.  The values
of C, T, U, and V at time level (n+1) using the known
values at previous time level (n) are calculated as
follows.

The finite difference Eqs. (30) and (28) at every
interned nodal point on a particular i- level constitute a
tridiagonal system of equation.  Such a system of
equations is solved by using Thomas algorithm as
discussed in Carnahan et al. (1969).  Thus, the values of
C are known at every internal nodal point on a
particular i at (n+1) th time level.  Similarly, the values
of T are calculated from Eqs. (27) and (25). Using the
values of C and T at (n+1)th time level in Eq. (22), the
values of U at (n+1)th time  level  are  found  in  similar
manner.  Then the values of V are calculated explicitly
using the Eq. (21) at every nodal joint at particular i-
level at (n+1)th time level.  This process is respected for
various  i-  levels,  thus  the  values  of  C,T,U  and  V   are
known at all grid points in the rectangular region at
(n+1)th time level. Computations are carried out until
the steady state is reached.  The Steady  state  solution
is assumed to have been reached, when the absolute
difference between  the values of U as well as
temperature T and concentration C  at two consecutive
time steeps are less  than 10-5 at all grid points.

After experimenting with few sets of mess sizes, they
have been fixed at the level 0.05X , 0.25Y and
the time step 0.01t , in this case, special mesh sizes
are reduced by 50% in one direction, and then in both
direction, and the result are compared.  It is observed
that when mesh size is reduced by 50% in X – direction
and Y direction, the result differ in the fourth decimal
places.    The computer takes more time to compute, if
the  size  of  the  time  step  is  small.   Hence  the  above
mentioned sizes have been considered as appropriate
mesh sizes for calculation.

The local truncation error is 2 2( )O t Y X  and it
tends to zero as t  , Y and X  tend to zero.  Hence
the scheme is compatible.  The stability and
compatibility insure convergence.

The derivatives involved in Eqs. (15) to (20) are
evaluated using five point approximation formula and
then the integrals are evaluated using Newton – Cotes
closed integration formula.

4. RESULTS AND DISCUSSIONS

Representative set of numerical results shown
graphically in Figs. 1 to 15, illustrate the influence of
physical parameters Viz., radiation parameter F,
Grashof number Gr,  Buoyancy ratio parameter N,
Eckert number Ec, Schmidt number Sc,  Magnetic
parameter  M,   Prandtl  number   Pr  on  velocity,
temperature and concentration, skin-friction, Nusselt
and Sherwood number.

In order to check the accuracy of our numerical results,
the present study is compared with the available
theoretical solution of Gokhale and Samman (2003) in
Fig. 1a, and they are found to be in good agreement.

For different values of the radiation parameter F, the
transient velocity and temperature profiles are plotted in

Fig. 1b and 1c. 34
e

s

k kF
T

 and this defines the ratio of

thermal conduction contribution relative to the thermal
radiation. For radiative heat transfer dominance in the
boundary layer regime, F 0. For finite values of F
there will be a simultaneous presence of thermal
conduction and radiative transfer contribution. For F =1
both modes will contribute equally. For F , in
Eq. (12), the term 4/3F 0 and the energy
conservation equation reduces to the convectional
unsteady conduction-convection equation with
dissipation i.e.

2

2

2
1

4

1
Pr

T T T TU V
t X Y Y

UGr Ec
Y

An  increase  in  F  from  0  (total  thermal  radiation
dominance) through 3.0, 5.0 to 10.0, causes a
significant decrease in velocity with distance into the
boundary layer i.e. decelerates the flow. Velocities in
all cases ascend from the plate surface, peak close to the
wall and then decay smoothly to zero in the free stream.
We also note that  with increasing values of  F the time
taken to attain the steady state is reduced. Thermal
radiation flux therefore has a de-stabilizing effect on the
transient flow regime. This is important in polymeric
and other industrial flow processes since it shows that
the presence of thermal radiation while decreasing
temperature, will affect flow control from the plate
surface into the boundary layer regime. As expected,
temperature values are also significantly reduced with
an  increase  in  F  as  there  is  a  progressive  decrease  in
thermal radiation contribution accompanying this. All
profiles are monotonic decay from the wall to the free
stream.

The effects of the viscous dissipation parameter i.e.
Eckert number Ec on the transient velocity and
temperature are shown in Figs. 2a and 2b,  the  time
taken to reach the steady state increase in Eckert
number Ec. Also greater viscous dissipative heat causes
rise in the temperature as well as the velocity.

Figures 3a and 3b present transient velocity and
temperature profiles in the boundary layer for various
values  of  Gr,  respectively.   Increasing  the  value  of  Gr
have the tendency to induce  more flow in the boundary
layer due to the effect of thermal buoyancy  for small
buoyancy effects (Gr=2) , The maximum flow velocity
occurs  at the plate.  However, as the buoyancy effects
gets a relatively large, a distinctive peak in the velocity
profiles, occurs in the fluid adjacent to the wall and this
peak more distinctive as Gr increase further.  Along
with this flow behaviors, the temperature reduce as Gr
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increases causing the fluid temperature to reduce at
every point other than that the wall.  These flow and
thermal behaviors are depicted by the respective
increases and decrease in the velocity temperature fields
as Gr increases shown in Figs 3a and 3b.

Figures 4a and 4b had shown the effect of Pr on the
transient velocity and temperature profiles. The time
taken to reach the steady state increases with increasing
Pr. From Fig. 4b, it is observed that as increase in the
Prandtl number results a decrease of the thermal
boundary layer thickness and in general lower average
temperature within the boundary layer. The reason is
that smaller values of Pr are equivalent to increase in
the thermal conductivity of the fluid and therefore heat
is able to diffuse away from the heated surface more
rapidly for higher values of Pr.  Hence in the case of
smaller Prandtl numbers as thermal boundary layer is
thicker and the heat transfer is reduced.

Figures 5a and 5b illustrate the influence of the Schmidt
number Sc on the transient velocity and concentration.
As Sc increases the concentration decreases. The cause
the concentration buoyancy effects to decrease yielding
a reduction in the fluid velocity.  The reduction in the
velocity and concentration profiles is accompanied by
simultaneous reductions in velocity and concentration
boundary layer. These behaviors are clear from
Figs. 5a and 5b also the time required to reach the
steady state increases with the increase in Sc.

For various values of the magnetic parameter M the
velocity profiles are plotted in Fig. 6.  The influence of
the magnetic parameter M on the velocity profiles is an
expected.  As M increase the Lorentz force which
oppose  the flow  also increases and leads to enhanced
deceleration of the flow this result qualitatively agrees
with the expectations, since the magnetic filed exact a
retarding  force  on the free convective flow the obvious
from the decrease in the velocity profiles in Fig. 6.

The effect of buoyancy ratio parameter N on the steady
state velocity, temperature and concentration profiles is
shown in Figs. 7 to 9 it is formed from these figures
that  when there is opposing buoyancy  force  the
velocity is less but the temperature and the
concentration are more  compared to  that in the
presence of aiding  buoyancy  force  the velocity is also
found to increase as the aiding buoyancy  force
increases.  But both the temperature and concentration
decrease as aiding buoyancy force increases.

Figures 10 and 11 illustrate the effects of M, F, Sc, Ec
and N on the local and Average skin friction
respectively.  Both the local and average skin friction is
found to decrease with an increase in M, F & Sc.
Increase in Ec and N leads to an increase in both local
and average skin friction.

Figures 12 and 13 show the effects of radiation
parameter F, Eckert number and buoyancy ration
parameter N on the local and average Nusselt numbers
respectively. It is observe that the local and average
Nusselt numbers increase with the increase in F, Ec and
N.

Figures 14 and 15 display the effect of Sc on the local
and average Sherwood number respectively. We can
easily see that as Sc increase the local and average
Sherwood number increase.
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