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ABSTRACT

The steady, laminar axisymmetric convective heat and mass transfer in boundary layer flow over a vertical thin
cylindrical configuration in the presence of significant surface heat and mass flux is studied theoretically and
numerically. The governing boundary-layer equations for momentum, energy and species conservation are
transformed from a set of partial differential equations in a (x,r) coordinate system to a ( , ) system using a group of
similarity transformations. The resulting equations are solved using the Network Simulation Method (NSM) for the
buoyancy-assisted pure free convection and also the pure forced convection cases, wherein the effects of Schmidt
number, Prandtl number and surface mass parameter on velocity, temperature and concentration distributions in the
regime are presented graphically and discussed. For the buoyancy-assisted pure free convection case, non-
dimensional velocity ( f/ ) is found to increase with a rise in surface mass transfer (S) but decrease with increasing
Prandtl number (Pr), particularly in the vicinity of the cylinder surface (small radial coordinate, ). Dimensionless
temperature ( )  decreases however with increasing S values from the cylinder surface into the free stream; with
increasing Prandtl number, temperature is strongly reduced, with the most significant decrease at the cylinder surface.
Dimensionless concentration ( ) is decreased continuously throughout the boundary layer regime with an increase in
S; conversely  is enhanced for all radial coordinate values with an increase in Prandtl number. For the pure forced
convection case, velocity increases both with dimensionless axial coordinate ( ) and dimensionless radial coordinate
( ) but decays smoothly with increasing Prandtl number and increasing Schmidt number, from the cylinder surface to
the edge of the boundary layer domain. The model finds applications in industrial metallurgical processes, thermal
energy systems, polymer processing, etc.

Keywords: Network simulation, Free and forced convection, Prandtl number, Surface mass parameter, Schmidt
number, Energy systems.

NOMENCLATURE

a1 function of
a2 function of
a3 function of
a4 function of
a5 function of
B* flux constant (m2s2 Celsius) arising in
                definition of S in eqn.  (8)
C species concentration in the boundary
                 layer
C concentration at the free stream
D species (mass) diffusivity
f dimensionless stream function
g acceleration due to gravity

ro radius of slender cylinder
Reo Reynolds number at cylinder surface
Rex local Reynolds number
S dimensionless surface mass parameter
Sc Schmidt number
T fluid temperature
T free stream temperature
u x-direction (axial) fluid velocity
u free stream velocity
v r-direction (radial) fluid velocity
x axial coordinate, directed vertically
                upwards along cylinder longitudinal axis

thermal diffusivity
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Gro* Grashof number at cylinder surface
Grx local Grashof number (buoyancy
                parameter)
k thermal conductivity of the fluid
mw mass flux
Pr Prandtl number
qw heat flux
r radial coordinate

coefficient of thermal expansion
boundary layer thickness
kinematic viscosity
dimensionless stream function parameter
dimensionless axial coordinate
dimensionless radial coordinate

o ratio of buoyancy to inertial forces
function of the parameter, o

1. INTRODUCTION

Combined heat and mass transfer flows are of
considerable importance in many applications. These
include atmospheric and oceanic circulation, transport
phenomena in power transformer electronics, heating
and cooling processes in semi-conductor electronics,
adsorption reactors, geophysical porous media, binary
diffusion systems solar energy systems and polymer
processing in the plastics industry. Mixed convection
also is a very commonly encountered phenomenon and
describes situations where both buoyancy and pressure
forces exert an influence on the flow domain. Many
applications exist in bio-membrane dynamics, surface
science and bio-chemical engineering and the reader is
referred to the monograph by Deen (1998). Many
researchers have investigated coupled heat and mass
transfer flows, often employing boundary layer theory
to simplify the transport equations in order to yield
numerical or closed-form solutions.  An early study of
laminar heat and mass transfer was conducted by
Brown (1960). Tien and Campbell (1963) examined the
combined boundary layer heat and mass transfer from
spinning conical bodies. With regard to thermal
convections flows within and external to cylindrical
geometries many interesting studies have been
communicated. Unsteady free convection from both
plane surface and cylinder surfaces was analyzed by
Goldstein and Briggs (1964). Evans et al. (1968)
studied both theoretically and experimentally the
internal unsteady free convection in a vertical cylinder
where the core fluid temperature varied in the vertical
direction. Vincent and Coeuret (1972) studied the
external boundary layer heat and species transfer over a
circular cylinder. Tripathi et al. (1973) presented an
integral equation formulation for the transient heat and
mass transfer in an infinite cylinder, with approximate
solutions valid for small time values. Chen and Yuh
(1980) studied the effects of buoyancy on free
convection thermal and concentration boundary layers
over a vertical cylinder showing that the local wall
shear stress, local Nusselt number, and local Sherwood
number increase with increasing curvature of the
cylinder and that the local Sherwood number is boosted
with increasing thermal buoyancy force increases.
Merkin and Pop (1988) used  Blasius and Görtler-type
series expansions and also a finite difference method to
study the natural convection boundary-layer flow on a
horizontal circular cylinder with prescribed surface heat
flux, showing that the Blasius solutions are more
accurate in determining the temperature distributions
and the Görtler-type expansions more successful in
computing velocity distributions. Hossain and
Nakayama (1993) analyzed computationally the surface
mass flux and inertial porous medium effects on natural
convection boundary layer flow over a vertical cylinder

in a non-Darcian regime. Mamyoda and Asano (1993)
used a numerical approach to present new correlations
for the influence of diffusive surface mass
suction/injection on conjugate heat and mass transfer
over a cylinder for Reynolds numbers ranging from 10
to 100, Prandtl or Schmidt numbers from 0.5 to 1.0 and
surface mass suction or injection ratios from -0.2 to 0.1.
Takhar et al. (2000) analyzed the mixed convection
flow over a continuous moving vertical slender cylinder
with combined thermal and mass diffusion buoyancy
effects using a perturbation method with Shanks
transformation and the Blottner implicit difference
method. They showed that a substantial overshoot in
velocity is caused by an increase in buoyancy forces
which also enhances surface skin friction, heat and
mass transfer. Takhar et al. (2002) later considered the
free convection boundary layer flow on an isothermal
vertical thin cylinder embedded in a thermally-stratified
high porosity non-Darcian medium showing that skin
friction and heat transfer decrease with increasing
ambient stratification, curvature and inertia parameters,
but are elevated with a rise in  the permeability
parameter. Kumari and Nath (2004) used a numerical
method to elucidate the influence of localized
cooling/heating and injection/suction on the mixed
convection boundary layer flow on a thin vertical
cylindrical body, showing that heat transfer is affected
considerably but not skin friction. They also found that
the both curvature and buoyancy-assisted flow increase
the skin friction and heat transfer. More recently Juncu
(2005) has analyzed the combined heat and mass
transfer from a circular cylinder in the presence of an
internal heat/mass source. Very recently Zueco et al.
(2009) have presented numerical solutions for the
conjugate convective heat and mass transfer over a
horizontal cylinder to a non-Darcian saturated porous
medium. For coupled problems (involving buoyancy),
the differential equations are more complex to solve
and numerical methods are the only practicable means
to yield solutions of interest to the engineering science
community. In the present paper we shall investigate
the axisymmetric mixed convective heat and mass
transfer boundary layer flow of a viscous,
incompressible Newtonian fluid over a slender vertical
cylinder with uniform heat and mass flux. We utilize
the Network Simulation Method solution for both the
free and forced convection regimes. The present
problem with variable surface mass flux has not been
considered thus far in the scientific literature, despite
important applications in polymer coating processes,
energy systems, chemical reactor mixing and also
industrial materials processing.

2. GENERAL GUIDELINES

The regime to be studied is illustrated below in Fig. 1a.



J. Zueco et al. / JAFM, Vol. 4, No. 2, Issue 1, pp. 13-23, 2011.

15

The governing boundary-layer equations for the steady,
axisymmetric, thermal convection heat and mass
transfer along the cylinder external surface under
buoyancy effects can be posed as follows, under the
Boussinesq assumption, with reference to a cylindrical
coordinate system (x, r) as follows:

Conservation of Mass:

( ) ( ) 0ru rv
x r

     (1)

Momentum :

( )

( ) ( )

u uu v g T T
x r

ug C C r
r r r

     (2)

Thermal Energy (Heat):

( )T T Tu v r
x r r r r

     (3)

Species (Diffusion):

( )C C D Cu v r
x r r r r

(4)

We neglect viscous dissipation in the energy Eq. (2)
and assume that the concentration of the diffusing
species in the binary mixture is significantly lower than
the other chemical species present. As such the
interfacial velocity at the cylinder surface due to mass
diffusion is ignored. All parameters are defined in the
nomenclature. We note that the first term on the right
hand side of Eq. (2) is the buoyancy term due to
temperature differences, and the second term is the
buoyancy force due to concentration differences. For
the case of a positive coefficient these buoyancy forces
assist the upward flow; for the negative case they
oppose the upward flow. The corresponding boundary
conditions on the surface of the cylinder (for which r =
r0) and far away from the surface (r ) take the
form:

Fig. 1a. Physical model and coordinate system for
convection over a vertical slender cylinder.

2.1 Boundary conditions

( , ) ( , ) 0,0 0
( , ) ( , )0 0,

u x r v x r

T x r C x rq mw w
r k r k

(5)

( , ) , ( , ) , ( , )u x u T x T C x C (6)

(0, ) , (0, ) ,
(0, ) ,

u r u T r T
C r C r ro

(7)

Introducing the following transformations:

( , )xr fo , 1/2 1/5[Re ]

x

Grx x
,

[ ]

T T

qw k

,
[ ]

C C

mw k

, rv
x

,

1/4[ ]
Re
x

ro o
, Re

u roo ,
2 2

2
r ro

ro o
,

1[ ]6/51 o
, * 1/5[ ]

Re
Groo

o
,

4
* 2

g q rw oGro
k

, *B mwS
qw

(8)

the conservations coordinates (1) to (4) reduce from an
(x,r) coordinate system to a ( , ) coordinate system,
with the continuity equation identically satisfied, to
yield:

Conservation of Momentum:

3 22 2(1 2 ) (2 )13 2

2( ) ( )2 3

2 2
( )4 2

f fa f

fa a S

f f f fa

     (9)

Conservation of Energy:

22 2(1 2 ) (2 Pr )12

Pr Pr ( )5 4

a f

f f fa a

   (10)

Conservation of Species:

22 2(1 2 ) (2 )12

( )5 4

a Sc f

f f fSc a Sc a

   (11)

where Pr is the Prandtl number and Sc is the Schmidt
number, the latter defining the ratio of the momentum
to the mass diffusivity. Sc provides a measure of the
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relative effectiveness of momentum and mass transport
by diffusion in the hydrodynamic (velocity) and
concentration (species) boundary layers. The
coefficients a1, a2, a3, a4 and a5 are defined as follows:

8 3
1 10

a    (12)

3(1 )
2 5

a    (13)

5(1 )3a    (14)

4 4
a    (15)

(2 3 )
5 10

a    (16)

and 1 .6/51 o
 The corresponding

transformed boundary conditions are:

Initial:

1)0,()0,(

,0)0,()0,(:0
f

f

   (17)

End:

0),(),(,2),(:
f

   (18)

3. SPECIAL FLOW CASES

A number of special cases of the general mathematical
model defined by Eqs. (9) to (11) under conditions (17,
18) can now be considered.

3.1 Case A: Pure Free Convection Regime

By setting u , o ,  0 and

10/1]
*

[
oGror

x
, we obtain the case for a free

convection regime :

Conservation of Momentum:

3 2 2( ) ( )1 2 33 2

2 2
( )4 2

f f fa f a a S

f f f fa

   (20)

Conservation of Energy:

2
Pr Pr 512

Pr ( )4

fa f a

f fa

   (21)

Conservation of Species:

2
512

( )4

fa Sc f Sc a

f fSc a

   (22)

Of course the coefficients in (13) to (16) reduce to:  a1=
8/10,  a2 = -3/5, a3 =  1  (positive for  buoyancy-
assisted flows and negative for buoyancy-impeded
flows), a4 =  - /10 and a5 =-2/10 which simply are
substituted into Eqs .(20) to (22).

3.2 Case B: Pure Forced Convection Regime
For this case the buoyancy forces in (9) vanish. We set

o  0,  1  and   Grx* 0. The reduced flow
equations for forced convection are therefore:

 Conservation of Momentum:

3 22 2(1 2 ) (2 )13 2

2 2
( )4 2

f fa f

f f f fa

                    (23)

Conservation of Energy:

22 2(1 2 ) (2 Pr )12

Pr Pr ( )5 4

a f

f f fa a

   (24)

Conservation of Species:

22 2(1 2 ) (2 )12

( )5 4

a Sc f

f f fSc a Sc a

   (25)

Again the coefficients in (13)  to  (16) will simplify in
this case to:  a1= 5/10,  a2 = 0, a3 = 0,  a4 = - /4 and a5 =
-5/10 in Eqs. (23) to (25).
In the present study we analyze the variation of velocity
( f/ ), temperature ( ) and concentration ( )
distributions with axial ( ) and radial coordinate ( ), in
the regime. Of course gradient functions of these
quantities lead to more complex functions for the local
frictional factor (cfx), Nusselt number (Nux) and local
Sherwood number (Shx) respectively; these are
excluded here for brevity.

4. NUMERICAL SOLUTION

Although solutions have been obtained for both free
and forced convection cases discussed in section 3, we
present for conservation of space, a specific numerical
solution for only the free convection case, defined by
Eqs. (20) to (22), which has boundary conditions (17)
and (18), the latter being the same for the general flow
model, as well as the forced convection case. In the
present study we have considered only the buoyancy-
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assisted free convection case for which a3 = + 1 in Eq.
(20). The Network Simulation Method (NSM) has been
used solve the system of partial differential Eqs (20) to
(22) under boundary conditions (17, 18). This method
has applied to a wide range of heat transfer problems by
Zueco and co-workers (Zueco et al. 2004; Zueco 2006;
Zueco 2008). Further studies using NSM have been
presented by Bég et al. (2008a, 2008b, 2009). In NSM a
number of networks are connected in series to make up
the whole medium and boundary conditions are added
by means of special electrical devices (current or
voltage control-sources). NSM is founded on the
classical thermoelectric analogy between thermal and
electrical variables. Nevertheless, its capacity to
implement in the model any kind of non-linearity (due
to boundary conditions, phase-change processes,
temperature dependencies of the thermal properties, etc)
distinguishes NSM from the analogies generally
exposed in text books. The electrical analogy relates the
electrical current (J) with the velocity fluxes, heat
fluxes and mass fluxes, while the electrical potential
(V) is equivalent to velocities, temperatures and

concentrations.  We define the variable f to

reduce the third order partial differential momentum
Eq. (20) to a second order differential equation. The
Eqs. (20) to (22) then reduce to:

For  > 0:
Conservation of momentum:

2 2
1 2 32

4

a f a a S

fa

   (26)

Conservation of energy:

2
Pr Pr512

Pr4

a f a

fa

   (27)

Conservation of species:

2
512

4

a Sc f a Sc

fa Sc

   (28)

Figure 1b shows the flow chart to obtain the numerical
solution by means of the Network Simulation Method.
In the NSM technique, discretization of the differential
equations is founded on the difference-finite
formulation, where only a discretization of the spatial
co-ordinates is necessary, time remaining as a real
continuous variable. The starting point is the set of
finite-differential equations, one for each control
volume, obtained by spatial discretization of the
transformed Eqs. (26-28). Based on these equations, a
network model (that incorporates the three equations) is

designed. It is assumed that the electrical variable of
voltage is equivalent to the variables f,  and , while
the current is equivalent to the fluxes ( f/ , ,

). The whole network model, including the
devices associated with the boundary conditions, is
solved by the numerical computer code Pspice (1994)
and the graph solution can be obtained by means the
Probe software of Pspice.

Fig. 1b. Flow chart of the Network Simulation Method.

A first-order central-difference approximation is used
for the first derivate and a second-order central
difference approximation is used for the second
derivate. The computational domain is divided into
meshes each of dimension 2  and 2  in -space and

-space, respectively. The Fig. 1c shows the physical
medium reticulation with elementals cells connected
between them, where it is possible observed that the
thickness of the elemental cell is 2 . This connecting
requires, equal potentials at the contact points of
adjoining cells and equal outward-inward transference
flows in adjoining elements.

Fig. 1c. Mesh system used.

The discretized form of Eqs. (26)  to (28) then become:

2 ,, 1 , 1 , 1 , 1
,12 2

( )1, 1,2
, , ,2 3 4 2

( ) ( ), 1 , 1 1, 1,
2 2

i ji j i j i j i ja fi j

f fi j i ja a S ai j i j i j

i j i j i j i j
i

(29)
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2

),1,1(
,

2

)1,1,(

2

)
,1,1

(
Pr4,,Pr5

2

)1,1,(
,Pr12

,21,1,

jiji
ji

jiji

ji
f

ji
f

ajijia

jiji
jifa

jijiji

 (30)

2 ( ),, 1 , 1 , 1 , 1
,12 2

( )1, 1,
, ,5 4 2

( ) ( ), 1 , 1 1, 1,
,2 2

i ji j i j i j i ja Scfi j

f fi j i ja Sc a Sci j i j

i j i j i j i j
i j

    (31)

In the Eqs. (29-31) all the terms can be treated as a
current. Therefore the discretized momentum Eq. (29)
the following currents are defined:

,, 1
, , 1

i ji jJ i j  (32a)

, , 1
, , 1

i j i jJ i j  (32b)

,1 , 1 , 1
, 1, , 2

a fi j i j i jJ a i j              (32c)

2
,, 2, , 2J a i ja i j                  (32d)

, ,, 3, , 3J a Si j i ja i j                  (32e)

( )( )1, 1, , 1 , 1
, 4, , 4 4

( )1, 1,
4 2

f fi j i j i j i jJ aa i j

i j i ja i

     (32f)

Implementing Kirchhoff’s law for electrical currents
from circuit theory, the network model is then obtained.

, , 1 , , 1 , 1, , , 2, ,
0, 3, , , 4, ,

J J J Ji j i j a i j a i j
J Ja i j a i j

    (33)

The modeling is realized by means of two resistors of
value “ ” ( ;, , 1 , , 1J Ji j i j ) and other currents are

implemented with voltage control current generator. To
introduce the boundary conditions, voltage and current
sources and employed. Similarly, the discretized energy
Eq. (30) can be modeled by means of the NSM. For
both equations, initially it is necessary to solve the 1-D
problem ( =0, with 0, 4, ,J a i j ), this initial

numerical solution serves as the input boundary

condition for a solution for  > 0, which is two-
dimensional. To obtain a symmetric network model the
computational domain (Fig. 2) is divided by two to
form meshes of dimension = L /N  and =L /N  in
-space and -space, respectively. As such the new

value of the resistors of each cell is “ /2”. After
experimenting with a few sets of mesh sizes, a region of
integration of N =40xN =150 cells has been employed,
with L =1.0 and L =15.0. Once the complete network
model is designed, for which few programming rules
are needed since not many devices form the network, a
computer Pspice (1994) is used for a PC-based
simulation yielding the full numerical solution.

Fig. 2. Network model of the elemental cell for the
momentum Eq. (20).

5. RESULTS AND DISCUSSION

Selected graphical results are presented in Figs. 3 to 11.
The regime is governed for the free convection case
(figures 3 to 8) by the parameters S, Pr, Sc. As we have
stated earlier the coefficient, a3 =+1, in Eqs. (20) to (22)
corresponding to buoyancy-assisted flow.

Selected graphical results are presented in Figs. 3 to 11.
The regime is governed for the free convection case
(Figs 3 to 8) by the parameters S, Pr,  Sc. As we have
stated earlier the coefficient, a3 =+1, in Eqs. (20) to (22)
corresponding to buoyancy-assisted flow. The graphs
(9) to (11) correspond to the forced convection case and
are independent of the S parameter. In figures 3 to 8 we
have used Pr = 0.7, Sc = 0.7 and S = 0.5 as default
values, which correspond to for example hydrogen gas
diffusing in air (Incropera 1996)

Fig. 3. Dimensionless velocity variation ( ) with radial
coordinate ( ) for various surface mass parameters (S)

(pure free convection).



J. Zueco et al. / JAFM, Vol. 4, No. 2, Issue 1, pp. 13-23, 2011.

19

In Fig. 3 we observe a significant increase in the
dimensionless velocity, , with rising surface mass
transfer parameter, S. This is especially pronounced in
the proximity of the cylinder surface. Profiles ascend
from zero at the wall, peak close to the wall and decay
asymptotically to zero in the free stream, far from the
cylinder surface. Increasing surface mass transfer
therefore serves to accelerate the boundary layer flow
nearer to the wall but is much less effective further
from the cylinder surface..

Clearly
*B mwS
qw

 is directly proportional to the mass

flux (mw). The parameter S couples the momentum Eq.
(9) with the species diffusion Eq. (11) in the term, S .
This is effectively a species buoyancy force. Increased
species buoyancy will aid the momentum development
and this will act to accelerate the flow. Since species
concentration is maximized at the cylinder surface it is
logical to expect that species buoyancy forces will also
be most vigorous in this zone, explaining the strong rise
in velocity near the cylinder surface in Fig. 3. Further
from the cylinder surface we observe almost negligible
effect of the species buoyancy force, which agrees with
the physical interpretation we have made.

Fig. 4. Dimensionless velocity variation ( ) with radial
coordinate ( ) for various Prandtl numbers (Pr) (pure

free convection).

In Fig. 4, an increase in Prandtl number, Pr, for the
buoyancy-assisted free convection regime, causes a
strong decrease in the velocity, , again closer to the
cylinder surface. Peak velocity decreases from 1.58
approximately  for Pr = 0.1 to about 0.6 for Pr = 20.
Increasing Prandtl number implies an increase in
dynamic viscosity and a decrease in thermal
conductivity of the fluid.  As such  lower Prandtl
numbers correspond to gases (low viscosity and high
thermal conductivity) and higher Prandtl numbers to
oils (high viscosity, lower thermal conductivities),
(Incropera 1994). For low Prandtl number the fluid will
flow faster i.e. velocities will be increased. Prandtl
number simulates the ratio of momentum diffusivity to
thermal diffusivity. Higher Prandtl numbers correspond
to a thinner thermal boundary layer thickness and more
uniform temperature distributions across the boundary
layer. Hence the thermal boundary layer will be much
less in thickness than the hydrodynamic (translational
velocity) boundary layer or concentration (species)
boundary layer. Smaller Pr fluids have higher thermal
conductivities so that heat can diffuse away from the
vertical surface faster than for higher Pr fluids (thicker
boundary layers).

Figure 5 shows that for the free convection case,
temperature ( ) decreases continuously through the
boundary layer regime, normal to the cylinder surface,
with an increase in surface mass transfer parameter, S.
At the cylinder surface  where the temperature in all
cases is a maximum, values fall from 1.8 for S = 0.5 to
1.54 for the maximum value of S of 2. Again the
computations in Fig. 5 correspond to hydrogen gas
diffusing in air (Pr = 0.7, Sc = 0.5). The temperature
(energy) Eq. (10) is coupled to the momentum Eq. (9)
via the thermal and species buoyancy term,

)(3 Sa . The latter term couples the energy Eq.
(10) to the species conservation Eq. (11). Furthermore

the parameters, 8 3
1 10

a , 4 4
a , (2 3 )

5 10
a

all arise in the species Eq. (11). These parameters all

feature the parameter, 1
6/51 o

 which contains

the parameter
* 1/5[ ]

Re
Groo

o
 this clearly featuring

the free convection Grashof number,
4

* .2
g q rw oGro

k

As such there is a very strong interplay between the
energy (heat) diffusion and the species diffusion.
Restricting attention for the moment to the S parameter,
as in the case of the velocity field, S is directly
proportional to mass flux, which, in accordance with
the boundary conditions, is maximized at the cylinder
surface. However this parameter will serve to directly
boost species buoyancy which will primarily drive the
momentum boundary layer. To counterbalance the
aiding contribution of species buoyancy to flow, there
must arise an opposing effect to thermal diffusion. As
such the parameter, S, will effectively oppose heat
diffusion and will act to cool the boundary layer
regime, as testified to by the concurrent decrease in
values, which we observe in Fig. 5 are pronounced
principally in the near-wall region.

Fig. 5. Dimensionless temperature variation ( ) with
radial coordinate ( ) for various surface mass

parameters (S) (pure free convection)

Further from the cylinder surface since S exerts a
progressively decreasing effect, it will tend to influence
temperature fields minimally.  These results concur
with earlier studies by Merkin and Pop (1987) who also
found, as we have, that free convection (buoyancy)
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effects exert a diminished role far from the cylinder
surface and also further along the cylinder surface from
the leading edge. A similar effect has been documented
by Lira (2008).

Fig. 6. Dimensionless temperature variation ( ) with
radial coordinate ( ) for various Prandtl numbers  (Pr)

(pure free convection).

With an increase in Prandtl number, Pr, as shown in
Fig. 6, temperatures are also decreased strongly
throughout the boundary layer regime. Maximum
temperature once again occurs for all Pr values at the
cylinder surface (  = 0); profiles descend smoothly
from the surface to zero far from the surface.  As
explained earlier, increasing Prandtl number,
corresponds to a decrease in thermal conductivity of the
primary fluid. For Pr = 0.1, thermal diffusivity will be
ten times the momentum diffusivity; as such heat will
diffuse ten times faster than momentum and this will
enhance temperatures i.e. heat the boundary layer
regime. Conversely at the opposite spectrum of Prandtl
numbers studied in Fig. 6, i.e. Pr = 2.0, momentum
diffusivity will be double the thermal diffusivity
manifesting in viscous diffusion rate being twice the
energy diffusion rate. Temperatures ill therefore be
decreased considerably in the boundary layer, as
indicated in Fig. 6. These results are significant in
physical applications. To enhance temperature
distributions in the boundary layer flow from a vertical
cylinder, a regime which arises in for example
condenser system design and materials processing,
lower Prandtl number fluids will perform better. Air (Pr
= 0.7) therefore is more advisable in such applications
than water (Pr = 7.0).

Fig. 7. Dimensionless concentration variation ( ) with
radial coordinate ( ) for various surface mass

parameters (S) (pure free convection).

Concentration distribution,  versus  is plotted for
various surface mass transfer parameter (S) values in
Fig. 7. The S parameter arises in the collective

buoyancy term in equation (20), viz )(3 Sa .
Increasing S serves to clearly reduce the concentration
( ) values in the flow regime; all profiles fall from a
maximum at the surface to zero far from the cylinder.
As indicated earlier, an increase in S will significantly
boost the species buoyancy force in the momentum Eq.
(9)- however both energy and species diffusion will be
curtailed by the increase in velocity fields. With greater
mass flux (mw), S is increased- concentration along the
cylinder surface is increased i.e. with the -coordinate
(streamwise). Concentration distribution is however
reduced, across the boundary layer i.e. progressively
less species is diffused from the cylinder surface to the
free stream. The effects are most potent at the near-wall
regime, and then depleted further from the cylinder, in a
similar fashion to the velocity field and temperature
field.

Conversely an increase in Prandtl number is found to
increase concentration ( ) values in Fig. 8. An increase
in Pr also implies greater heat transfer rates. A similar
trend has been observed in the study by Ganesan and
Rani (2000). Prandtl number signifies  the ratio of
viscous diffusion to thermal diffusion. With greater Pr
values, viscous diffusion > thermal diffusion. This is
disadvantageous to the temperature field, but beneficial
to the species diffusion field since greater momentum
diffusion aids the advection of mass in the flow. In
design applications, therefore to achieve a better
distribution of species across the boundary layer
(transverse to the cylinder surface), higher Prandtl
number liquids will be more   logical  than lower
Prandtl numbers.

The interplay of momentum, thermal and species
diffusion will imply inevitably that all three variables
cannot be simultaneously maximized, irrespective of
the magnitude of the buoyancy forces involved. A
strategic approach is therefore required  in selecting
primary fluids which posses high thermal diffusivitiies
(low Prandtl numbers) for temperature enhancement or
low thermal diffusivities (high Prandtl numbers) for
species diffusion enhancement. Such aspects have been
elucidated more rigorously with respect to experimental
observations by Gebhart et al. (1988) who have
considered salt diffusion in water from vertical
cylinders under combined buoyancy forces and many
other primary-binary diffusion flows.

Fig. 8. Dimensionless concentration variation ( ) with
radial coordinate ( ) for various Prandtl surface mass

parameters (pure free convection).
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Fig. 9. Dimensionless velocity variation ( ) with radial
coordinate ( ) for various axial coordinate values ( )

(pure forced convection).

The influence of axial coordinate ( ) on the velocity
distribution ( ) through the boundary layer (i.e. with
radial coordinate, ) is illustrated in Fig. 9, for the case
of pure forced convection i.e. where buoyancy effects
are neglected. With increasing distance upwards along
the surface of the cylinder i.e. for increasing , velocity
clearly increases substantially.  The Schmidt number
(Sc) in Fig. 9 equals 1.5 implying that the momentum
diffusivity exceeds the species diffusivity. Velocities all
converge to the same value in the free stream i.e. unity,
as prescribed by the boundary condition there. Merkin
and Pop (1987) have also identified, using asymptotic
methods, the acceleration of flow along the cylinder,
from the leading edge (  =0); they attribute this to the
dominating role of forced convection further along the
cylinder and further from the cylinder surface (in the -
direction), which agrees with our computations.
Momentum development therefore is escalated with
further distance from the leading edge. This is an
important feature in industrial design, for example in
the surface treatment of cylindrical systems, where
greater velocities may be required to achieve improved
efficiency. The absence of buoyancy forces in the case
studied in Fig. 9, indicates that these will not be
dominant factors controlling the acceleration of flow
along the cylinder, although they will influence the flow
transverse to the cylinder.

Fig. 10. Dimensionless temperature variation ( ) with
radial coordinate ( ) for various Prandtl number values

(Pr) (pure forced convection).

As with the pure free convection case (Fig 6), the
temperature function ( ) values for the pure forced
convection case, figure 10, also decrease with
increasing Prandtl number. Comparing with Fig 6 (pure

free convection case) values are somewhat higher for
the pure forced convection case, and it should be noted
that the Sc value is 1.5 in Fig 10 compared with 0.5 in
Fig. 6. Prandtl number is a thermophysical property at a
given temperature and pressure. As such it is associated
with actual liquids. It will exert a similar influence on
the temperature distribution whether in the pure free
convection or pure forced convection scenarios. With
buoyancy present, temperatures will be affected
adversely. Without buoyancy they will be higher.

Finally the influence of Schmidt number (Sc) on the
concentration distribution ( ) versus  radial coordinate
( ) are shown in Fig. 11. For Sc < 1 the momentum
diffusivity is lower than the species (mass) diffusivity
and the species diffusion rate exceeds the momentum
diffusion rate. For Sc > 1 this is reversed. Higher values
of Sc correspond to higher density species diffusing in
air e.g. Sc = 1.0 implies Methanol diffusing in air, Sc =
2.0 implies Ethylbenzene diffusing in air. Increasing Sc
lowers the chemical molecular diffusivity of the species
which allows easier diffusion. Increasing Schmidt
number clearly reduces the concentration values
throughout the regime. Peak values (i.e. at the cylinder
surface,  = 0) plunge from 1.8 for Sc = 0.5 to 0.5 for
Sc = 2. For higher Schmidt numbers, therefore species
diffusion is inhibited in the boundary layer regime.

Fig. 11. Dimensionless concentration variation ( ) with
radial coordinate ( ) for various Schmidt numbers (Sc)

(pure forced convection).

6. CONCLUSION

A mathematical model has been developed for the
simultaneous heat, mass and momentum transfer in
axisymmetric incompressible boundary layer flow past
a vertical slender cylindrical body with surface heat and
mass flux. The governing boundary layer equations
have been transformed  from an (x,r)  coordinate system
to a ( , ) system. Two special cases of the flow model
have been discussed, namely pure free convection and
also pure forced convection. A numerical solution
based on the well-tested Network Simulation Method
(NSM) based on thermo-electrical analogies has been
presented for both cases. Our computations have shown
that for the pure free convection case, buoyancy-
assisted pure free convection case, increasing surface
mass transfer parameter (S) boosts velocity but lowers
temperature ( ) and concentration function ( ).
Increasing Prandtl number (Pr), however decreases both
velocity (  = f/ ) and temperature ( ) but increases
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concentration values in the boundary-layer regime for
the pure free convection case. For the pure forced
convection case, temperature ( ) is also reduced with an
increase in Prandtl number and also Schmidt number
(Sc); concentration is however increased for all values
of radial coordinate ( ) for the pure forced convection
case with increasing axial coordinate ( )
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