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ABSTRACT

Unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid in a rotating system
in the presence of a uniform transverse magnetic field is studied. The plates of the channel are considered porous and
fluid flow within the channel is induced due to the impulsive movement of the upper plate of the channel.  General
solution of the governing equations is obtained which is valid for every value of time t. For small values of time t, the
solution of the governing equations is obtained by Laplace transform technique. The expression for the shear stress at
the stationary plate due to the primary and secondary flows is obtained in both the cases. It is found that the solution
obtained by Laplace transform technique converges more rapidly than the general solution when time t is very small.
Magnetic field retards the fluid flow in both the primary and secondary flow directions. Rotation retards primary flow
whereas it accelerates secondary flow. There exists incipient flow reversal near the stationary plate on increasing
rotation parameter K2. Suction accelerates primary flow whereas it retards secondary flow. Injection retards both the
primary and secondary flows.

Keywords: Magnetohydrodynamic Couette flow, Primary and secondary flow, Rotation, Suction/injection.

1. INTRODUCTION

The theory of rotating fluids (Greenspan 1969) is highly
important due to its occurrence in various natural
phenomena and for its applications in various
technological situations which are directly governed by
the action of Coriolis force. The broad subjects of
Oceanography, Meteorology, Atmospheric Science and
Limnology all contain some important and essential
features of rotating fluids. Several investigations are
carried out on the problem of hydrodynamic flow of a
viscous incompressible fluid in rotating medium
considering various variations in the problem. Mention
may be made of the studies of Greenspan and Howard
(1963), Holton (1965), Walin (1969), Siegman (1971),
Puri and Kulshrestha (1974), Mazumder (1991),
Ganapathy (1994), Hayat and Hutter (2004), Singh et al
(2005) and Guria et al. (2006). The problem of
magnetohydrodynamic flow of a viscous
incompressible electrically conducting fluid in a
rotating medium is studied by many researchers viz.
Seth and Jana (1980), Seth and Maiti (1982), Prasad
Rao et al. (1982),  (Seth et al. 1982, 1988, 2009),
(Ghosh 1991, 1993, 1996, 2001), Chandran et al.

(1993), Singh et al. (1994), Singh (2000), Hossain et al.
(2001), Ghosh and Pop (2002),  (Hayat et al. 2001,
2002, 2004,  2008), Hayat and Abelman (2007),
Abelman et al. (2009), Wang and Hayat (2004), Seth
and Singh (2008), Seth and Ansari (2009), Das et al.
(2009) and Guria et al. (2009) under different
conditions and configurations to analyze various
aspects of the problem and to find its application in
Science and Engineering. Seth et al. (1988) and Singh
(2000) considered oscillatory hydromagnetic Couette
flow of a viscous incompressible electrically
conducting fluid in a rotating system under different
conditions. Guria et al. (2009) investigated oscillatory
MHD Couette flow of electrically conducting fluid
between two parallel plates in a rotating system in the
presence of an inclined magnetic field when the upper
plate is held at rest and the lower plate oscillates non-
torsionally. Chandran et al. (1993) and Das et al. (2009)
studied unsteady hydromagnetic Couette flow of a
viscous incompressible electrically conducting fluid in
a rotating system when the fluid flow within the
channel is induced due to impulsive movement of one
of the plates of the channel whereas Singh et al (1994)
considered this problem when one of the plates of the
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channel is set into uniformly accelerated motion. Seth et
al. (1982) analyzed this problem when the lower plate
of the channel moves with time dependent velocity
U t and the upper plate is kept fixed. They considered
two particular cases of interest of the problem, namely,
(i) impulsive movement of the plate and (ii) uniformly
accelerated movement of the plate. In all these
investigations, the channel walls are considered non-
porous. However, the study of such fluid flow problem
in porous channel may find applications in petroleum,
mineral and metallurgical industries, designing of
cooling systems with the liquid metals, MHD
generators, MHD pumps, MHD accelerators and flow
meters, geothermal reservoirs and underground energy
transport etc. Taking into account this fact Muhuri
(1963), Prasad Rao et al. (1982), Bhaskara Reddy and
Bathaiah (1982), Singh (2004), Abbas et al. (2006) and
(Hayat et al. 2007, 2008) considered MHD flow within
a parallel plate channel with porous boundaries, under
different conditions, in non-rotating/rotating system.
The objective of the present paper is to study unsteady
hydromagnetic Couette flow of a viscous
incompressible electrically conducting fluid in a
rotating system in the presence of a uniform transverse
magnetic field. The plates of the channel are considered
porous and fluid flow within the channel is induced due
to the impulsive movement of the upper plate. The
general solution of the governing equations is obtained
by using the method mentioned by Batchelor (1967).
However, the solution obtained by this method
converges slowly for small values of time t. For small
values of time t, the solution of the governing equations
is obtained by Laplace transform technique (Carslaw
and Jaeger 1959). The expression for the shear stress at
the stationary plate due to the primary and secondary
flows is obtained in both the cases. To study the effects
of rotation, magnetic field, time and suction/injection
on the flow field, the primary and secondary velocities
and shear stress at the stationary plate due to the
primary and secondary flows are depicted graphically
for various values of 2 2,  ,K M t  and S.

2. FORMULATION OF THE PROBLEM

Consider unsteady flow of a viscous incompressible
electrically conducting fluid between two parallel
porous plates of infinite length distant h  apart in the
presence of a uniform transverse magnetic field 0B
applied parallel to z axis which is normal to the
planes of the plates. The fluid as well as plates of the
channel are in a state of rigid body rotation about z
axis with uniform angular velocity . Initially      ( i.e.
when time 0t ), fluid as well as plates of the channel
are assumed to be at rest. When time 0t  the upper
plate z h  starts moving with uniform velocity 0U
along x direction in its own plane while the lower
plate 0z  is kept fixed. Since plates of the channel

are infinite along x  and y  directions and are
electrically non-conducting all physical quantities,
except pressure, will be functions of z  and t  only.
Suction/injection of the fluid takes place through the

porous walls of the channel with uniform velocity 0W
which is greater than zero for suction and is less than
zero for injection. It is assumed that no applied or
polarization voltages exist. This corresponds to the case
where no energy is being added or extracted from the
fluid by electrical means (Meyer 1958). In general, the
electric current flowing in the fluid gives rise to an
induced magnetic field which perturbs the applied
magnetic field. Since magnetic Reynolds number is
very small for metallic liquids and partially ionized
fluids so the induced magnetic field may be neglected
in comparison to the applied one. This is the well
known low magnetic Reynolds number approximation
(Cramer and Pai 1973).
Under the above assumptions fluid velocity q  and
magnetic field B  are given by

0, ,q u v W , 00,0, .B B                      (1)

Following the studies made by Seth et al. (1982, 1988),
Chandran et al. (1993), Singh et al. (1994), Singh
(2000) and Hayat et al (2004) the governing equations
for the flow of a viscous incompressible electrically
conducting fluid in a rotating frame of reference are

2 2
0

0 22 ,u u u BW v u
t z z

                     (2)

2 2
0

0 22 ,v v v BW u v
t z z

                    (3)

10 .p
z

                                                               (4)

Equation (4) shows the constancy of pressure along the
axis of rotation. The absence of pressure gradient term
in Eq. (3) implies that there is a net cross flow in y
direction. The fluid motion is induced due to the
movement of the upper plate in x direction, so the
pressure gradient term is not taken into account in Eq.
(2).
The initial and boundary conditions for the problem are

0

0, 0 ;     0   0,
0, 0         0 ; 0,

, 0       ; 0.

u v z h and t
u v at z t
u U v at z h t

                    (5)

Introducing the non-dimensional variables
2

0 0,  ,    ,z z h u u U v v U and t t h          (6)

the Eqs. (2) and (3), in non-dimensional form, become
2

2 2
22 ,u u uS K v M u

t z z
                                (7)

2
2 2

22 ,v v vS K u M v
t z z

                                 (8)

where 0S W h  is suction/injection parameter
( 0S  for suction and 0S  for injection),

2 2 2
0M B h  is magnetic parameter which is the

square of Hartmann number and 2 2K h  is
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rotation parameter which is reciprocal of Ekman
number.

The initial and boundary conditions (5), with the help of
(6), yield

0, 0 ;     0 1  0,
0, 0         0 ; 0,
1, 0         1 ; 0.

u v z and t
u v at z t
u v at z t

,                       (9)

Combining Eqs. (7) and (8), we obtain
2

2 2
2 2 ,q q qS M iK q

t z z
                         (10)

where q u iv ,  and 1.i
The initial and boundary conditions (9) become

0;   0 1, 0,
0,     0 ; 0,
1,      1 ; 0.

q z t
q at z t
q at z t

                                         (11)

3. SOLUTION OF THE PROBLEM

Following Batchelor (1967) the solution of Eq. (10)
subject to the conditions (11) can be written in the form

1

sinh
, , ,

sinh
i z

q z t F z t
i

                           (12)

where
1 2

22 2 4 2 21 4 64 4
2 2

S M K S M

     2 ,S                                                             (13a)

  (13b)
The first term on the right-hand side of (12) is the
steady state solution while 1 ,F z t  represents transient
solution of Eq. (10).

Now 1 ,F z t  satisfies the following differential
equation:

2
2 21 1 1

1 22 ,F F FS M iK F
t z z

                      (14)

with the conditions

(15)

The solution of Eq. (14) subject to the conditions (15) is
given by

2

1
1

, sin ,n t
n

n
F z t A e n z

                                                                                   (16)
where

22 2 2
n n i                                            (17a)

 and

1

0

sinh
2 sin .

sinhn

i z
A n zdz

i
                         (17b)

Making use of (16) and (17) in (12), the fluid velocity is
given by

sinh
,

sinh
i z

q z t
i

2

22 2
1

1
2 sin .

n
n t

n

n e
n z

n i
                   (18)

Separating real and imaginary parts in Eq. (18), we
obtain fluid velocity for the primary and secondary
flows as

2 2 2 2

1 2 3 4
2 2

2 4

22 2 2 2 2 21

1 sin
    2

4

n tn

n

z z
u

n e n z

n
2 2 2 2 cos2 2 sin 2 ,n t t (19)

2 2 2 2

3 2 1 4
2 2

2 4

22 2 2 2 2 21

1 sin
   2

4

n tn

n

z z
v

n e n z

n
2 2 2 22 cos2 sin 2 ,t n t (20)

where

1 3

2 4

sinh cos , cosh sin ,
sinh cos , cosh sin .

z z z z z z

It is evident from the solutions (19) and (20) that the
transient effects die out as time t and the ultimate
steady state is reached. The steady state primary and
secondary fluid velocities assume the form

1 2 3 4
2 2

2 4

,
z z

u    (21)

3 2 1 4
2 2

2 4

z z
v .    (22)

For large values of rotation parameter 2K  boundary
layer type flow is expected. For the boundary layer flow
near the moving plate 1z , introducing boundary layer
coordinate 1 z , we obtain primary and secondary
velocities from (21) and (22) as

1 1
1 1cos , sin ,u e v e    (23)

where
2 2

1 2 21 ,
2 4 16
S M SK

K K
 (24a)

1 2
22 2 4 2 21 4 64 4 .

2 2
S M K S M

1 1 1
sinh

0, 0,  1, 0,  ,0 .
sinh

i z
F t F t F z

i
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2 2

1 2 21 .
4 16
M SK
K K

 (24b)

Solution (23) reveals that there arises a thin boundary
layer of thickness 1

1O near the moving plate which

may be identified as modified Ekman boundary layer
and can be viewed as classical Ekman boundary layer
modified by magnetic field and suction/injection. The
exponential terms in Eq. (23) die out quickly as
increases. When 11 , i.e. outside the boundary
layer region, the primary and secondary velocities
assume the form 0u  and 0v . Thus we conclude
that in a rapidly rotating system, the fluid flow is
confined to the boundary layer region only.
     Like the case of large values of rotation parameter

2K , we can expect boundary layer type flow near the
moving plate for large values of magnetic parameter

2M , In this case the velocity distributions are

2 2
2 2cos ,    sin ,u e v e    (25)

Where
2 2

2 221 , .
2 8
S S KM

M M
   (26)

The expression (25) demonstrates the existence of a
thin boundary layer of thickness 1

2O adjacent to

the moving plate which may be recognized as modified
Hartmann boundary layer and can be viewed as
classical Hartmann boundary layer modified by
suction/injection. Also in this case fluid flow is
confined to the boundary layer region only which
extends up to the thickness 1

2O .

3.1 Shear Stress at the Stationary Plate
Non-dimensional shear stress at the stationary plate

0z  due to the primary and secondary flows in the
case of general solution is given by

0 0 sinhx y

i
i

i
22 2

2 2

22 2
1

1
                 2 ,

n i tn

n

n e

n i
   (27)

On separating real and imaginary parts in Eq. (27), the
shear stress components 0x  and 0y  due to the
primary and secondary flow respectively, are

2 2 2 2

0

2 2

22 2 2 2 2 21

2 sinh cos cosh sin
cosh 2 cos 2

1
     2

4

x

n tn

n

n e

n

2 2 2 2 cos2 2 sin 2 ,n t t    (28)

2 2 2 2

0

2 2

22 2 2 2 2 21

2 sinh cos cosh sin
cosh 2 cos2

1
    2

4

y

n tn

n

n e

n

2 2 2 2 sin 2 2 cos2 ,n t t    (29)

The general solution, given by (19) and (20) for the
fluid velocity is valid for every value of time t. But it
converges slowly for small values of time t . . 1i e t
(Batchelor 1967). In the absence of suction/injection

. . 0i e S the general solution (19) and (20) reduces to
the solution obtained by Das et al. (2009).

For small values of time t, following Carslaw and
Jaegar (1959) the solution of Eq. (10) subject to the
initial and boundary conditions (11) is obtained by
Laplace transform technique and is represented in the
following form

2 22, , ,M iK tq z t F z t e                                       (30)

where
2 2

0 0

2
2 2 2 1

2
2 2 2 1

, 2 4

42 2

         ,
42 2

n n

m n

aS n n

bS n n

F z t M iK t

a aS t ae i erfc i erfc
t t

b bS t be i erfc i erfc
t t

                                                                                   (31)

where

2 1 ,   2 1a m z b m z ,                               (32a)

1 ,n n

x

i erfc x i erfc d                                    (32b)

,
x

ierfc x erfc d                                          (32c)

0 .i erfc x erfc x                                                (32d)

The solution (30) may be written as

2 22 2 2

0
, 2 4 ,

nM iK t n
r

n
q z t e M iK t T      (33)

0, 2, 4, 6,...,r
where

2
2 1

0 42 2
aS r r

r
m

a aS t aT e i erfc i erfc
t t

2
2 1

42 2
bS r rb bS t be i erfc i erfc

t t
.    (34)
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On separating real and imaginary parts in Eq. (33), we
obtain fluid velocity for the primary and secondary
flows as

2 22 4 4
0 2 4

36 2 4 2
6

4 4 4

12 4 ... cos 2

M tu e T M t T M K t T

M M K t T K t

22 2 2
2 42 4 4 4K t T M K t T

34 2 6 2
66 8 4 ... sin 2 ,M K K t T K t        (35)

2 22 2 2
2 4

34 2 6 2
6

2 4 4 4

  6 8 4 ... cos2

M tv e K t T M K t T

M K K t T K t

22 4 4
0 2 44 4 4T M t T M K t T

36 2 4 2
612 4 ... sin 2 .M M K t T K t            (36)

Equations (35) and (36) describe the fluid velocities for
small values of time t. In the absence of
suction/injection 0S Eqs. (35) and (36) are in
agreement with the solution obtained by Das et al.
(2009).

3.2 Shear Stress at the Stationary Plate

Non-dimensional shear stress at the stationary plate
0z  due to the primary and secondary flows in the

case of solution for small values of time t is given by

2 22 2 2
0 0 2 1

0
2 4

nM iK t n
x y r

n
i e M iK t Y (37)

0,1,2,3,...,r

where

2 2 1
2 1

0

2
2 2 1

2 2 1

1 1
2 42 2

1
4 42 2

1 1
2 42 2

aS r
r

m

r r

bS r

a S aSY e i erfc
t t

a S t aS ai erfc i erfc
t t

b S bSe i erfc
t t

2
2 2 11 .

4 42 2
r rb S t bS bi erfc i erfc

t t
                                                                                   (38)

On separating real and imaginary parts in Eq. (37), the
shear stress components 0x  and 0y  due to the
primary and secondary flow   respectively are

2 22 4 4
0 1 1 3

36 2 4 2
5

4 4 4

12 4 ... cos 2

M t
x e Y M t Y M K t Y

M M K t Y K t

22 2 2
1 32 4 4 4K t Y M K t Y

34 2 6 2
56 8 4 ... sin 2 ,M K K t Y K t           (39)

2

0
M t

y e 22 2 2
1 32 4 4 4K t Y M K t Y

4 2 66 8M K K 3 2
54 ... cos2t Y K t

2 4 4
1 14 4Y M t Y M K 2

34t Y
36 2 4 2

512 4 ... sin 2 .M M K t Y K t (40)

4. RESULTS AND DISCUSSION

To study the effects of rotation, magnetic field,
suction/injection and time on the flow-field velocity
profiles are drawn versus z for various values of
rotation parameter K2, magnetic parameter 2 ,M
suction/injection parameter S and time t in Figs. 1 to 6
while numerical values of non-dimensional shear stress
components 0x  and 0y  at the stationary plate z=0 are
depicted graphically for different values of K2, M2, S
and t in Figs. 7 to 10. It is revealed from Figs. 1 and 2
that the primary velocity u decreases while secondary
velocity v increases on increasing K2. This is justified
due to the fact that the Coriolis force induces secondary
flow. Also there exists incipient flow reversal near the
stationary plate in the primary flow direction on
increasing K2. Both the primary velocity u and
secondary velocity v decrease on increasing M2. This is
expected because magnetic field tends to retard the
fluid velocity. It is evident from Figs. 3 and 4 that, on
increasing S, primary velocity u increases while
secondary velocity v decreases in the case of suction
where as both the velocities decrease in the case of
injection. It is observed from Figs. 5 and 6 that both the
primary and secondary velocities increase on increasing
t in the case of general solution as well as in the case of
solution for small values of time t. It is also noticed
from Figs. 5 and 6 that when time t is very small, the
solution for small values of time t obtained by Laplace
transform technique converges more rapidly than that of
the general solution. This is in agreement with the
statement made by Batchelor (1967).

Fig. 1 Primary and secondary velocity profiles when
2 4,  1  and  1.M S t
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Fig. 2  Primary and secondary velocity profiles when
2 3, 1 and 1.K S t

Fig. 3 Primary and secondary velocity profiles when
2 23, 4 and 1.K M t

Fig. 4  Primary and secondary velocity profiles when
2 23, 4 and 1.K M t

Fig 5. Primary velocity profiles when
2 23, 4  and  1.K M S

Fig.  6  Secondary velocity profiles when
2 23, 4  and  1.K M S

Fig. 7   Profiles of Primary and secondary shear
components when 2 3 and 1.K t

Fig. 8  Profiles of Primary and secondary shear
components when 2 3 and 1.K t

Fig. 9  Profiles of Primary and secondary shear
components when 2 4M  and S=1.
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Fig. 10  Profiles of Primary and secondary shear
components when 2 4  and  1.M S

It is observed from Figs. 7 and 8 that the primary shear
stress 0x  decreases whereas secondary shear stress

0y  increases on increasing M2 in the case of both
suction/injection. On increasing S, the primary shear
stress 0x  increases in the case of suction whereas it
decreases in the case of injection. The secondary shear
stress 0y  decreases with the increase in S throughout
the channel in the case of suction whereas in the case of
injection it decreases with the increase in S when M2<3
and its characteristics are changed on increasing S when
M2>3. It is noticed from Figs. 9 and 10 that 0x

decreases with the increase in K2 when t<0.1 or 0.1
whereas 0y  increases with the increase in K2 when
t<0.3 and thereafter its characteristics are changed.
When t<0.1, 0y  increases on increasing t whereas 0x

increases on increasing t except when K2=3. This is due
to the fact that there exists incipient flow reversal near
the stationary plate on increasing K2. When 0.1, both
the primary and secondary shear stress components first
increase, attain a maximum and then decrease with the
increase in time t.

5. CONCLUSION

The effects of rotation and magnetic field on unsteady
Couette flow of a viscous incompressible electrically
conducting fluid between two horizontal parallel porous
plates in a rotating medium is investigated. It is found
that magnetic field has tendency to retard the fluid flow
in both the primary and secondary flow directions.
Rotation retards primary flow whereas it accelerates
secondary flow. Also there exists incipient flow
reversal near the stationary plate in primary flow
direction on increasing rotation parameter K2. Suction
accelerates primary flow whereas it retards secondary
flow. Injection retards both the primary and secondary
flows. Fluid flow in both the primary and secondary
flow directions increases on increasing time t and the
solution for small values of time t, obtained by Laplace
transform technique, converges more rapidly than that
of general solution when time t is very small.
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