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ABSTRACT

In this study, two-dimensional inviscid compressible flow is solved around a moving solid body using Immersed
Boundary Method (IBM) on a Cartesian grid. Translational motion is handled with a Cartesian grid generated around
the body which moves with body on a background grid. In IBM, boundaries are immersed within the grid points. In
this paper solution domain is discretized using finite volume approach. To implement boundary conditions on
immersed boundaries, a set of Ghost finite volumes are defined along the wall boundaries. Boundary conditions are
used to assign flow variables on these Ghost finite volumes. Governing equations are solved using dual time step
method of Jameson. Finally, numerical results obtained from the present study are compared with the other numerical
results to evaluate the correct performance of the present algorithm and its accuracy.

Keywords: Immersed boundary method; Cartesian grid; Moving mesh; Unsteady Euler; Finite volume; Jameson
algorithm.

NOMENCLATURE

P pressure
E energy
u velocity in x direction
v velocity in y direction
U x component of contravariant velocities
V y component of contravariant velocities

tx x components of boundary velocity

ty y components of boundary velocity

( )iR w Convective flux force
( )iD w Numerical dissipation

 t real time
pseudo time
Density
Cell’s area

CFL Currant number

1. INTRODUCTION

Immersed Boundary method (IBM) is a new approach
introduced in the last decade for the simulation of fluid
flow around bodies with complex stationary/moving
boundaries. In contrast to conventional methods, IBM
uses non-conformal Cartesian grid where surface of
body do not necessarily pass through the grid points of
the boundary. Therefore boundary conditions cannot be
applied throughout the ordinary approaches. The
technique by which boundary conditions are applied in
IBM is the key point in these methods. Looking back to
the original forms of IBM, it can be seen that boundary
conditions have been applied by adding a forcing
function to the governing equations. IBMs are
categorized into two main groups. In the first group,
known as “continues forcing function”, the function
responsible for implementing boundary conditions is
added to the governing equations before discretization.

Works of Peskin (1972), Lai et al. (2000), Goldstein et
al. (1993), Beyer (1992), Fauci et al. (1994) and
Unverdi et al. (1992) fall in this category.

In the second group, named “discrete forcing
approach”, forcing function is added to the discretized
form of the governing equations. The significant
advantage of this method is that it would be
independent of the discretization method. Approaches
in this group are subdivided into two categories “direct
approaches” and “indirect approaches”. In the indirect
approaches, forcing function is well-selected to apply
boundary conditions into discretized governing
equations. Mohd-Yusof (1997) and Verzicco (2000) are
good examples in this group. In their method,
discretized form of the Navier-stokes equations is first
solved and then corrections for boundary conditions are
established. In this method, forcing function is
determined in each time step using the latest velocity
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field calculated in the solution domain. This method
was used for modeling bodies with complex boundaries
(Balaras 2004) and turbulence flow (Verzicco 2002). In
some situation, implementation of forcing functions
results in diffusing boundary effects over neighbor grid
points. Following this, researchers introduced “Direct
approaches” in which boundary conditions are
implemented directly on the discrete boundary in the
computational domain.

Direct approaches are subdivided into two groups, “cut-
cell methods” and “ghost-node methods”. In the cut-cell
method Cartesian finite volumes on the boundary are
tailored to conform to the boundary, as shown in Fig. 1a
and Fig.1b. In this case conservation of conserved
quantities can be satisfied on the boundary finite
volumes (DeZeeuw et al. 1993; Quirk 1994; Yang et al.
1994; Udaykumar et al. 1996; Ye et al. 1999). In this
case we do not deal with Cartesian grids on the
boundary any more. In some cases, this tailoring or
reshaping  may  result  in  very  small  grid  cells  with  an
adversely impact on the numerical stability. This can be
overcome by a cell-merging strategy shown in Fig. 1c
and Fig. 1d (Clarke et al. 1985).

Fig. 1. Treatment procedure of boundary cells in cut-
cell methods (Clarke et al. 1985)

Ghost-node methods are introduced to rebuild the
solution at grid nodes in the vicinity of the immersed
boundary using interpolation functions, to implement
the boundary conditions. The main issue is that how the
solution is rebuilt near the boundary. The choice of
interpolation functions makes the difference between
methods in this category.
  One-dimensional interpolation is used by Fadlun et al.
(2000) along the grid line intersecting solid boundary,
but the choice of intersecting grid line seems to be
arbitrary; see Fig. 2. Later on, Balaras (2004) presented
an approach where the solution is reconstructed along a
defined line normal to the body; similar approaches can
be found in several existing studies (Gilmanov et al.
2003, 2005; Lai et al. 2000; Fadlun et al. 2000).
Approaches using interpolation functions are simple
and straight forward. However, in cases where
boundary passes from a distance very close to the grid
points, these approaches encounter some kind of
instability.

Grid-point stencils which are normally used in IBM, are
shown in Fig. 2. Depending on the location of
boundary, some nodes in the solid section of domain
would become a part of solution. These nodes are called
‘ghost nodes’. Ghost nodes or ghost cells in finite

volume methods, are solid nodes which at least have
one fluid node in their neighbors.

Fig. 2. Grid-point stencils for imposing boundary
conditions (Lai et al. 2000)

Solid and fluid nodes are the nodes that are located
within the solid and fluid regions of domain,
respectively.

Fig. 3. Image point of a sample ghost node. G and I
denote Ghost cell and Image point (Petter et al. 2008)

In IBM, variables at the ghost nodes are needed to close
the governing equations at the fluid nodes. Boundary
conditions along the solid boundary are implemented
throughout the determination of these ghost-node
variables. IBMs are mostly recognized by the method
used to assign ghost-node variables. These variables are
normally extrapolated from their values from the fluid
part of the solution domain. The advantage of using
ghost nodes is that the same discretized form of
equations used inside the solution domain will be
applied for the nodes in the vicinity of the solid
boundary. In words, there is no need to reformulate the
numerical algorithm for the nodes near to the boundary.
There are numerous ways for assigning variables at
ghost nodes, using interpolation schemes (Tseng et al.
2003). Although higher-order polynomials are more
accurate, they are more sensitive to numerical
instabilities. In this category, first order two-
dimensional interpolation was used by Majumdar et al.
(2001), and quadratic interpolation was used by Tseng
et al. (2003, 2005). To resolve the instability problem,
the  concept  of  Image  Point  (denoted  by  I)  was
introduced and widely used by Mittal et al. (2003). As
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shown in Fig. 3, an image point, located within the flow
domain, is the mirror point of the ghost node with
respect to the solid boundary. Determination of image
points may raise difficulties. Some of these difficulties
are shown in Fig. 4.

a)

b)
Fig. 4. Special cases in determination of ghost-node

image points. a) Ghost node has no unique image point,
b) Ghost node lies in fluid part of domain. GC and BI

denote Ghost cell and boundary intercept [27]

In Fig. 4a, due to the position of ghost node with
respect to the solid boundary a unique image point
cannot be defined for it. On the other hand as shown in
Fig. 4b, sometimes one cannot find a ghost node in
solid region of domain. In this case, duplicate of the
corresponding fluid node is considered as a fictitious
ghost node. This requires separate memory locations for
the fictitious ghost nodes. The corresponding image
point is then determined.

Works of Mittal cover different Mach-number flows of
viscid/inviscid conditions around stationary/moving
bodies with complex geometries (Mittal et al. 2002,
2003, 2004, 2005, 2008). Simulations of moving
boundaries are carried out using a qualified grid. This
quality of grid must be preserved during body motion.
This can be done using grid quality improvement
procedure. Note that the motion of boundary causes
continuous change of fluid, solid, and ghost nodes to
each other. Therefore the algorithm should be able of
handling these changes.
In the present paper, 2D inviscid compressible flow is
simulated around moving bodies using IBM approach.
Boundary conditions are implemented by direct method
using ghost nodes. Solution domain is discretized into

Cartesian finite volumes. To implement boundary
conditions Ghost finite volumes (GFV) are established
along the boundary. The main intention of this paper is
to combine finite volume technique with IBM. As a
result conservation laws will be satisfied within the
domain. As will be discussed later flow variables at
GFVs will be assigned based on the boundary
conditions. For the simulation of flow around moving
bodies there exist many approaches; see Mittal’s works
(Mittal et al. 2002, 2003, 2004, 2005, 2008). These
include approaches in which the grid is regenerated
after  each  time  step  of  body  motion,  or  approaches  in
which the grid is continuously adapted to the moving
boundaries. Each of these methods has its own
advantage and drawbacks. Methods in which the grid is
generated repeatedly will be computationally costly. In
addition to this flow variables should be interpolated
from  one  grid  to  the  other  one.  This  will  cause
significant numerical error. Fully dynamic grids are
also very complicated, and their coding will be
cumbersome. Since Cartesian grid is used here,
simulation of fluid flow around bodies with
translational motion can be simply modeled. As
mentioned before, Mittal et al. (2008) used finite
difference to descretize governing equations. Boundary
conditions are implemented in Mittal’s work using
ghost nodes for which corresponding image points in
fluid domain have been defined, as mentioned before.
Obviously with boundary motion ghost nodes and their
related image points will be changed. Therefore, search
would be needed for new ghost nodes and their related
image points in each time step.  To handle moving
boundaries with translational motion in this paper,
hybrid grid approach of Mirsajedi et al. (2006) is
employed. Solution domain is divided into two zones.
As shown in Fig. 5, first zone includes a Cartesian grid
in  which  the  moving  body  is  located.  This  zone  will
move and the body is stationary with respect to it.
Second zone is a background Cartesian grid in which
the first zone can be moved. Any grid refinement can be
performed in first zone to provide solution accuracy.
Since the first zone has rectangular boundaries any
translational motion can be simply modeled.

Fig. 5. Grid configuration; two zone approach

The advantage of this approach is that the number of
node deletion/insertion process is minimized, and
therefore very few data interpolation is required. On the
other hand, since the moving body is stationary in the
first zone, fluid, solid and ghost finite volumes remain
unchanged during the solution procedure.
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2. GRID GENERATION

In this study, moving body simulation is handled using
two-grid zone approach of Mirsajedi et al. (2006). As
shown in Fig. 5, immersed boundary of a moving body
is located in the first zone which itself moves within the
second zone, called back ground. Grids of both zones
are Cartesian.  As mentioned in the previous section
this grid configuration allows simple handling of
translational motion of a moving boundary. Although
not employed in this paper, rotational motion of a
moving body can be also modeled by this approach if
one more zone is added to this grid configuration; see
paper of Mirsajedi et al. (2006) for  more  details.  As
mentioned earlier, solid boundaries are defined as
immersed boundaries in a Cartesian grid. The key task
in IBM is to accurately impose boundary conditions on
these immersed boundaries. For this purpose, high
quality grids are required in the vicinity of immersed
boundaries. This is carried out in this paper using a
multi-layer refinement algorithm .There is other works
such  as  the  work  of Mittal et al. (2007) in which the
grid is refined around the body locally. However as
shown in Fig. 6, these refinements spread out in x and y
directions of the domain as banded refined zones, which
is not desirable.

Fig. 6. Grid refinement around body in x and y
directions (Ghias et al. 2007)

Grid generation procedure includes, 1) Cartesian grid
generation in both zones as was shown in Fig.  5, 2)
implementation of multi-layer refinement algorithm in
the first zone to improve grid quality around the body.
The following refinement procedure is only applied to
the first zone. Refinement layers are shown in Fig. 7.

Fig. 7. Multi layers in refinement procedure

Refinement procedure is started from outer layer to the
inner layer. One level of refinement is applied to
Cartesian grids within all layers, as shown in Fig. 8b. In
the next step one more level of refinement is applied to
Cartesian grids within all layers except the most outer
one, as shown in Fig. 8c. Having excluded the two most
outer layers grid refinement is applied once again to the
rest of Cartesian grids within the inner layers.
Depending on the number of layers this procedure is
continued up to the layer neighbor to the body, as
shown in Fig. 8d.

Fig. 8. grid refinement procedure in first zone around
body surface

Since the solid body under consideration is fixed in the
first zone, this grid zone will move with it. As shown in
Fig. 9a, background grid lines become close to each
other  in  front  of  the  first  zone,  and  become  far  from
each other at the back of the first zone. To preserve grid
quality, deformations are linearly distributed within the
three or four rows of the background grid; this shown in
Fig. 9b. In this algorithm, whenever the 1st grid line of
background grid in the front of the first zone reaches to
the old location of the 2nd grid line of background grid,
these two grid lines will  be merged with each other.  In
this case, the two grid lines of background grid in the
rear of the first zone will be split into three lines; this is
shown in Fig. 9b. In this procedure the total number of
grid points in the domain will be constant.
As shown in Fig. 10, discretization of the solution
domain produces three types of finite volumes when
using IBM. A finite volume with its center located
within the body is known as solid finite volume (SFV).
These are the finite volumes on which flow equations
are not solved. In contrast to this, if the center of finite
volume is located in the fluid part of the solution
domain the finite volume is named fluid finite volume
(FFV). These are the finite volumes on which flow
equations will be solved. In addition to these two types
of finite volumes flow variables should be determined
on  a  set  of  finite  volumes  called  Ghost  finite  volume
(GFV). GFVs are solid finite volumes which at least
has one fluid finite volume in their neighbors. Flow
variables on GFVs are needed for calculation of fluxes
on the surface of FFVs. As will  be discussed later,  this



S.M.H. Karimian, and M. Ardakani / JAFM, Vol. 4, No. 2, Special Issue, pp. 27-36, 2011.

31

is where the boundary conditions will be applied on the
solid boundaries. Note that since solid boundary is
stationary with respect to first zone, solid, fluid, and
ghost finite volumes remain unchanged during the body
motion.

a)

b)

Fig. 9. First zone moving to left; A) Before line
deletion/insertion, B) After line deletion/insertion

Fig. 10. Three types of finite volumes created by the
immersed boundary; S: solid finite volume, F: Fluid

finite volume, and G: Ghost finite volume

3. GOVERNING EQUATIONS

Integral form of the two dimensional unsteady Euler
equations for compressible flow in the Cartesian
coordinate are given by

0dxGdyFWdA
dt
d                      (1)

where ,W F , and G  are defined as,

,
u

W
v
E

,

U V
uU p uV

F G
vU vV p

E p U x p E p V y pt t

                 (2)

, , ,p u v and E are density, pressure, velocity
components, and total energy, respectively.
Contravariant velocities U and V are defined as

tU u x tV v y
Where tx and ty are velocity components of finite-
volume boundary. In addition to these, equation of state
for a perfect gas is used to complete the set of
equations. Equation (1) is applied to each finite volume
with area of  and boundary of .  This results  in the
following equation

0)()()( wDwRw
dt
d

iiii
     (3)

where )(wRi  is the convective flux over the surfaces of
ith finite volume, and )(wDi  is the numerical
dissipation term which is introduced to prevent odd and
even point oscillations, and oscillations in the vicinity
of shock waves (Jameson et al. 1986).

Equation (3) is implicitly discretized in time; i.e.
Jameson et al. (1996)
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d                   (4)

Using second order accurate backward differencing
(Jahangirian et al. 2004) Eq. (4) can be written as
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The above equation is solved using dual time stepping
scheme. This is done by solving the following equation
at each time step.

*( ) 0w nR w      (6)

where  is pseudo-time in each time step, and *( )nR w  is
the unsteady residual, defined as

3 2* 1 1( ) ( ) ( )
2

1 1 1 1 1( ) ( ) ( )
2

n n n n nR w w wi i i it t
n n n nw R w D wi i i i i it

     (7)

Equation (6) is a modified steady state problem in
pseudo-time. This problem can be solved using explicit
Runge-Kutta multistage scheme or any time marching
method designed to solve steady state problems. To
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accelerate convergence, local pseudo time stepping and
implicit residual averaging are used. The four-stage
Runge-Kutta scheme used in this paper is introduced by

)4(11
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                                      (8)

Where

3 2( ) ( )* 1( ) ( ) ( )
2

1 ( )1 1 1( ) ( ) ( )
2

l l n n nR w w wi i i it t
ln n nw R w D wi i i i it

              (9)

To increase computational efficiency, numerical
dissipative term is only calculated in the first stage of
Eq. (8). The allowable pseudo-time step for each cell is
restricted by stability considerations and is given by

3
2,min

1

tCFL
N

J
i

i
i

                                       (10)

Where j denotes edge of the corresponding cell, and

 = u y  v x                                                         (11)

4. BOUNDARY CONDITIONS

In the far field, non-reflecting boundary conditions are
used based on the characteristic analysis. Solid
boundaries are immersed within the grid. Therefore,
boundary conditions cannot be applied by conventional
methods. Instead, boundary conditions are implemented
through the determination of the flow variables on the
ghost finite volumes, which are defined along the solid
boundaries. To determine flow variables on ghost finite
volumes, an image point (I) should be defined for each
ghost finite volume. Image point which is located
within the flow domain is the mirror point of the center
of ghost finite volume with respect to the solid
boundary. Different image points are shown in Fig. 11.
Flow variables on an image point are known since it is
within the solution domain; this will be discussed later.
Assuming zero normal-pressure gradient on the solid
boundary, pressure of a ghost finite volume would be
equal to its image-point pressure. For an adiabatic
boundary, again temperature of a ghost finite volume
would be equal to its image-point temperature. Fluid
flow should have a velocity which its component
normal to the solid boundary is equal to the normal
velocity component of boundary. This is implemented
using linear interpolation between normal velocities of

GFV, image point, and solid boundary. For the case of
stationary boundaries, normal velocity component at the
GFV will be equal to the negative value of normal
velocity component at the image point. For the velocity
component tangent to the boundary, its value at the
GFV is set equal to tangential component of velocity at
the image point; these are shown in Fig. 12.

Fig. 11. Different image points and their surrounded
finite volumes

At this stage determination of flow variables at the
image points should be discussed. Although, it seems
that flow variables can be easily determined on image
point, in some cases this would be hard to do. As shown
in Fig. 11a if the mage point are ghost finite volume,
variables on image point are calculated using bilinear
interpolation of the most recently updated variables at
the GFVs; see Figs. 11b-d. In  this  case  calculation  of
variables of the ghost finite volume is repeated until the
converged values of variables at all of the GFVs are
reached.

Fig. 12. Velocities on the Ghost Finite Volume

5. RESULT AND DISCUSSION

To validate present algorithm the following test cases
are solved.

5.1 Stationary Airfoil
Subsonic, transonic and supersonic flows are simulated
around NACA0012 airfoil at different angles of attack.
First test case includes subsonic flow of Mach 0.5
passing the airfoil at 0 degree angle of attack. Solution
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is carried out on three different grids coarse, middle and
fine, whose specifications are given in Table 1. For
each grid number of fluid finite volumes (FFV), ghost
finite volumes (GFV), and solid finite volume (SFV)
are given. Ghost finite volumes play the same role that
boundary nodes play in conventional algorithms for the
implementation of boundary conditions on body fitted
grids. More accurate boundary conditions can be
implemented with higher number of GFVs. As seen, the
number of GFVs are doubled from coarse to middle,
and from middle to fine grids.

Table 1 Specifications of coarse, middle and fine grids

Number
of

Coarse grid
With 5
layers

Middle grid
with 6
layers

Fine grid
with 7
layers

FFV 2221 4591 12094
GFV 48 104 216
SFV 30 200 998

In Fig. 13, Cp distributions of this subsonic flow on
three grids are compared with each other and with the
experimental results of AGARD (1985). As is obvious,
results  of  fine  grid  are  very  close  to  the  results  of
AGARD (1985). Convergence history of the fine grid
solution is presented in Fig. 14. As  seen  after  130  real
time steps error is decreased to the order of 1e -9.

Fig. 13. Comparison between Cp distributions of
NACA0012 airfoil on different grids with result of

AGARD (1985); M =0.5, Incidence angle =0°

Fig. 14. Convergence history of the fine grid in the flow
simulation around NACA 0012 airfoil at M =0.5 and

Incidence angle =0°

Similarly, transonic flow of Mach 0.85 over a
NACA0012 airfoil at 1 degree angle of attack is
numerically solved by the present algorithm. Cp
distributions of different grids are shown in Fig.15.
Again results of fine grid have excellently matched the
results of AGARD (1985). As seen, the captured shocks
are well positioned and their strengths are correctly
calculated.

Fig. 15.Comparison between Cp distributions of
NACA0012 airfoil on different grids with result of
AGARD (1985); M =0.85, Incidence angle =1°

As mentioned earlier, flow variables of ghost finite
volumes are determined in each time step based on the
boundary conditions on the solid boundary. Therefore,
convergence of variables at GFVs would be a good
indication of solution convergence as well. Consider
previous test case. For this steady state case,
convergence  history  of  pressure  at  GFV  which  is
located at leading edge of airfoil, is shown in Fig. 16.
As seen, after about 1000 iterations its value approaches
to its converged value of 1.5.

Fig. 16. Convergence history of GFV pressure in the
steady state case of M =0.85, Incidence angle =1°

In the next case, Cp distribution of supersonic flow of
Mach 1.2 over NACA0012 airfoil at 7 degrees angle of
attack is plotted in Fig. 17 for the fine grid.  Results  of
the present algorithm and that of AGARD (1985) match
with each other very well. Note that the unsmooth result
in the front of airfoil is due to high curvature of body
geometry in this area that influence on determining
GFVs’ flow variables.
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Fig. 17.Comparison between Cp distributions of
NACA0012 airfoil with result of AGARD (1985);

=1.2, Incidence angle =7°

5.2 Airfoil with horizontal motion
Here we demonstrate some test cases to validate the
capability of the present algorithm in solving unsteady
flow fields with moving boundaries. First test case
includes unsteady flow around NACA 0012 airfoil
which moves with Mach 0.5 in a stationary fluid. After
an initial transition, the flow field around the moving
airfoil should become ‘steady’ with respect to the
airfoil. For comparison purpose, this problem was also
solved in the steady mode, i.e. the airfoil is stationary
and the air flows with speed of Mach 0.5. Comparison
of the predicted Cp distributions with the experimental
data (AGARD 1985) is shown in Fig. 18. As  seen,
calculated Cp distributions match with each other and
with the data of (AGARD 1985).
Note that the little difference between stationary and
moving results is due to moving algorithm and
determining boundary velocity on intersect points in
order to determining GFVs’ normal velocity that take
effect on GFV’s indirectly.

Fig. 18.Comparison of Cp distribution of NACA0012
airfoil with experimental data (AGARD 1985) in a

horizontal translational movement

5.3 Airfoil with oblique motion
This test case is designed to examine the correct
performance of the present algorithm in all directions.
Air flow of Mach 0.5 passing NACA 0012 airfoil  with

incidence angle of 3 degrees will be simulated in the
following three different setups.

In the first setup, airfoil is positioned parallel to the x-
axes of the solution domain. Flow with Mach 0.5 and 3
degrees angle of attack then passes over the airfoil. In
the second setup, an airfoil with incident angle of 3
degrees with respect to the x-axes is translated with
speed of Mach 0.5 along the x axis in stationary fluid.
Finally, in the third setup, a NACA0012 airfoil parallel
to the x-axes, is translated with the speed of Mach 0.5
in a direction with 3 degrees incidence in a stationary
fluid. The predicted Cp distributions obtained from
these three cases are compared with each other in
Fig. 19.  All of the results match with each other. With
this excellent test one can make sure that the method is
perfectly implemented and is independent of grid. The
little difference between stationary and moving results
is same as previous test case that mention earlier.

Fig. 19. Comparison of Cp distributions of flow of
Mach 0.5 over NACA0012 airfoil at 3 degrees angle of

attack for three different setups

6. CONCLUSIONS

In this paper, a moving-mesh algorithm is presented for
the solution of two-dimensional compressible inviscid
flow on Cartesian grid using Immersed Boundary
Method (IBM). Solution domain is discretized to a
number of finite volumes. Boundary conditions on solid
boundaries are implemented throughout the
determination of ghost finite volume variables in the
solution domain. Grid refinement is performed in
different layers around the body to prevent extra
production of grid points. Flow equations are solved
using dual time step method of Jameson. Numerical
results obtained from the present study are compared
very well with other numerical results.
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