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ABSTRACT

Steady two-dimensional natural convection in fluid filled cavities is numerically investigated for the case of non-
Newtonian shear thickening power law liquids. The conservation equations of mass, momentum and energy under the
assumption of a Newtonian Boussinesq fluid have been solved using the finite volume method for Newtonian and
non-Newtonian fluids. The computations were performed for a Rayleigh number, based on cavity height, of 10° and a
Prandtl number of 100. In all of the numerical experiments, the channel is heated from below and cooled from the top
with insulated side-walls and the inclination angle is varied. The simulations have been carried out for aspect ratios of
1 and 4. Comparison between the Newtonian and the non-Newtonian cases is conducted based on the dependence of
the average Nusselt number on angle of inclination. It is shown that despite significant variation in heat transfer rate
both Newtonian and non-Newtonian fluids exhibit similar behavior with the transition from multi-cell flow structure
to a single-cell regime.
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NOMENCLATURE

A Surface area (m?) Te Cold wall temperature
AR Aspect ratio (=L/H) T Fluid temperature
D Rate of strain u, v Flow velocity components in x and
g Gravitational acceleration (m/s?) y directions respectively (m/s)
H Height of cavity Greek Symbols
K Consistency index B Fluid expansion coefficient (K™)
L Width of cavity ¢  Angle of inclination (deg)
n power-law index k& Thermal diffusivity of fluid (m%s)
Nu Nusselt numbezr p Dynamic viscosity
p Pressure (N/m°) v Kinematic viscosity (m?/s)
Pr PrandFI number p  Fluid density (kg/m°)
Ra Eal_ylﬁtl?_r: fntlémber " based on the ©  Stress

ei of the cavi ;
Th Hotg wall temperaturg v Stream function

1. INTRODUCTION has been thoroughly investigated (see Gebhart et al.
(1988), Ostrach (1972) and Khalifa (2001) for a
review), there is only a limited number of articles

dealing with the non-Newtonian case.

Flows of Newtonian and non-Newtonian fluids driven
by buoyancy in rectangular enclosures are found in a
variety of engineering applications such as pulp paper,
slurry transport, food processing and polymer

o . . . ) It seem, that the numerical study by Ozoe and Churchill
engineering. For differentially heated two-dimensional

enclosures with adiabatic side walls, the heat transfer
characteristics are influenced by the inclination of the
cavity with respect to the horizontal plane, Prandtl
number, and the Rayleigh number based on the height
of the cavity. Although the case of Newtonian liquid

(1972) aimed at determining the threshold for the onset
of Rayleigh-Bernard convection in power law fluids
was one of the first in the field. The critical Rayleigh
number was found to increase with the flow behavior
index, but, compared to the experimental and
theoretical data reported by Tien et al. (1969), showed a
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tendency to give exaggerated values. More recently,
Kim et al. (2003) considered transient buoyant
convection in a square cavity subjected to hot and cold
temperature on the vertical side walls for Newtonian
and non-Newtonian power law fluids of the Ostwald-De
Waele model. The study concluded that for high Ra 10°-
107 and Prandtl number 10%-10* as the power law index
n decreases, the convective activity is intensified with
consequent enhancement of the overall heat transfer
coefficient. This means that the evolution of the flow in
the transient process is made faster. Ohta et al. (2002)
studied numerically transient heat transfer in a square
cavity heated from the bottom and cooled from the top
using the Sutherby model for shear thinning fluids, such
as aqueous solutions of Natrosol 250H hydroxyethyl
cellulose and found that shear thinning resulted in
larger heat transfer rates than Newtonian fluids.
Furthermore their study revealed that for highly pseudo-
plastic fluids and for large Rayleigh number equal to
10° complex flow patterns consisting of unstable multi
roll-cells are generated leading to an oscillating Nu with
time. As for rectangular cavities, one can mention the
studies of Inaba et al. (2003) and Lamsaadi et al.
(2006).

To the authors knowledge it appears that no study is
available on thermal convection of non-Newtonian
shear thickening fluids in two-dimensional tilted
enclosures heated from below (and cooled from above)
under a constant wall temperature assumption. Thus the
main objective of this article is to study the effect of
shear-thickening on heat transfer rate in such a
geometry using the power-law model of Ostwald-De
Waele fluids and a Newtonian fluid with a high Pranditl
number. The steady state numerical solution is obtained
for a square and rectangular cavity with aspect ratio of
4, Rayleigh and Prandtl numbers of 10° and 100
respectively.

2. MATHEMATICAL AND NUMERICAL MODEL

A two dimensional rectangular cavity filled with a non-
Newtonian fluid is considered. The inclination angle of
the cavity varies between 0" and 90". The aspect ratio is
AR=L/H, the ratio of the length L of the isothermal
walls to the length H of the adiabatic walls. The top
(cold) and the bottom (hot) surfaces of the cavity are
maintained at constant temperatures T, and T, while
the two side walls are kept adiabatic as shown in Fig. 1.
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Fig. 1. Geometrical configuration

Flow in the cavity is assumed laminar, steady and two-
dimensional. Boussinesq approximation holds and
viscous dissipation is assumed to be negligible. The
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buoyancy force is caused only by the density gradient,
thus:
Lo1-p(r -T,) ®
Po

where B is the coefficient of thermal expansion, p is the
fluid density at temperature T and p,, To are the
corresponding reference values respectively. The field
conservation equations of mass, momentum and energy
are given by:
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Where the velocity vector is expressed in terms of its
Cartesian components (u,v )along the x and vy

directions of the coordinate system shown in Fig. 1; p,
v,kand g represent the pressure, the kinematic
viscosity, the thermal diffusivity and the acceleration of
gravity, respectively.

The non-Newtonian power law is considered and is
given by:
-y
TG
Tij ::uaDi] ZKG%[%D D j ? D

kI =kl

®)

ij

where the rate of strain is given by
Dy =(du; / ax;+éu;/ ox;) and K and n are the

consistency and the power-law index respectively. n=1
corresponds to Newtonian case and n>1 corresponds to
shear-thickening. It is now necessary to introduce a
physical quantity with dimensions of (length)’(time)™
which would play a role analogous to the kinematic
viscosity of a Newtonian fluid. The introduction would
facilitate interpretation of results in conjunction with
tools that are effective for a Newtonian fluid.

In literature, searches for the proper combinations of
flow variables have been made both for free convection
about a flat plate see, Khezzar & Siginer (2009), Emery
et al. (1971) and Dale and Emery (1972) and for a
porous cavity Getachew et al. (1996). Based on the
physical rationalization and trial-and —error efforts, the
following expression similar to a kinematic viscosity of
a Newtonian fluid is introduced:

1 o)
v [KJ’ e
Po

Substituting this analog of kinematic viscosity into the
traditional expressions for Prandtl and Rayleigh
numbers Soong et al. (1996), the corresponding
parameters for a non-Newtonian fluid can now be
defined as:

1

o) 2(1-n)
Pr= [ﬁJ HE i
Po

(6)
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and

®

3
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Po
The area-average Nusselt number on the conducting
walls is defined as follows:

1%(eT
Nu :Al(aijmldx (9)

The conservation equations are solved numerically
using the finite volume technique using the Fluent code.
The Simple algorithm, the Quick scheme and PRESTO
technique were used for the velocity-pressure coupling,
convective terms  discretization, and  pressure
interpolation respectively. Convergence was assumed
when the normalized residuals reached 5x10~ , 10° and
10 in monitoring for the mass residuals, momentum
and energy equations respectively. All calculations were
performed in double precision mode.

In addition, the results of Kim et al. (2003) for a square
cavity were used to validate the calculation method and
approach. This test case consisted of calculations for a

square geometry at an angle of inclination of 90° with

Ra=10° and three Prandtl numbers Pr =102, Pr=10°
and Pr=10*. The dependence of the relative Nusselt
number on power law index is presented on Fig. 2. The
results are in full agreement with those of Kim et al.
(2003) with an excellent accuracy of less than 1%.

3. RESULTS

Calculations were performed for three aspect ratios 1,
and 4 and Rayleigh and Prandtl numbers of 10°, and
100. The Rayleigh and Prandtl number values are
representative of practical applications see Pittman et
al. (1999) and Prandtl numbers for most non-
Newtonian fluids are high.
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Fig. 2. Variation of the relative Nusselt number for
Ra=10° and AR=1

The power law fluids considered include shear thinning,
shear thickening and Newtonian with a power index
0.6 < n <1.4 for the square cavity and shear thickening
for the rectangular cavity.
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Fig. 3. Variation of the relative Nusselt number for (a)
Ra=10° and AR=4

Figures 2-3 illustrate the variation of the Nusselt
number for each exponent n normalized by the
corresponding value for a Newtonian fluid (n=1.0)
when the angle of inclination is equal to 90° and for
each aspect ratio 1 and 4 respectively and the Rayleigh
number considered. Several observations can be made,
for shear thinning fluids (n<1.0) the overall heat
transfer is augmented for Pr=10% and 10° with a
pronounced increase as the exponent n decreases as
found in Lamsaadi et al. (2006) but is decreased for
Pr=10*. The aspect ratio also influences the
augmentation in heat transfer positively, albeit in an
imperceptible way. The Prandtl number effect was also
observed by Kim et al. (2003) where a non-Newtonian
fluid with large Pr=10"and low Ra=10° the Nu values
found are less than those of a Newtonian fluid. In
contrast, for shear thickening fluids (n>1.0) the
opposite can be observed. Shear thickening fluids
inhibit heat transfer in comparison with a Newtonian
fluid except for Pr=10* It appears that there is a
competing effect between momentum and heat transfer
at high Pr. Thus and in comparison with the Newtonian
case heat transfer is reduced for shear thinning fluids
and increased for shear thickening fluids when the
angle of inclination is 90°.

Figure 4 shows the variation of the average Nusselt
number on the conducting walls with angle of
inclination for aspect ratio AR=1. The variation of Nu is
monotonic with shear thickening fluids exhibiting lower
values of Nu than the Newtonian case values. An
increase in Ra increases the Nu for all fluid types and
the increase is more pronounced for Newtonian fluids.
The I%cation of the maximum values is found between
65-70".

The variations of Nu with angle of inclinations for
AR=4 is shown on Fig. 5. The Nu varies in a non
monotonic fashion showing a sudden decrease followed
by a monotonic increase towards the value at 90°
inclination. The sudden drop in Nu occurs at around an
angle of 45°. The Sudden drop is a result of flow mode
change. Globally shear thickening tends to reduce the
heat transfer in comparison with the Newtonian fluid.

Figures 6 and 7 present typical flow patterns when
AR=1 and for n=1 (Newtonian case) and n=1.4 (shear-
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thickening). It can be seen that the flow consists of one-
cell structure throughout the inclination angle variation
from 0 to 90° and therefore no discontinuities exist in
the Nusselt number variation. In line with previous
research shear-thickening decreases the heat transfer
though mush less significantly. Despite strong
dependence of Nusselt number at a fixed angle on the
power-law index, very little difference can be observed
in the flow structure for each fluid type.
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Fig. 4. Average Nusselt number for Pr=100 AR=1:
Ra=10°

Figure 7 illustrate contours of the stream function for
AR=4 case. It can be seen that in the vicinity of zero
angle the flow has a multi-cell structure though the
number of cells depends on the power-law index. At

around 10° —20° the first transition takes place. The
flow structure changes dramatically with a consequent
and significant change in the Nusselt number for the
Newtonian case. For non-Newtonian fluids, this change
in flow structure has much less pronounced effect on
the overall heat transfer rate. The second transition
takes place between 40-50° leading to the usual single-
cell flow. The results also show the influence of Prandtl
number on stability of the flow for this work.

The present Prandtl number value is 100 and transition
to a one-cell structure takes place sequentially in two-
stages while in Corcione (2003) and Khezzar & Siginer
(2009) for a Newtonian fluid the Prandtl number is 10
and for similar Rayleigh number and aspect ratio the
transition takes place in one single stage.
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Fig. 5. Average Nusselt number for Pr=100 AR=4:
Ra=10°

4. CONCLUSIONS

Natural convection of both Newtonian and non-
Newtonian liquids in two dimensional rectangular tilted
enclosures were investigated numerically for angles

between 0 and 90°. Flow configuration and heat
transfer behavior due to natural convection in square
and rectangular enclosures of aspect ratio 4 for Ra=10°
and Pr=100 have been examined.

The results show that shear-thickening fluids have
moderately lower heat transfer rates than Newtonian
fluids for the Rayleigh and Prandtl numbers considered
and tend to have a stabilizing effect on the flow with a
rapid transition to a single roll structure.

¢ = 45°
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Fig. 6. Contours of stream function, Ra=10° Pr=100 and AR=1, n=1
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Fig. 7. Contours of stream function, Ra=10° Pr=100 and AR=1, n=1.4
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n=1.0

¢ =90°
Fig. 8. Contours of stream function, Ra=10°% Pr=100 and AR=4, n=1 and n=1.4
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