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ABSTRACT

Several studies of compressible flows show that the pressure-strain is the main indicator of the structural
compressibility effects. Undoubtedly, this term controls the change in the Reynolds stress anisotropy. Regarding the
model of Adumitroiae et al., the slow part of the pressure strain correlation like the  Rotta  model uses the standard
coefficient C1. The model  predictions do not show large differences when compressibility increases. Correction of
this coefficient using the turbulent Mach number is proposed. The two forms model of  Adumitroiae et al. (with and
without correction of 1C )  are considered to study compressible mixing layers . The obtained results show that the
predictions of the proposed compressibility correction model  agree with the experiment results of Goebel and
Dutton.
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NOMENCLATURE

a speed of sound
bij Reynolds stress anisotropy
Cp specific heat at constant pressure
Cv specific heat at constant volume
d’ fluctuation of the dilatation
K turbulent kinetic energy
p pressure
R specific gas constant
Rij Reynolds stress
Mc convective Mach number
Mt turbulent Mach number
T temperature
t time

ui velocity in the direction, ix
specific heat ratio

s solenoidal part of the dissipation
viscosity coefficient
density
dissipation rate of turbulence

ij Kronecker delta
thermal conductivity

ij viscous stress tensor
C dilatational part of the dissipation

()’’            Favre fluctuation
()’            Reynolds fluctuation

1. INTRODUCTION

Compressible turbulence modelling plays an important
role in the study of many applications such as aerospace
and engineering problems. The techniques and
methodologies that have been proved useful in the
incompressible flows may represent a reasonable way
to develop compressible turbulence models. The direct
extension of incompressible models was used in
simulating different compressible flows. That one was
observed when the standard ( )K  and the Reynolds
stress closures were extended to compressible flows
with an explicit account of compressibility effects, by
considering dilatational terms models. These terms
which have been recognized as important indicators of
compressibility are the pressure-dilatation correlation

and compressible dissipation rate appearing in the
turbulent kinetic energy transport equation.  It has been
shown that this practice of modelling, called
compressibility correction models, may be able to
reproduce the compressibility phenomenon at small
values of Mach number. But, when the compressibility
effects are more significant, the extended models do
neither predict correctly the decrease in spreading rate
of mixing layers, as it is observed in the experiments of
Goebel et al. (1991) and Elliot et al. (1990), nor the
reduction in the growth rate of turbulent kinetic energy
Sarkar (1995). The deficiencies of such closure is due
principally to the use of the incompressible models of
the pressure strain correlation which controls the level
of Reynolds stress anisotropy. However, new models
taking into account structural compressibility effects are
needed for the pressure strain correlation. The present
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work focuses on this major issue. In this context,
Adumitroiae et al. (1999) use the incompressible
modelling approach to modify the linear pressure strain.
In the present study, recent compressible models for the
pressure-dilatation correlation have been used to
modify the Rotta model (1951) for the slow part of the
pressure-strain correlation. This modification make the
standard coefficient 1C dependant on the turbulent
Mach number. This model is linked to the Adumitroaie
model (1999).  The  resultant  model  is  applied  to
compressible mixing layers, showing an acceptable
success to predict the reduced growth rate and the
decrease of the Reynolds stress peaks when the
convective Mach number increases.

2. GOVERNING EQUATIONS

The general equations governing the motion of
compressible fluid are the Navier stokes equations.
They  can  be  written  as  follows  for  mass,  momentum
and energy conservation:

,( ) 0i iu
t

                                                        (1)

, ,( ) ( ) ( )i i j j ij ju u u
t

                                       (2)

, ,( ) ( ) ( )j j ij j je eu u
t

                                     (3)

( 2)v i ie c T u u  , ij ij ijp                            (4)
The Favre averaged-equations are :
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To close the above equations, the Reynolds stress must
be solutions of the following transport equations,
namely
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3. MODELS OF TURBULENCE

3.1 Models of the Pressure-Strain Correlation
*Model of Launder Reece and Rodi(LRR) (1975)

*
1

3

4

4 1( )
5 3

2 (1 )[ ]

(1 )[ ]

i j s i j i j ll i j

im jm jm im

im jm jm im

C b k S S

k C b S b S

k C b b

              (18)

where:

, ,0.5( )ij i j j iS U U , , ,0.5( )ij i j j iU U
and ( / 2 /3)ij ij ijb R K

*Model of Adumitroiae et al. (1999)
Adumitroiae et al. (1990) assumed that incompressible
modeling approach of the pressure strain correlation can
be used to develop turbulent models taking into account
compressibility effects. Considering a none zero
divergence for the velocity fluctuation called the
compressibility continuity constraint and using different
models for the pressure dilatation which is proportional
to the trace of the pressure strain, their model for the
linear part of this term is written as:

*
1 1

3 2

2 4 2

2

4 2 1) ( )
5 5 3

2 (1 2 )[
2 ] (1 2 )
3

4[ ]
3

ij s ij ij ll ij

im jm jm im

nl nl ij

im jm jm im ij nl

b ( d k S S

k C d b S b S

d b S k C d

b b d b S

    (19)

The compressibility coefficients 1d  and 2d  are
determined on the basis of some compressible closures
of the pressure-dilatation correlation.

3.2 A Modeling for the Slow Part of the
Pressure-Strain Correlation

In this section, the purpose is to investigate the
compressibility effect  in  the slow part  of the pressure-
strain appearing in the turbulent Reynolds stress
transport equation. Classically, for the compressible
turbulent flows, the pressure-strain correlation can be
divided  in two terms as

, , ,( ) ( )i j i j inc i j compp u p u p u                                   (20)

where ,( )i j incp u  and ,( )i j compp u are the incompressible

and compressible parts of ,( )i jp u respectively.
The trace of these terms are:

,( ) 0i i incp u                                                              (21)

,( )i i comppu pd                                                          (22)
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It is natural that the first term in the right hand side of
Eq. (20) is represented by using  the simplest Rotta’s
model as:

, 1( )i j inc ijp u C b                                                      (23)

Where 1C is a constant model assigned to a value of
about  3.
To give a complete model  for the total slow part of the

pressure-strain correlation , an expression  of the

compressible term ,( )i j compp u is required. For this,

equation of the fluctuating dilatation ( d ) is to be taken

into consideration, such equation can be written as

' '
, , , ,

, ,

2

1 4     other terms
3

j i i j j i i j

' '
ii ii

d d u U u u
dt

p d
                                (24)

The other terms are unknown in relation with density
fluctuation, mean gradient of density and pressure.
We therefore write  this equation as follow

, ,2 other termsj i i j
d d u U
dt

                                 (25)

Multiplying both sides of Eq. (25) by p  and taking
the Reynolds- averaging, we have

, ,2 other termsj i i j
dp d p u U
dt

                            (26)

This equation can be written as follow

, ,2 other termsj i i j
p d p u U                               (27)

Where is the characteristic time scale of the

dilatation fluctuation (see Taulbee et al.1991), K

Because p d  is the trace of ,( )i j compp u , we can write
Eq. (27) as

, ,2( ) other termsj i comp i j
pd p u U                             (28)

To obtain the final form of ,( )i j compp u  an expression of

p d  is required. It is well known  that  for this term
there are some turbulent models , in this study , we
choose those according to the general formulation as

'
, ........ij i jp d A U                                                  (29)

Where ijA  is a second rank tensor.
Sarkar  et al. (1991)

2 2
,

20,4 0,2
3t ij ij i j t spd M (R K )U                                 (30)

Sarkar (1992)

2
1 , 2

2
3 ,

2
3

             +

t ij ij i j t s

t i i

pd (R K )U

M KU
(31)

The model constants , 1 , 2 and 3 take the values :

1 0,15  , 2 0, 2  and 3 0,0

Elbaz and Launder (1993)

2
,

21,5
3t ij ij i jp d M (R K )U                                 (32)

Ristorcelli (1997)

1
,2

1 1

2
3

t
ij ij i j

t

C M
p d (R K )U

C C M
                    (33)

From these models, we can deduce easily the general
form of the ijA -tensor, namely

1 2( )
3 3ij mm ij t ij ijA A F M (R K )                  (34)

Where ( )tF M  is a function of the turbulent Mach
number, vanishing in an incompressible flow.
As suggested in the above cited models, ( )tF M  takes
the following  expressions:

Sarkar (1991)
2( ) 0,4t tF M M                                                        (35)

Sarkar (1992)
( ) 0,15t tF M M                                                        (36)

Elbaz and Launder (1993)
2( ) 1,5t tF M M                                                         (37)

Ristorchelli et al. (1997)

1
2

1 2

( ) t
t

t

C MF M
C C M

                                          (38)

Substituting p d by its expression in Eq. (29) and
using identification between terms  which affect the
mean gradient velocity in Eq. (28), we obtain

,
1 1 12(( ) ) ( )
3 3i j comp ij ij mm ijp u p d A A                 (39)

Using Eq. (34), we deduce for the compressible slow
part of the pressure-strain correlation the final form
model as follow

* '
,

2( ) ( )
3i j comp t ij ijp u C F M (R K )

K
           (40)

Where *
, ,

1( ) ( )
3i j comp i j comp ijp u p u p d

Regarding the models of ( )tF M , we choose the
following model

2( )t tF M M                                                             (41)

and finally, the deduced model for the term ,( )i j compp u
is:

2
,

1( )
3i j comp ij t ijp u p d M b                             (42)

Thus, the proposed extension of the Rotta’s model
taking account of compressibility can be written as

ijstij bMC )1( 2
1

* (43)

4. SIMULATION OF COMPRESSIBLE
MIXING LAYERS

For the stationary compressible mixing layers, the basic
averaged equations are:

,( ) 0j ju                                                                (44)
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, ,( ) ( )i j j ij ju u R                                                (45)

''
, ,( ) ( '')i i d i iu T u T                              (46)

'' '' ''
, ,( ) ( )

2 2
3 3

k ij k ij ij i j k k

ij d ij

u R P u u u
                            (47)

2
3ij ij d                                                            (48)

The gradient diffusion hypothesis is used to model:
-The turbulent heat flux

'' ''
,( )k T km k

Ku T C R T                                             (49)

-The diffusion term
'' ''

,,
( )ij s i j mm

KD C u u                                               (50)

Classically , the second order closure suggests to

determine the dissipation term ij by using isotropic
dissipation model:

2
3ij ij                                                                  (51)

Recently, a concept of the dissipation was proposed by
Sarkar (1991) :

s c                                                                  (52)

s i i , 24
3c d                                           (53)

The dissipation solenoidal s  can be modelled by using
the traditional model, namely

, 1 , 2

3 , ,

( ) ( ) ( )

                                   ( )

s m s m mn m n s

mn s n m

sU C R U Ct k
kC R

            (54)

In this work, the model of Sarkar is used to express the
pressure dilatation  correlation and the turbulent
dilatation of dissipation:

20,5c s tM                                                         (55)
For the model of Adumitroiae et al.(1999) , the
compressible parameters 1d and 2d  are determined by
using the model of Sarkar  (1992)

2 0.15 td M  and 1 0d .                                          (56)

5. RESULTS AND DISCUSSION

The two free streams of the fully developed
compressible mixing layer are characterized typically
by the convective Mach number CM , the parameters

2

1

s  and 2

1

Ur
U

are respectively the density and

velocity ratios, the experiments conditions of Goebel et
al.(1991) are listed in Table.1

The values of the constants models used in the present
simulation are:

1 1, 4C , 2 1,8C , 0,09C , 0,25C , 0, 26TC .
In this study, we consider predictions of two models for
the pressure-strain correlation: the Launder Reece and
Rodi (LRR) model(1975) and the Adumitroiae et al.

model (1999).  Two  versions  of  the  Adumitroiae  et  al.
model will be considered : the original version (without
correction of the 1C -coefficient and the version where
the proposed tM  –correction of 1C is included.

Table 1 Experience of Goebel and Dutton

CM 0.2 0.46 0.69 0.86 1

1
2

U
Ur 0.78 0.57 0.18 0.16 0.16

1
2s 0.76 1.55 0.57 0.6 1.14

The fundamental parameter characterizing the effects of
compressibility on the mixing layer is the growth rate
d
dx

,  denotes the  momentum thickness of the mixing

layer. Figure  1 shows the comparison between the
computed normalized growth rate by its incompressible
counterpart

0/( )
CM

d dG
dx dx

 with different experiment

results available in the literature and with those
obtained by empirical formula of Dimotakis (1991) :

20,8exp( ) 0,2tG M                                            (57)

Fig.1. Normalized growth rate G versus cM

Fig. 2. Similarity of the mean velocity

The calculated growth rate G decreases with increasing
convective Mach number: a phenomenon which has
often been observed in experimental studies of
compressible mixing layers. The LRR model over
predicts the growth rate G and similar results are
obtained for the Reynolds stress similarity (results are
not included in Fig.  2  and Fig.3). With the proposed
correction of the slow part of the pressure-strain
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correlation, the model of Adumitroiae et al. is now able
to properly predict the growth rate G.

Fig. 3.  Similarity profiles of Reynolds stress: (a)
0,46cM , (b) 0,69cM , (c) 0,86cM .

(solid line : 2,5 , dashed line : 0,0 , symbol:
experience of Goebel et al.)

The normalized stream mean velocity 2

1 2

U UU
U U

 is

represented in relation to the similarity variable
( ) /cy y  in Fig.  2,  where  y  is  the  local  cross

stream coordinate and  is the cross-stream
coordinates corresponding to 0,5U .

The calculated velocity profiles with the corrected
version  of  the  Adumitroiae  et  al.  model  are  in
reasonable agreement with experimental data. Figure 3
shows the computed results of the Reynolds similarity
intensities: the streamwise intensity

2
11 11 1 2/ ( ) ,R U U the transverse intensity

2
22 22 1 2/ ( ) ,R U U and the shear stress

2
12 12 1 2/ ( ) ,R U U obtained from the two versions

model of Adumitroiae et al. are compared with
experiments  results  of  Goebel  and  Dutton.  It  is  clear
that the two versions model lead to similar results for
small  value of convective Mach number ( 0, 46CM ).
But,  when  the  compressibility  effects  are  more
significant ( 0,69CM , 0,86CM ), the effects of the
proposed correction model are clearly manifested on the
normal turbulent Reynolds stress , particularly on the
transverse similarity intensity. But the shear stress is
not affected by the proposed correction model.

6. CONCLUSION

In this study, the widely used second order closures has
been used for the prediction of compressible mixing
layer. The standard –stress closure with the addition of
the dilatational terms: the pressure dilatation correlation
and the turbulent dissipation of the dilatation yields
very poor predictions of the changes in the Reynolds
stress anisotropy magnitude. The deficiencies of this
closure is due to the use of the incompressible models
of the pressure-strain correlation. This term controls the
structural compressibility effects on the turbulence.

A modification of the standard Rotta’s model of the
slow part of the pressure strain correlation has been
proposed. The usual coefficient 1C  becomes dependent
on the turbulent Mach number tM . In general, the
proposed compressibility model with the Adumitroiae
model  of  the  mean  part  of  the  pressure  strain
successfully predict the reduced growth rate and the
decrease of the normal Reynolds stress peaks with
increasing convective Mach number. Also the similarity
velocity is well predicted by the proposed model. This
leads to the conclusion that the compressibility
correction  of  the  slow  part  of  the  pressure  strain
correlation model is found out to be an important issue
in the second order closure for the compressible
turbulent flows.
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