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ABSTRACT 

In order to master the use of electric machines and to minimize its thermal losses, the knowledge of thermo-physical 

properties of metallic materials that constitute them, is important. This study deals with the estimation of several 

thermal properties in a metallic medium. The system under investigation is a rectangular metallic plate, which is 

submitted to an homogenous heat power on the volume sample. The direct problem simulates numerically the system 

and the experimental conditions. An iterative procedure, based on minimizing a sum of squares norm with the 

Levenberg-Marquardt method, is used to solve the inverse problem. In order to characterize the thermal behavior of 

metallic materials, an experimental set-up was built. The measured temperature data using infrared camera are used 

to estimate the effective thermal conductivity, the effective volumetric heat capacity as well as the global heat 

transfer coefficient with the environment. 

 

Keywords: Thermal properties, Numerical simulation, Experimental characterization.  

 

NOMENCLATURE 

cp         specific heat capacity (J kg-1 K-1) 

e          sample thickness (m) 

h          global heat transfer coefficient (W K-1 m-2) 

J          ordinary least-squares norm  

l           sample width (m) 

L          sample length (m) 

n          number of measurement points 

p          number of unknown parameters 

r           number of transient temperature 

S          heat power (W m-3)  

T         temperature (K) 

t          time (s) 

X         sensitivity matrix 

Y         measured temperatures 

β         vector of unknown parameters 

̂        vector of estimated parameters 

λ          thermal conductivity (W m-1 K-1) 

ρ          density (kg m-3) 

1. INTRODUCTION  

The prediction of thermal dissipations in electrical 

machines involves, while modeling magnetic materials, 

separation of iron losses into three contributions: static, 

classical and excess losses (Bertotti1988). 

 

Starting from these considerations, it becomes essential 

to predict temperature effect on the magnetic losses. 

Some published works interest to study the influence of 

temperature on coercive field describing thermal 

behavior of magnetic hysteresis. Some proposed 

models  allowed  the determination of thermal effect on  

 

hysteresis characteristics and then on corresponding 

losses (Féliachi et al.  1999). 

 

The modeling of heat conduction problems, even for 

complex geometry, has become relatively easy with 

modern software. Nevertheless, for many industrial 

problems, it is often difficult to know the thermo-

physical properties. Estimation of the effective thermal 

conductivity, the specific capacity and the heat transfer 

coefficient with the environment is essential for thermal 

design and numerical simulation of magnetic losses. In 
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the past decades, many methods have been presented to 

determine these properties. Some published works are 

related to the experimental as well as the theoretical 

determination of the thermal conductivity and the heat 

capacity (Jarny et al. 1995). The development of the 

inverse problem has progressed. Its resolution permits 

the determination of more than one thermo-physical 

property and then to characterize complex materials. 

 

In order to study the magneto-thermal coupling in the 

magnetic materials, a characterization system was built 

in the LET2 to demonstrate the feasibility of the 

parameters estimation and to characterize metallic 

materials. In this paper, we propose to estimate the 

effective thermal properties in a metallic sample (semi 

process Fe-Si). In our study, the inverse problem is 

solved to determine three parameters using temperature 

measurement data from an infrared camera. First, a 

numerical simulation is given to describe the 

experience (direct problem). This model is used to 

show the possibility to estimate simultaneously the 

thermal properties and to study the impact of 

measurement noise on the identification accuracy. The 

estimation is based on minimizing the least squares 

norm using the Levenberg-Marquardt iterative 

procedure (inverse problem). Afterwards, an inversion 

with experimental data obtained with the experimental 

set-up, is performed and discussed.  

2. DIRECT PROBLEM 

The system under investigation is a rectangular metallic 

plate, having a uniform section. In order to limit the 

thermal study to the plate, we choose to have imposed 

temperature at the medium boundaries. This physical 

device exchanges heat through its lateral faces. This 

plate is submitted to an homogenous power heat. 

The heat transfer in the plate is assumed to be two-

dimensional. The metallic medium (Fe-Si) is 

considered homogeneous, and having constant thermal 

properties and density. Figure 1 shows the plate with 

the thermal boundaries conditions. 
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Fig.1. The plate with the thermal boundaries conditions 

2.1 Energy Equation 

The transient temperature distribution inside the plate is 

described by the two-dimensional heat conduction 

equation: 

)
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Where S  is the homogenous heat power, respectively, 

(ρcp) is the heat capacity, λ is the  thermal conductivity 

and h is the global heat transfer coefficient (convection 

+ radiance).  

2.2 Initial and Boundaries Thermal Conditions  

The heat flux continuity through the lateral faces (y = 0 

and y = l) allows us to write the following equations: 
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Initially, we suppose that the temperature in the 

medium is constant and is equal to the ambient 

temperature: 

T (0, x, y) =T0                                                               (3)                                                                          

The system of the presented equations is solved at each 

time step by the control-volume based finite element 

method (Patankar et al. 1983). This method leads to the 

determination of the temperatures at all the grid points. 

The main advantage of this method is to allow a big 

flexibility in the considered geometry. It ensures, also, 

the flux conservation and avoids the generation of 

parasite sources. Thus, the use of such method will 

permit to treat complex geometries. A regular mesh 

within the integrated domain was used. The total 

number of the grid was   40 × 32. The equations are 

then integrated on the control volume in the time 

interval [t, t + Δt].   

3. INVERSE PROBLEM 

3.1 Estimation Method 

For the inverse problem considered in this study, the 

effective thermal conductivity λ, the effective 

volumetric heat capacity ρcp, and the global heat 

transfer coefficient h between the plate and the 

environment are regarded as unknown. While the other 

quantities appearing in the formulation of the direct 

problem described in Eq. (1) are assumed to be known.  

 

The estimation is based on minimizing the ordinary 

least squares norm (Beck  1969): 
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Where n is the number of temperature sensors, r the 

number of transient temperatures, 
j

iY  the measured 

temperature at time j and point i, and 
j

i
Y

mod, ( β) the 

calculated temperature for the same location and time 

obtained from the solution of the direct problem, by 

using the current available estimate for the vector of 

unknown parameters   hpc
T

,,   .  

J is optimal if: 

0)( gradJ                                                            (5)                                                                           
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In the literature, many techniques have been presented, 

to minimize the least squares norm J. Among these, the 

Newton, the conjugate gradients (Beck 1969; Orlande 

et al. 1999) and the Levenberg-Marquardt methods 

(Levenberg 1944; Marquardt 1963) are efficient for 

non-linear estimation.   

 

Each algorithm has its advantages and its application 

domains. The Levenberg-Marquard algorithm has 

proved particular efficiency, because it presents a 

compromise between the Newton and the conjugate 

gradients method, therefore, we have chosen this 

method for the thermal proprieties estimation.  

 

The iterative procedure to estimate the unknown 

parameters is given by: 

kkk  1                                                         (6)                                                                            

Where k is the increment of the unknown 

parameters vector at iteration k.                                                                      

 

The increment k for the Levenberg-Marquard 

method can be written as: 
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X is the sensitivity matrix formed by the sensitivity 

coefficients at time j and point i to the unknown 

parameter   given by: 
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where i =1,…,n ;   = 1,…,p and j =1,…,r. 

 

A new diagonal matrix term kk  is added to XX T  

in order to damp oscillations and instabilities due to the 

ill-conditioned character of the problem. Where k is a 

positive scalar named damping parameter, and k is a 

diagonal matrix (Levenberg 1944). In our case, we have 

considered 
k equal to the diagonal terms of 

  kTk XX . 

3.2 Sensitivity Analysis 

The sensitivity analysis of the temperature to the 

unknown parameters consists of analyzing the evolution 

of the different reduced sensitivity coefficients versus 

time. These reduced sensitivity coefficients are 

calculated using a forward finite difference 

approximation for 
j

iY (Petit et al. 2005).  
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where  is taken equal to 
310 for each 

parameter. This common value of 0,001 was sufficient 

to approximate all the derivatives. 

 

A careful investigation of the sensitivity coefficients 

often can aid in providing insight into the problem of 

determining parameters using nonlinear estimation. For 

this reason, 
j

iX , will be examined. One of the desired 

characteristics of a sensitivity coefficient in parameter 

estimation problems is that the magnitude of the 

coefficient be as large as possible. If there are two or 

more parameters to be found at one time, then in 

addition, the sensitivity coefficients should be as 

uncorrelated as possible (Jarni et al. 1995).  

 

Thus, the sensitivity analysis permits to define the 

domain in which a variation of each parameter, 

independently to the others, generates a sensitive 

evolution in the studied system. 

3.3 Optimal Experiment Design       

The most common criteria for the optimal experiment 

design are based on the information matrix XX T , 

which summarizes the information content of an 

experiment (Raynaud 1999). It is necessary to have a 

great determinant of XX T  as a guaranty for great 

sensitivity coefficients and no correlated parameters. 

This D-criterion is presented as following:  

Criteria D =  )XXdet( max TArg                                     (10) 

Another approach is to minimize the condition number 

of XX T  that can be taken as the ratio of its largest 

eigenvalue to its smallest one. The more this value is 

near one; the more the problem is well posed.  

Criteria E=CN =  minmaxmin Arg          (11) 

A compromise between these two approaches can be 

done; it consists in maximizing the lowest eigenvalue 

of XX T . The physical motivation of this optimality is 

that it minimizes the largest parameter variance.  

4. RESULTS AND DISCUSSION 

In this study, we have considered a uniform rectangular 

metallic sample (λ=45 W.m-1.K-1,            

ρcp=35,7374×105 J.m-3.K-1). The length, the width and 

the thickness of the plate, are, respectively 175 mm, 75 

mm and 0,65 mm. The global heat transfer coefficient 

with the environment used in the simulations is h = 8 

W.m-2.K-1.  

 

The initial temperature of the medium is T0 = 296,3 K. 

An echelon of heat power with maximum value            

S = 2,77×105 W.m-3 is injected within the volume of the 

plate. 

 

For the sensitivity analysis, we have considered the 

sensor position n1 approximately near the middle          

(x = 85,25 mm and y = 36,28 mm), in order to analyze 

the behavior of the different reduced sensitivity 

coefficients versus time.  

4.1 Reduced Sensitivity Coefficients 

Considering the chosen position n1, we perform a 

sensitivity analysis of the temperature to the parameters 

(λ, ρcp, h). Figure 2 shows that initially the reduced 

sensitivities, to the unknown parameters, vary in 

different manners, and then uncorrelated.  
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Fig. 2.  Reduced sensitivity coefficients versus time 

 

In fact, we notice that the thermal conductivity and the 

global heat transfer coefficient reach their maximums at 

the same time, but they decrease in different manners, 

so an eventual correlation can exist between these two 

parameters. This is clearly proved by the ratio of the 

reduced sensitivity coefficients (Fig. 3).  

 

Therefore, the identification of the three parameters    

(λ, ρcp, h) is feasible and the range time [0, 240s] is 

sufficient to estimate simultaneously the thermal 

properties of this metallic medium. 
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Fig. 3.  Ratio of the reduced sensitivity coefficients 

 

To perform an optimal experiment design, the influence 

of the sensors number on the determinant, the condition 

number and the lowest eigenvalue of the XX T is 

plotted in Fig. 4.  

We see that the determinant and the lowest eingenvalue 

increase when the number n of the sensors increases. 

On the other hand, the condition number decreases with 

the increase of temperature measurements. Therefore, 

the parameters estimation might be best and will be less 

sensitive to the measurement errors while using many 

temperature sensors.  

4.2 Error Analysis 

Several types of errors can alter the validity of the 

information given by temperature measurements. To 

demonstrate the accuracy of the inverse method, the 

measured temperature is simulated. The input data 

Ysimulated (Fig. 5) for the inverse problem is obtained by 

adding a noise term ωσ to the computed temperature 

Ymod  (direct problem) as: 

 modYYsimulated
                                                   (12) 

The noise is Gaussian distributed and σ is the standard 

deviation of the measurements errors. Assuming 99% 

confidence for the measured data, ω lies in the range 

576,2576,2    and it is calculated by a random 

generator (Petit et al. 2005; Jarni et al. 1995).                                                      
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Fig. 4.  Influence of sensors number on the determinant, 

the condition number and the lowest eigenvalue 
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Fig. 5. Measured temperature at n1 versus time            

(σ = 0,1 K) 

4.3 Parameters Estimation 

Let us perform the identification of the thermal 

properties using simulated temperatures at position n1. 

The results of the identification by the Levenberg-

Marquardt method for different standard deviations of 

measurement noise are shown in Table 1.  

 

We report the identification results for initial values 

taken far away from the expected value.  

 

We notice that, without measurement noise, the 

parameters are identified with a good accuracy. 

However, by the inclusion of temperature errors, the 

parameter identification becomes less accurate. On the 

other hand, the least squares norm J is very low (10-20) 

for standard deviation equal to zer (σ = 0 K). But, when 

we add noise, the least squares increases.  
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Table 1 Identification results using sensor position n1 

 
Initial 

values 
σ= 0 K σ=0,05K 

σ= 0,1 

K 

Λ (45) 65,0 44,999 46,471 50,731 

(ρCp)×105 

(35,7374) 
20,0 35,7374 36,014 36,437 

H (8) 12,0 8,000 7,810 7,402 

Number of 

iterations 
8 2 3 

Least squares J 8,7×10-20 0,576 2,313 

 

An aspect of this parameter estimation problem is that 

the presence of measurements errors can influence the 

estimated values. In order to improve the quality of 

identification, we increased the number of measurement 

points. The identification results using 12 

measurements intermediately between x1 and x12 

positions as shown in Fig. 6, are reported in Table 2. 
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n 1 n 11 n 12 

x1 = 85,25 mm x12 = 35,89 mm 

Δx=4,48mm 

y1=36,28 mm 

 Fig. 6.  Measurements temperatures positions 

 

Table 2 Identification results using 12 temperatures 

measurements 

 

 

 

Initial 

values 
σ= 0 K 

σ=0,05 

K 

σ= 0,1 

K 

Λ (45) 65,0 45,00 45,073 45,146 

(ρCp)×10-5 

(35,7374) 
20,0 35,7374 35,906 36,077 

h (8) 12,0 8,0001 7,958 7,917 

Number of 

iterations 
6 5 4 

Least squares J 4,7×10-18 6,955 27,821 

 

We notice that the previous results showed that while 

using many measurement points, the estimated 

parameters are in good agreement with the exact ones 

even when adding noise. For σ = 0, the least squares J 

is very low. However, when 0 , this criterion is 

“compatible” with the measurements noise. In fact,  

2 nrJ                                                              (13)                                                                      

In our case, the number of the transient temperature r is 

equal to 240 and the number of measurement sensors n 

is equal to 12. 

 

Therefore, in this numerical study, the problem can be 

solved with the Levenberg-Marquardt method using 

many temperatures measurements. The parameters 

estimation will be less sensitive to the measurement 

errors while increasing the number of temperature 

measurements. This permits an accurate identification 

with a small number of iterations even when 

measurement noise is added and for initial guesses that 

are far from the expected values.   

The proposed method can be applied to estimate 

simultaneously the effective thermal properties of the 

studied metallic medium, using infrared camera applied 

to the experimental set up built. 

5. EXPERIMENTAL SET-UP DESCRIPTION   

The main objective of the experimental Set-up 

conception, is to characterize the thermal behavior of 

metallic materials and then to determine thermal effects 

of iron losses. 

 

The realization of the experimental installation imposes 

that the studied sample is easily visible, in order to be 

accessible to the infrared camera. A magnetic, an 

electric and a thermo-hydraulic circuit have been 

installed, so that, they do not embarrass the accessibility 

to the sample (Fig. 7).  

                       
 

 
Fig. 7.  The experimental set-up 

 

This experimental set-up is made up of these parts: 

 

1.  Cryothermostat Huber CC 250 WL with a 

capacity tank until 5L. This cryothermostat can 

provide temperature ranged from -40°C to 

+200°C. The power heating is limited to 1,2 kW at 

20°C, and 0,6 kW at -20°C. 

 

2.  Measurements central HP 34970A. 

3.  Power supply GEN 6-200 (0V-6V, 0A-200A)  

 

4.  the metallic sample and its support. This support 

can endure high temperature until 150°C. 

 

5.  the controller computer  

 

This Experimental Set-up permits to impose controlled 

magnetic and thermal constraints on the studied sample. 

The radiance due to the excitation system is blocked 

with two plates, cooled by a chimney effect. 
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Two copper clips related to the hydraulic circuit, permit 

to have thermal boundary conditions (Fig. 8). These 

clips permit also the injection of a continuous current 

on the sample (Fig. 9). The electric power supplied to 

the sample can be measured; it is used to specify the 

dissipation in the plate, in order to identify thermal 

parameters. 
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Fig. 8. The thermo-hydraulic circuit 
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Fig. 9. The electric circuit 

6.   EXPERIMENTAL VALIDATION   

The experimental set up was used to demonstrate the 

feasibility of the inversion and to characterize thermal 

properties of the studied medium.  

 

The two clips permit to maintain the sample faces       

(x = 0 and x = L) to the ambient temperature, and to 

product an echelon of electric power in order to create a 

heat source in the plate volume (P = U.I = 2,70 W; I = 

68A, U = 0,0398V).  

 

By measuring the transient temperatures using an 

infrared camera, we represent, in title of illustration, 

temperatures in the plate (Fig. 10). Since the previous 

numerical study (§4.3) have shown that the use of many 

temperature measurements permits an accurate 

identification with a small number of iterations, we 

proposed to use 12 temperatures measurements located 

intermediately between n1 and n12 positions as shown in 

Fig. 6. 

 

The results of the experimental estimation performed 

with the same measurement positions us the simulated 

inversion, are given in Table 3. We notice that the 

estimated values of the effective thermal conductivity,  
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Fig. 10.  Experimental measurements (t = 240 s) 

 

the volumetric heat capacity and the global heat transfer 

coefficient with the environment have a good 

agreement with the thermal proprieties values of the 

magnetic steel (Fe-Se) provided by the literature 

“Verdun J”  (λ = 42 W.m-1.K-1, ρ =7900 kg.m-3, cp = 

490 J.kg-1.K-1). We notice that other estimations using 

various initial values were done and gave good results. 

 

Table 3 Experimental estimation results 

 
Initial 

values 

Estimated 

values 

Number 

of 

iterations 

Least 

squares 

J 

λ 65,0 40,9 

5 

 

2,54 

 
(ρCp) 

×10-5 
20,0 38,34 

h 7,0 10,24 

 

Figure 11 shows the transient measured temperatures 

and the calculated ones (model) using the estimated 

parameters (λ = 40,9 W.m-1.K-1, pc = 38,34×105 J.m-

3.K-1 and h = 10,24 W.m-2.K-1). 
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Fig. 11. Comparison of calculated and measured 

temperatures                                                                 
 

We consider that the calculated temperatures 

approximate very closely the measured values. In order 

to attest the quality of the parameter estimation, we plot 

in Fig. 12 the evolution of the residues r versus time 

“Maillet D”, where:  
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We notice that the residues are uncorrelated. This 

characteristic can attest of the quality of the parameters 

estimation and verify that the matrix sensibility X is 

well conditioned.     
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Fig. 12. Residue of estimation calculated at position n12 

7.  CONCLUSION 

This paper provides a methodology to estimate the 

effective thermal properties in a metallic medium. A 

numerical study has been performed to identify, 

simultaneously, the effective thermal conductivity, the 

effective volumetric heat capacity and the global heat 

transfer coefficient with the environment. A sensitivity 

analysis has shown that the parameters are initially 

uncorrelated so, their simultaneously estimation is 

possible. In the case of the studied example, the 

Levenberg-Marquardt method appears to be efficient 

for the estimation. The use of the temperature evolution 

versus time measured at many positions permits an 

accurate estimation even with high measurements 

noise. The experimental validation of this study was 

done. The experimental set up built in the LET, 

permitted to demonstrate the feasibility of the 

estimation and verified that the proposed method for 

minimizing the least squares is valid.   

An infrared camera is used to determine transient 

temperatures on the sample surface. The results showed 

that the simultaneously estimation of the thermal 

properties of the studied medium from temperature 

measurements is possible and is performed with a good 

accuracy. 
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