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ABSTRACT

This paper deals with the theoretical investigation of the effect of rotation in a magnetized ferrofluid with internal
angular momentum, heated and soluted from below subjected to a transverse uniform magnetic field. For a flat fluid
layer contained between two free boundaries, an exact solution is obtained. A linear stability analysis theory and
normal mode analysis method have been carried out to study the onset of convection. The influence of various
parameters like rotation, solute gradient, magnetization and internal angular momentum parameters (i.e. coupling
parameter, spin diffusion parameter and heat conduction parameter) has been analyzed on the onset of stationary
convection. The critical magnetic thermal Rayleigh number for the onset of instability is also determined numerically
for sufficiently large values of buoyancy magnetization parameter M; and results are depicted graphically. The
principle of exchange of stabilities is found to hold true for the ferrofluid with internal angular momentum heated
from below in the absence of rotation, coupling between vorticity and spin, microinertia and solute gradient. The
oscillatory modes are introduced due to the presence of the rotation, coupling between vorticity and spin, microinertia
and solute gradient, which were non-existent in their absence. In this paper, an attempt is also made to obtain the
sufficient conditions for the non-existence of overstability.
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1. INTRODUCTION

Magnetic fluids or ferrofluids are colloidal suspensions
of fine ferromagnetic mono domain nanoparticles in
non-conducting liquids. The ferromagnetic
nanoparticles are coated with a surfactant to prevent
their agglomeration. Rosensweig (1985, 1987) in his
monograph and review article, provides a detailed
introduction to this subject. Chandrasekhar (1981) has
given a detailed account of thermal convection
problems of Newtonian fluids. The theory of convective
instability of ferrofluid begins with Finlayson (1970)
and interestingly continued by Lalas and Carmi (1971),
Shliomis  (1974), Stiles and Kagan (1990),
Venkatasubramanian and Kaloni (1994) and Sunil and
co-workers (2005, 2008). Schwab et al. (1983)
investigated experimentally the Finlayson’s problem in
the case of a strong magnetic field and detected the
onset of convection by plotting the Nusselt number
versus the Rayleigh number. Then, the critical Rayleigh
number corresponds to a discontinuity in the slope.
Later, Stiles and Kagan (1990) examined the
experimental problem reported by Schwab et al. (1983)
and generalized the Finlayson’s model assuming that

under a strong magnetic field, the rotational viscosity
augments the shear viscosity. In the absence of applied
magnetic field, the particles in the colloidal suspensions
are randomly oriented and thus the fluid has no net
magnetization. When exposed to a magnetic field,
Brownian rotational motions prevent complete
alignment of the dipoles with the applied field. As a
result when the applied field has a changing direction or
magnitude, the magnetization is unable to track the field
closely and becomes non-equilibrated. This non-
equilibrium state of magnetization leads to the state of
asymmetric stress. Rayleigh-Bénard convection in a
ferromagnetic fluid layer with internal angular
momentum permeated by a uniform, vertical magnetic
field with free-free, isothermal, spin-vanishing,
magnetic boundaries has been considered by Abraham
(2002). She observed that the micropolar ferromagnetic
fluid layer heated from below is more stable as
compared with the classical Newtonian ferromagnetic
fluid. More recently, Sunil et al. (2004) have studied
the convection problems in ferrofluid with internal
angular momentum.
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The really interesting situation from both a geophysical
and a mathematical viewpoint arises when the layer is
simultaneously heated from below and salted from
below. In the standard Bénard problem, the instability is
driven by a density difference caused by a temperature
difference between the upper and lower planes
bounding the fluid. If the fluid layer additionally has
salt dissolved in it then there are potentially two
destabilizing sources for the density difference, the
temperature field and the salt field. When there are two
effects such as this, the phenomenon of convection
which arises is called double-diffusive convection. For
the specific case involving a temperature field and
sodium chloride, it is frequently referred to as
thermohaline convection. There are many recent studies
involving three or more fields, such as temperature and
two salts such as NaCl, KCI. For three or greater field
case, it is referred to as multi-component convection.
The driving force for many studies in double-diffusive
or multi-component convection is largely physical
applications. Sunil et al. (2004) have studied the
thermosolutal convection in a ferrofluid and Sunil et al.
(20074, b) studied the double-diffusive convection in a
micropolar ferromagnetic fluid in non-porous and
porous media.

In view of the above investigations, we intend to extend
our work to the double-diffusive convection in
ferrofluid with internal angular momentum in the
presence of rotation. It is attempted to discuss the
influence of rotation and solute gradient and how the
angular momentum parameters affects the stability in
ferrofluid heated from below. The understanding of the
rotating ferrofluid stability problems plays an important
role in microgravity environmental applications. We
believe that the present study can serve as the
theoretical support for experimental investigation in
ferroconvection. This problem, to the best of our
knowledge, has not been investigated yet.

2. MATHEMATICAL FORMULATION OF
THE PROBLEM

Here, we consider an infinite horizontal layer of
thickness ‘d’ of an electrically non-conducting
incompressible thin rotating ferrofluid with internal
angular momentum heated and soluted from below as
shown in Fig. 1. The temperature T and solute
concentration C at the bottom and top surfaces

z :$%d are T, Ty and C_, Cy , respectively, and a
. . daT

uniform temperature gradient g |= ’m and a
z

uniform solute gradient ﬂ'(— (ZCJ are maintained.
z

Here, both the boundaries are taken to be free and
perfect conductors of heat. The gravity field
g=(0, 0,—g) and uniform vertical magnetic field

intensity H=(0, 0, Hy) pervade the system. The
whole system is assumed to be rotating with angular
velocity ©=(0, 0, Q) along the vertical axis, which is
taken as z-axis.
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Fig. 1. Geometrical configuration

The mathematical equations governing the motion of
magnetized ferrofluids for the above model
(Rosensweig 1985; Chandrasekhar 1981; Finlayson
1970; Sunil et al. 2007b) are as follows:

The continuity equation for an incompressible fluid is
@

angular momentum

V.q=0.

The momentum and internal

equations are

po(§+q~vjq=—Vp+p9+uo(M~V)H+(§+n)V2q
+2¢ (Vx@)+2p0(qxQ), 2

[6
pol | —+

P (Q‘V):|‘”:2§(V><q—20))+y0(M><H)

+(l’+77’)V(V~w)+77'V2w. 3
The temperature and solute concentration equations for
an incompressible ferrofluid are (Finlayson (1970),
Abraham (2002), Sunil et al. (2004, 20073, b))

[ M DT M DH
—unH-| — = T — —
_pOC‘"H Ho (6T j\,'H} bt o (6T )\,,H Dt
=KV2T +6(Vx®)-VT, @)
[ oM DC
—uH-| == ==
PoCy, 1~ Ho (ac ]V’H} Dt
+146C [a—Mj DH Kiv2C . ()
oC J y Dt
The density equation of state is
p:po[l—a(T —Ta)+a’(C—Ca)], (6)

where p, pg,q, @, t,p, 7, ¢, A, 0,8, 1, u,
B, Cyy. M, K, Ki, a and o' are the fluid

density, reference density, velocity, microrotation, time,
pressure, shear kinematic viscosity coefficient, coupling
viscosity coefficient or vortex viscosity, bulk spin
viscosity coefficient, shear spin viscosity coefficient,
heat conduction coefficient, moment of inertia
(microinertia constant), magnetic permeability of free
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space (,uo =47x107" Henry m‘l) , magnetic

induction, heat capacity at constant volume and
magnetic field, magnetization, thermal conductivity,
solute conductivity, thermal expansion coefficient and
an analogous solvent coefficient of expansion,
respectively. T, is the average temperature given by

(TL+Ty)
2

T, = , where T, and Ty are the constant

average temperatures of the lower and upper surfaces of
the layer and C, is the average concentration given by

CL+Cy)
2

Ca:( , Where C, and C, are the constant

average concentrations of the lower and upper surfaces
of the layer. The effect of rotation contributes two

terms: (a) Centrifugal force —%grad\gxr\z and (b)

Coriolis  force 2(Qxq). In  Eq. (2,

1 .
p=ps —Epo\gxr\z is the reduced pressure, where

p¢ stands for fluid pressure. The partial derivatives of

M are material properties which can be evaluated once
the magnetic equation of state, such as (10) below is
known.

Maxwell’s equations, simplified for a non-conducting
fluid with no displacement currents, become

V-B=0, VxH=0, )
where the magnetic induction is given by
B=p(H+M). ®)

In general, the presence of ferrofluid can distort an
external magnetic field if magnetic interaction (dipole-
dipole) takes place, but this is negligible for small
particle concentrations, as is assumed here. The
magnetization depends on the magnitude of the
magnetic field, temperature and salinity, which can be
written as

M:%M(H, T, C). ©)

The magnetic equation of state is linearized about the
magnetic field, H,, an average temperature, T, , and

an average concentration, C, to become

M =M+ x(H -Hy)-K,(T -T,)+K,(C -C,),

(10)
where magnetic susceptibility, pyromagnetic coefficient
and salinity magnetic coefficient are defined by

(an (GM]
r=|— o Kys—| — and
oH )y, T, c, T JHy, Ta, Ca

Ks = [—] , respectively.
oc Ho. Ta. Ca

Here H, is the uniform magnetic field of the fluid
layer when placed in an external magnetic field

A AN
H=H&k, k is unit vector in the z-direction,
Mg = M(HO,Ta, Ca).

The basic state is assumed to be quiescent state and is
given by

d=0,=(0, 0, 0), ®=w,=(0,0,0), p=py(2),

p= pb(z)v T :Tb(Z):—ﬂz.g_Ta, ﬂ:@l

d
' A
C:Cb(z)=—ﬁ’z+cava: H()_%_~_I<37,BZ K

1+ 1+y
- A

ﬂ/:ﬁ’ My, = MO"'%_M k and

d 1+ 1l+y
HO+M0:H8Xt, (11)

where the subscript ‘b’ denotes the basic state.

3. MATHEMATICAL ANALYSIS AND

DISPERSION RELATION

We shall analyze the stability of the basic state by
introducing the following perturbations:

q=0p+q , @=0,+0', p=p,+0, p=pp(2)+p,
T=Ty(2)+6, C=Cy(2)+y,

H=Hy(z)+H and M=M,(z)+M’, (12)

where
a=uv,w, o=(a, o, o), p, P, 6, y, H

and M’ are perturbations in velocity g, spin o, density
p, pressure p, temperature T, concentration C,
magnetic field intensity H and magnetization M,
respectively.

The change in density p’, caused mainly by the
perturbations &€ and y in temperature and
concentration, respectively, is given by

P ==py(ad-aly). (13)

Then, the linearized perturbation equations of the
magnetized ferrofluid become

ou op OH{ 2
— = Mgy +H +(&+n)Vau
PO o Ho (Mg +Ho) P (&+n)
+280Y + 2ppQv (14)
ov op’ oH,
pogz_apﬂ,o(momo) az2+(g+n)v2v

+200% — 2o, (15)

ow op’ OH;
POE=*£+#0(M0+Ho)6723+(§+77)V2W

K !
+200Y _%{Hé(n X)- Ko+ gpp (@b —a'y)
HoKsfB' (. HoKoKz ()
+W{H3(1+Z)+ K3}/}—W(ﬂ9+ [—7)]/)1

(16)
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ol 680: =24 (Vxq' —2")+ g (M x H'+ M'x Hy)
+HA+ 7 )V(V-0)+ Ve, 17)
a—u+@+@:0, (18)
ox oy oz
00 o (0w} )
— — 1 ToKy — =K,V
pclat HoTg 2&(62] 1
2
o] peyp £ gy spoy )
(1+;()
/67 0 a(DIZ no2
— — 1CoKq—| —= |= KV
PC16t #003&(62] 1V
2
+ pqﬂr_/uOCOKSﬂ w, (20)
(l+;()
o’ Mo |2 00 oy
1+ +|1+— |[VI®'- K, —+K3—=0,
t+z) az? ( Hoj ! 2 Ca
(21)

where pC; = poCy, 1 + oK2Ho,
PCL=poCy, 1 —toKsHg,  H =V =V(d] - a))
(by Eqg. (7)) where @' is the perturbed magnetic

potential which is the difference of two potentials
@1, d, analogous to temperature and solute.

Eliminating u, v, p’ between Egs. (14)-(16), using Eq.

(18), and taking curl once on (17) and considering only
z-component, we obtain

[pog—(é’ +77)V2]V2W:

HoKaf 2 G }
VIi{(l+ y)—(DP; — D5 ) - K,0
1+ 1 ( Z)az( 1 2) 2
K o, .,
+ﬂf Sﬂ Vz{(l"'x)f(q)l—q)z)‘f‘ K37/}
+ z
, 0
+P09Vf(019—a7)—2/)09§
HoKoKg Loy 20y
— VI(B0+By)+2{VeQy, (22)
(1+;() ( )
ol 7023 =24 (VoW 20 ) + V0. (23)
The vertical component of the vorticity equation is
0 ow
Po%ZZPOQEJf(éq'U)VzQ: (24)

where ¢} = xy_a stands for the z-component of the
oxX oy
vorticity.

Further analysis has been carried out using the
techniques of Sunil et al. (2007b, 2008).

Now we analyze the normal mode technique. This can
be written as

f(xy,zt)= f(z,t)expi(kxx+kyy), (25)

46

where  f(z,t) represents W(z, t),0(z, t),Z(z,t),
[(z,t),®y(z, 1), D, (z, t),Q3(2, t); ky, K

wave numbers along

y are the

the x- and y-directions,
respectively and k = (kf +k§) is the resultant wave

number.

Following the normal mode analysis, the linearized
perturbation dimensionless equations become

0

{?_(H Nl)(D2 —az)}(Dz —az)W* =
aR”Z[(Ml —M,)Dd; —(1+ M, — M4)T*J

+as”2[(|v|l'— M) DD} +(1—Mj + Mg)c*}

+2N1(D2 —az)g’g—T}(ZDz*, (26)
{%—(n Nl)(DZ—aZ)}z*:T,i’ZDW*, 27)

0% (i 7a2)W*+ZQ§}+ N;(D?-a?)03,  (28)

*

oT

Pri*_PrMZ

*

ai(D@I):(DZ -a? )T

+aRY? (1- M, )W " —aRY2Ng0;, (29)
R _ PSMéi*(D(D’;):(DZ -a?)c”
at at
+aS’2(1-My)W”", (30)
D?d; —a’Myd; — DT =0, (31)
D?d, —a?Mz®, ~DC" =0. (32)

where the following non-dimensional quantities and
non-dimensional parameters are introduced:

« ovtoox Wd o« (1+7)K@aRY?
t :—2, W =—, (I) :72 :
d v K,pCyBvd
« (1+ y)Kias¥? gapd® pC,
Gy =t 5@y, R=T
K3pC]I_ﬂ'Vd VKl
S garB'd*pCi T = K,aRY? o « Kias¥?
vKi T pCivd oCiA'vd
* Z 0 v
a=kd, z ==, D=—, P =—pC,,
d a K <
2
Vo K
P, = — pCi, Mlzﬂoizﬂy
Ki (1+ 7)epog
Mi:M __mToKE
(1+7)a'pog (1+2)pC;
Mo
My = #0CoKS =(1+HT)
(1+2)PC (1+7)
_ HoKoKeB s mgKoKeB
(1+7)apog (1+ 7)oy
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MszﬂzM}:K3ﬁ1 N1:£y N3: ’72,
My My KypB n nd
3
NS:LZ, I’:L2 and QS:%,
pCld d v

2042 |
v

The exact solution subject to the boundary conditions
(for free-free boundaries)

W' =DMW" =T =C" =Q; = D®; = Dd, =0 at
1

Z:iE , (33)

is written in the form

W =Ae coszz, T =Be" coszz ,

DO, =Ce? ' coszz’, @y = (&je‘” sinzz",
V4

* o t* * * o t* *
Q3 =De” " coszz , DO, =Ee” " coszz ,

*

E > * * * *
d)zz(—lje‘“ sinzz , C =Fe"' coszz ,  (34)
v

where A, By, C;, Dy, Ey, R, are constants and o is

the growth rate which is, in general, a complex
constant.

Substituting solution (34) in linearized perturbation
dimensionless equations and dropping asterisks for
convenience, we get the equations involving the
coefficients of A, By, C;, Dy, Eq, F . For the existence

of non-trivial solutions, the determinant of the
coefficients of A, B;, C;, Dy, E;, R _must vanish. This

determinant on simplification yields

Here,

T, =b?{Lly (L +L5)+ NéLzLé}’ an
+2bLoLy {(1+ Ny ) 1y + 2Ny }
Ty = 11L50° + b2 (2L 1D (1+ Ny)(Lp + Lp) ~ 4NFLoLs |
~XRyly (1— My) LyLg + xSy (1- M3 ) 11,14
+h% (4N +bN3){Ly (L + Lp) + 2LpL5 (1+ Ny )}
+|1L2L'2{b3 (1+Np)? +TA1} , 38)
T,= 2b3Ll{—2Nf(L2 +Ly)+ LLb(1+ Nl)}
B3 (L4 Ny ){-ANFLoLs + Lilib(L+ Ny (L + L)}
+(4Ny +bN3) Lo Ly {T,A1 +b3(1+ Nl)z}
+Xb(1+Np) 13 {~Ry (1~ M) LpLg +5; (1~ M) Lo L}
+(4Ny +bN3) Lb® {Ljb + 2b(1+ Ny ) (L + L)}

+(4Ng +bN3){xS; (1- M3) LoLg — xRy (1- My ) Lyl }
+b{2XRININgLyLs + Ty lyly (Lo + L)}
+o{—xRy (1-My) lLyLg + xS (1- M5) Iy 413}, (39)

Ty = 4N % +b L (14N l){j ;bf(z;N:L)}
+0? (1+ Ny ) {2NxRiNg LA Lg — LyxRy (1- My ) Iy L}
+b? (1+ Ny ) LyxSy (1- M3 14L5
+b(L+ Ny )| Lip® (4Ng +bN3) 1+ Ny ) (Lo + Lp) |
+b(L+ Ny ) X{Sy (1~ M) Lolg — R (1-M,) LyLg |
+(4Ng +bN3 )by {XS1 (1-M3) Ly — xRy (1- M, ) Lg}
+(4N, +bN§)bL1{TA1 (L + L)+ 2Lb% (1+ Nl)}
+b%L {2NpXRINgLg + Lyl Ta | (40)
To = xRy (1~ My ) Lg (4N +bN3)bLy (1+ Ny)
(AN + BN )b2Ly (14 Ny )| XSy (1~ M) Ly + Lib® (14 Ny) |

20Ny (1+ Np ) [XRiNgLg — 2L Nib? |

+(4Ny +bN3) 5Ty, (41)
where
R S a? . o
Ri=— S=—, X=—, ioj=—,
! 7 ! 7 Vs Yo

by =71, N =2"Ng, Ny =77Ng, Ty =14

T
b=1+x, Ly =(1+xM3), L, =P, [1-M; +xMj],
Lp = Ry[1- M5 +xMs],
Lg =[1+XM3+XM3M; (1-Ms) | and

L3 —{1+ xM3+xM3M1'[1— H
Ms

4. RESULTS AND DISCUSSION
4.1 The Case of Stationary Convection

When the instability sets in as stationary convection
(andM, =0, M5=0), the marginal state will be

characterized by o; =0, then the Rayleigh number is
given by
(4N, +DN ) {b° (14N, )T, |
—4N D°(1+N))

+XS, (4N +bN J)(1+N,)

{1+ XM, +xM 3M1'[1—1]}
MS

R,=& )
[x (1+ Nl){l+ XM ; +XM M, (1-M 5)}1

(1+xMy)

{4N1+b(N;—2N1N5’)}
(42)
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which expresses the modified Rayleigh number R; as a

function of the dimensionless wave number X,
buoyancy magnetization parameter M; (ratio of

magnetic to gravitational forces), magnetization
parameter M (measures the departure of linearity in

the magnetic equation of state), Taylor number TAl’

solute gradient parameter S, ratio of the salinity effect
on magnetic field to pyromagnetic coefficient Mg,
coupling parameter N; (coupling between vorticity and
spin effects), spin diffusion parameter N3 and heat
conduction parameter Ng (coupling between spin and
heat fluxes).

The classical results in respect of Newtonian fluids can
be obtained as the limiting case of present study.

Setting N; =0 and S; =0, and keeping Nj arbitrary
in Eq. (42), we get

B (1+ XM3){(1+ x)3 +TA1}
L x{LexMg (L My))

(43)

which is the expression for Rayleigh number of
ferrofluid in the presence of rotation.
Setting M3 =0 in Eq. (43), we get

3
1+X)" +T
R, = ()7& ‘ (44)
X
In the absence of rotation TAl it further reduces to
3
1+x
R, _ (@) (45)
X

the classical Rayleigh Bénard result for the Newtonian
fluid case.

To investigate the effect of rotation, solute gradient,
magnetization parameter, coupling parameter, spin
diffusion parameter and heat conduction parameter, we
examine the behavior of

dRy, dRy AR, - dRy dR Ry
dTp 'dS;" dM3™ dN; ' dNg dNg
analytically.

Eq. (42) gives

dry _ Ly (4N; +bN3)

- , 46
dTp,  Xig(1+ Nl)[4Nl+b(Né—2NlNg)] (46)

(4Ng + bNé){1+ XM3 + xM3M1’(N1|— ]}
. (47)

q 5

ds,

Lg[ 4N +b(N3—2N;Ng) |

This shows that, rotation and solute gradient have a
stabilizing role if N3>2N;Ng. In the absence of

coupling parameter N, ; rotation and solute gradient

always have a stabilizing effect on the onset of
convection.

Eq. (42) also yields:

48

(4N, +bN )
My {(@+N, )b +T, |
~4N b°(1+N,)
+XS, (4N, +bN;)(1+N,)

M5

1 L J
M (14N, ) {1+ XM, +xM M, (1-M)}
[4N,+b(N;-2NN/)]

(48)
which is always negative if N3>2N;Ng and
M;Msg > M . (49)

This shows that the magnetization parameter has a
destabilizing effect when conditions (49) hold. In the

absence of coupling parameter (N; =0) and the effect

on magnetization due to salinity(M{=0), the

magnetization parameter always has a destabilizing
effect on the system.

It follows from Eq. (42) that
Li[ 4Ny +b(N5—2N;N&) |
4p° (14 Ny ) + 4T,
+0N3 (0% (L4 Ny)* - Ty |
+4x0S;L5 (1+ Ny )? [ 4Ny +b(Nj — 2N;Ng) ]
+2(1+ Np)(bN5 - 2)

ANGD® (1+ Ny )+ 4N Ty

)
+ON3{(1+ N0 4Ty |
+xbS; L3 (4Ny +bN3)(1+ Ny)

XbLg (1+ Ny )?[4N; +b(Nj —2N;Ng )

Ry _

dN,

(50)
which is always positive if N3>2N;N5, Tp <1 and

Ng>2. (51)
This shows that coupling parameter has a stabilizing

effect when conditions (51) hold.
Eq. (42) gives

Ng{b(1+xMg)Tp +XS; (1+N;)Ls)

20Ny| ,
R, L+ Np){?NG (1+ Ny) — 2Ny
dNg

X(1+ Ny ) {1+ XM+ xMgMy (1-Mg)}H |
[4N; +b(Ng —2N;Ng )

(52)

which is always negative if Ng>2. (53)

This shows that the spin diffusion parameter has a
destabilizing effect when condition (53) holds.
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Eq. (42) also yields
(4Ng + Ngo) (L Ny )"0+ Ty, |

~4NZD3(1+Ny)
+XS]_(4N1 + bNé)(1+ Nl)

{14‘ XM3 + XMsMi[N]I-—lj}
5

XLg (L+ Ny )[ 4Ny +b(Nj —2N;Ng) |

2bN,

R
dNg

(54)
which is always positive. This shows that the heat
conduction always has a stabilizing effect.

For sufficiently large values of M; (Finlayson 1970),
we obtain the results for the magnetic mechanism

N n3 2 ]
o (4N +BN3) 67 (L4 Ny )P 4T, |
—4NZD3(1+ Ny)

+xS; (4Ng +bN3)(1+ Ng)

{14— XM + stMl’(l—l]}
Ms

© x®M3(1—Ms)(L+ Np) {4N; +b(Nj - 2NyNg)}

(55)
where R, is the magnetic thermal Rayleigh number.
As a function of x, R, given by Eq. (55) attains its
minimum when

Rm

P6X6 + P5x5 + P4x4 + P3x3 + sz2 +Px+R=0. (56)

The coefficients Ry, ......, B, being quite lengthy, has not

been written here and are evaluated during numerical
calculations.

The values of critical wave number for the onset of
instability are determined numerically using Newton-

Raphson method by the conditionddﬁzo. With x
X

determined as a solution of Eq. (56), Eq. (55) will give
the required critical magnetic thermal Rayleigh number
N¢ which depends on M3, T, S, Nj, N3 and
Ng. Values of N, determined for various values of
M3, Tp . S, Ni, N3 and Ng are illustrated in
Figs. 2-7.

Figure 2 represents the plot of critical magnetic thermal
Rayleigh number N. versus M5 in the presence and

absence of coupling parameter N, . This figure indicates

that non-buoyancy magnetization have a destabilizing
effect. Also, it is observed from the Fig. 2 that even
only for small values of N;, onset of convection is

delayed. This shows that higher values of N, are
needed for onset of convection in the presence of N,

hence justifying the stabilizing effect of coupling
parameter.
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Fig. 2. Marginal instability curve for variation of N _
versus M, for nj=2, N; =05, M;=0.1, M;=0.2,
T, =100 and s, =100.
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Fig. 3. Marginal instability curve for variation of N _
versus T, for m,=5, Ny=2, N;=05, M;=0.1,
M, =0.2 and s =100.

Figure 3 represents plot of N. versus T, in the

presence and absence of coupling parameter N;. This

figure shows that rotation always has a stabilizing effect
on the system. Figures 4-6 represent the plots of critical
magnetic thermal Rayleigh number N versus N;, Nj

and Ng.
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Fig. 4. Marginal instability curve for variation of N
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versus N, for nj=2, N; =05, M;=0.1, M;=0.2,
T, =100 and s, =100

Figures 4 and 6 indicate that the coupling parameter and
heat conduction parameter has a stabilizing effect,
whereas Fig. 5 indicates that the spin diffusion (couple
stress) parameter have a destabilizing effect on the
system. It is observed from the Fig. 4 that N, increases

with increasing N;. As N; increases, concentration of

microelements also increases, and as a result of this a
greater part of the energy of the system is consumed by
these elements in developing twist velocities in the
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fluid, and onset of convection is delayed. In Fig. 5, we
observe that N, decreases with increasing N3. As N3

increases, the couple stress of the fluid increases, which
causes the microrotation to decrease; rendering the
system prone to instability. Nevertheless, the above
phenomenon is true in porous or non-porous medium.

300
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N. 275
270 L2
265
260
255
250

N
Fig. 5. Marginal instability curve for variation of n_
versus N; for N, =0.2, Ny =05, M =01, M;=0.2,
T, =100 and s, =100.

Figure 6 indicates that when Ng increases the heat
induced into the fluid due to microelements is also
increased, thus inducing the heat transfer from the
bottom to the top. The decrease in heat transfer is
responsible for delaying the onset of convection. Thus,
increasing Ng leads to an increase in N.. In other

words, Ng stabilizes the flow.
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Fig. 6. Marginal instability curve for variation of N_
versus N for N =02, Nj=2, M;=0.1, M,=02,
T, =100 and s =100

Figure 7 represents plot of N, versus S; in the
presence and absence of coupling parameter N;. This

figure indicates that the solute gradient always has a
stabilizing effect when the system is soluted from
below.

4.2 The Case of Oscillatory Modes

Here, we examine the possibility of oscillatory modes,
if any, on stability problem due to the presence of
magnetic parameters, angular momentum parameters,
rotation and solute gradient. Equating the imaginary
parts of Eq. (35), we obtain

oi| Tsoi ~Tool +T | =0. (57)

It is evident from Eq. (57) that o; may be either zero or

non-zero, meaning that the modes may be either non-
oscillatory or oscillatory.
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Fig. 7. Marginal instability curve for variation of N
versus s, for m, =5, N;=2, N;=05, M;=0.1, M, =02
and T, =100.

Limiting case:
In the absence of rotation (TAL =0), the vanishing of

the determinant of the coefficients of A , B;, C;, D,
E, and F obtained by substituting solution (34) in
linearized perturbation dimensionless equations, gives
Ty01 —iTs0? ~Toof +iTyo; + Ty =0, (58)
Where T, =bL,Lsl1q,
Ta =b[blyly (Ly + L5 ) +{(1+ Ny )bly +4N; +bN3} Lol |
, Ly [ byl +{(1+ Ny)bly + 4Ny +bN3}(Lp +L3) |
)=

{2+ Np)(4N; +BN3) 4N Lol

= XR (1= M) LoLgly + xS, (1- M5 ) LyLslg,

(@4 Np)(4N; +DN3) - ANPH(Lp + Lp)

Tl = b3 Ll

+L {(1+ Ny )bly + 4Ny +bN3}
{(1-M3)(4N; +bN3) - 2N;Ngb} Ly .
Hb(1-M,) Ll *
+ xSy (1= M5)[ (4Ny +bN3) Ly +blyly ] Ls,
b3Ll{(1+ Nl)(4Nl+bN§)—4N12}
To =bly| —XR; {(1- M, )(4Ny +bN3)—2N;Neb} L |
+xSL5 (1~ M%) (4Ny +bN3)

Equating imaginary part of Eq. (58), we obtain

[ oL (L + L)1+ ,
T Lalg (0 Nyl + 4N, +bNg) [

Ly ((1+ Ny)bly +4N; +bN3)

2

Tl (L + Ly)((2+ Ny (4N, +DN3) - 4N7)
1—M,)(4N; +bNj) - 2N;Ngbl LS
~XRy {( 2)(4Ny +bN3) 1 5} 2 Ly

+b(1—M2)L1|1
+X8; (1= M3)[ (4N +bN3) L, +blyly |Lj

- (59)
It is evident from Eq. (59) that o; may be either zero or

non-zero, meaning that the modes may be either non-
oscillatory or oscillatory. In the absence of viscous
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effect (N;=0), microinertia (1;=0) and solute

gradient (S; =0 and L, =0), we obtain the result as

Here the quantity inside the bracket is positive definite
because the typical values of M, are +107°

(Finlayson 1970). Hence

O'i :O y (61)
which implies that the oscillatory modes are not
allowed and the principle of exchange of stabilities is
satisfied for ferrofluid heated from below, in the
absence of viscous effect (coupling between vorticity
and spin), microinertia and solute gradient. Thus, from
Eq. (59), we conclude that the oscillatory modes are
introduced due to the presence of the viscous effect,
microinertia and solute gradient, which were non-
existent in their absence. Finally, in addition to above
parameters, rotation may produce oscillatory modes.

4.3 Sufficient Conditions for the Non-Existence
of Overstability

The present section is devoted to find the possibility
that the observed instability may really be overstability.
Since, we wish to determine the Rayleigh number for
the onset of instability through a state of pure
oscillations; it suffices to find conditions for which (35)
will admit solutions with o; real. Equating real and

imaginary parts of (35) and eliminating R; between
them, we obtain

AGCE + Agcl + ACy + Ay =0,

where Ag, A, Ay, Ag being quite lengthy has not been
written here. Since o is real for overstability, the three

(62)

2

values of cl(z oj ) are positive. The product of roots

of (62) is—%, and if this is to be negative, then

Ay >0 and Ay >0. Now, the product is negative if
b?>Ta » NiLp>Lyly, N3y > Lyly,
N5(1-My)>4N;Ng,

Né(l—Mz)(Lz—Lé)>2L2NlNé, L1>N1L2, L2>Ll
and L, > L;,

which implies that

T/A1<b2 Né>max{ ANiNs |1(1+XM3)}

(1-M2)" R (1-M3)
—>PR, B >F and B >

1 PMp |
N 1+ xMj

PrMZ }

1+xMj
} and T/ﬁ <b?

Thus, for i> P > max{PS, 1+
Ny
4NN 1p(1+xM3)
(1-Mz)" R(1-M,)

N§>max{
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overstability cannot occur and the principle of the
exchange of stabilities is valid. Hence, the above
conditions are the sufficient conditions for the non-
existence of overstability, the violation of which does
not necessarily imply the occurrence of overstability.

5. CONCLUSIONS

The linear stability of double-diffusive convection in a
magnetized rotating ferrofluid with internal angular
momentum heated and soluted from below has been
considered. The analysis is restricted to physical
situation in which the magnetization induced by
temperature and concentration variations is small
compared to that induced by the external magnetic
field. In conclusion, we see that convection can
encourage in a ferrofluid with internal angular
momentum by means of spatial variation in
magnetization, which is induced when the
magnetization of the fluid depends on temperature and
solute concentration and a uniform temperature gradient
and a uniform solute gradient are established across the
layer. This problem represents thermal-salinity-
microrotational-mechanical interaction arising through
the stress tensor, salinity and micro-rotation. We have
investigated the effect of various parameters like
magnetization, rotation, solute gradient, coupling
parameter, spin diffusion parameter and heat
conduction parameter on the onset of convection. The
stabilizing behaviour of rotation, solute gradient are
virtually unaffected by magnetic parameters but are
significantly — affected by angular momentum
parameters. The presence of coupling between vorticity
and spin effects (viscous effect), microinertia, solute
gradient and rotation may bring overstability in the
system.

Thus, from the above analysis, we conclude that the
angular momentum parameters, rotation and solute
gradient have a profound influence on the onset of
convection.
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