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ABSTRACT 

This paper deals with the theoretical investigation of the effect of rotation in a magnetized ferrofluid with internal 

angular momentum, heated and soluted from below subjected to a transverse uniform magnetic field. For a flat fluid 

layer contained between two free boundaries, an exact solution is obtained. A linear stability analysis theory and 

normal mode analysis method have been carried out to study the onset of convection. The influence of various 

parameters like rotation, solute gradient, magnetization and internal angular momentum parameters (i.e. coupling 

parameter, spin diffusion parameter and heat conduction parameter) has been analyzed on the onset of stationary 

convection. The critical magnetic thermal Rayleigh number for the onset of instability is also determined numerically 

for sufficiently large values of buoyancy magnetization parameter 1M  and results are depicted graphically. The 

principle of exchange of stabilities is found to hold true for the ferrofluid with internal angular momentum heated 

from below in the absence of rotation, coupling between vorticity and spin, microinertia and solute gradient. The 

oscillatory modes are introduced due to the presence of the rotation, coupling between vorticity and spin, microinertia 

and solute gradient, which were non-existent in their absence. In this paper, an attempt is also made to obtain the 

sufficient conditions for the non-existence of overstability. 
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1. INTRODUCTION 

Magnetic fluids or ferrofluids are colloidal suspensions 

of fine ferromagnetic mono domain nanoparticles in 

non-conducting liquids. The ferromagnetic 

nanoparticles are coated with a surfactant to prevent 

their agglomeration. Rosensweig (1985, 1987) in his 

monograph and review article, provides a detailed 

introduction to this subject. Chandrasekhar (1981) has 

given a detailed account of thermal convection 

problems of Newtonian fluids. The theory of convective 

instability of ferrofluid begins with Finlayson (1970) 

and interestingly continued by Lalas and Carmi (1971), 

Shliomis (1974), Stiles and Kagan (1990), 

Venkatasubramanian and Kaloni (1994) and Sunil and 

co-workers (2005, 2008). Schwab et al. (1983) 

investigated experimentally the Finlayson’s problem in 

the case of a strong magnetic field and detected the 

onset of convection by plotting the Nusselt number 

versus the Rayleigh number. Then, the critical Rayleigh 

number corresponds to a discontinuity in the slope. 

Later, Stiles and Kagan (1990) examined the 

experimental problem reported by Schwab et al. (1983) 

and  generalized  the  Finlayson’s  model assuming that  

under a strong magnetic field, the rotational viscosity 

augments the shear viscosity. In the absence of applied 

magnetic field, the particles in the colloidal suspensions 

are randomly oriented and thus the fluid has no net 

magnetization. When exposed to a magnetic field, 

Brownian rotational motions prevent complete 

alignment of the dipoles with the applied field. As a 

result when the applied field has a changing direction or 

magnitude, the magnetization is unable to track the field 

closely and becomes non-equilibrated. This non-

equilibrium state of magnetization leads to the state of 

asymmetric stress. Rayleigh-Bénard convection in a 

ferromagnetic fluid layer with internal angular 

momentum permeated by a uniform, vertical magnetic 

field with free-free, isothermal, spin-vanishing, 

magnetic boundaries has been considered by Abraham 

(2002). She observed that the micropolar ferromagnetic 

fluid layer heated from below is more stable as 

compared with the classical Newtonian ferromagnetic 

fluid. More recently, Sunil et al. (2004) have studied 

the convection problems in ferrofluid with internal 

angular momentum. 
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The really interesting situation from both a geophysical 

and a mathematical viewpoint arises when the layer is 

simultaneously heated from below and salted from 

below. In the standard Bénard problem, the instability is 

driven by a density difference caused by a temperature 

difference between the upper and lower planes 

bounding the fluid. If the fluid layer additionally has 

salt dissolved in it then there are potentially two 

destabilizing sources for the density difference, the 

temperature field and the salt field. When there are two 

effects such as this, the phenomenon of convection 

which arises is called double-diffusive convection. For 

the specific case involving a temperature field and 

sodium chloride, it is frequently referred to as 

thermohaline convection. There are many recent studies 

involving three or more fields, such as temperature and 

two salts such as NaCl, KCl. For three or greater field 

case, it is referred to as multi-component convection. 

The driving force for many studies in double-diffusive 

or multi-component convection is largely physical 

applications. Sunil et al. (2004) have studied the 

thermosolutal convection in a ferrofluid and Sunil et al. 

(2007a, b) studied the double-diffusive convection in a 

micropolar ferromagnetic fluid in non-porous and 

porous media. 

 

In view of the above investigations, we intend to extend 

our work to the double-diffusive convection in 

ferrofluid with internal angular momentum in the 

presence of rotation. It is attempted to discuss the 

influence of rotation and solute gradient and how the 

angular momentum parameters affects the stability in 

ferrofluid heated from below. The understanding of the 

rotating ferrofluid stability problems plays an important 

role in microgravity environmental applications. We 

believe that the present study can serve as the 

theoretical support for experimental investigation in 

ferroconvection. This problem, to the best of our 

knowledge, has not been investigated yet. 

2. MATHEMATICAL FORMULATION OF 

THE PROBLEM 

Here, we consider an infinite horizontal layer of 

thickness ‘d’ of an electrically non-conducting 

incompressible thin rotating ferrofluid with internal 

angular momentum heated and soluted from below as 

shown in Fig. 1. The temperature T and solute 

concentration C at the bottom and top surfaces 

1

2
z d  are ,  TL UT  and ,  CL UC , respectively, and a 

uniform temperature gradient  
dT

dz

 
 
 

 and a 

uniform solute gradient 
dC

dz

 
  
 

 are maintained.  

 

Here, both the boundaries are taken to be free and 

perfect conductors of heat. The gravity field 

(0,  0, )g g  and uniform vertical magnetic field 

intensity  00,  0,  HH  pervade the system. The 

whole system is assumed to be rotating with angular 

velocity  0,  0,   Ω  along the vertical axis, which is 

taken as z-axis. 
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Fig. 1. Geometrical configuration 

 

The mathematical equations governing the motion of 

magnetized ferrofluids for the above model 

(Rosensweig 1985; Chandrasekhar 1981; Finlayson 

1970; Sunil et al. 2007b) are as follows: 

 

The continuity equation for an incompressible fluid is 

0 q .                                           (1) 

The momentum and internal angular momentum 

equations are 

    2
0 0p

t
    

 
          

 
q q g M H q

            02 2    ω q Ω ,                (2)    

     0 02 2I
t

  
 
        

q ω q ω M H

             2         ω ω .              (3) 

The temperature and solute concentration equations for 

an incompressible ferrofluid are (Finlayson (1970), 

Abraham (2002), Sunil et al. (2004, 2007a, b)) 

0 , 0 0
, , 

V H
V V

DT D
C T

T Dt T Dt
  
     

       
      H H

M M H
H

       2
1K T T    ω ,       (4) 

0 , 0
, 

V H
V

DC
C

C Dt
 
  

   
   H

M
H

 
2

0 1
, 

 
V

D
C K C

C Dt


 
    

  H

M H
.           (5) 

The density equation of state is 

   0 1 a aT T C C          ,                        (6) 

where  , 0 , q, ω , t, p,  ,  ,  ,  ,  , I , 0 , 

B, , HVC , M, 1K , 1K  ,   and   are the fluid 

density, reference density, velocity, microrotation, time, 

pressure, shear kinematic viscosity coefficient, coupling 

viscosity coefficient or vortex viscosity, bulk spin 

viscosity coefficient, shear spin viscosity coefficient, 

heat conduction coefficient, moment of inertia 

(microinertia constant),  magnetic  permeability  of  free 
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 space  7 1
0 4 10  mHenry     , magnetic 

induction, heat capacity at constant volume and 

magnetic field, magnetization, thermal conductivity, 

solute conductivity, thermal expansion coefficient and 

an analogous solvent coefficient of expansion, 

respectively. aT  is the average temperature given by 

 
2

L U
a

T T
T


 , where LT  and UT  are the constant 

average temperatures of the lower and upper surfaces of 

the layer and aC  is the average concentration given by 

 
2

L U
a

C C
C


 , where LC  and UC  are the constant 

average concentrations of the lower and upper surfaces 

of the layer. The effect of rotation contributes two 

terms: (a) Centrifugal force 
21

2
grad Ω r  and (b) 

Coriolis force  2 Ω q . In Eq. (2), 

2
0

1

2
fp p   Ω r  is the reduced pressure, where 

fp  stands for fluid pressure. The partial derivatives of 

M are material properties which can be evaluated once 

the magnetic equation of state, such as (10) below is 

known. 

Maxwell’s equations, simplified for a non-conducting 

fluid with no displacement currents, become 

0 B ,   H 0 ,                                                (7) 

where the magnetic induction is given by 

 0 B H M .                                                         (8) 

In general, the presence of ferrofluid can distort an 

external magnetic field if magnetic interaction (dipole-

dipole) takes place, but this is negligible for small 

particle concentrations, as is assumed here. The 

magnetization depends on the magnitude of the 

magnetic field, temperature and salinity, which can be 

written as 

 ,   T,  CM H
H


H

M .                   (9) 

The magnetic equation of state is linearized about the 

magnetic field, 0H , an average temperature, aT , and 

an average concentration, aC  to become 

     0 0 2 3a aM M H H K T T K C C       ,   

           (10) 

where magnetic susceptibility, pyromagnetic coefficient 

and salinity magnetic coefficient are defined by 

0 a a, T , CH

M

H


 
  

 
, 

0 a a

2
, T , CH

M
K

T

 
  

 
 and 

0 a a

3
, T , CH

M
K

C

 
  

 
, respectively. 

Here 0H  is the uniform magnetic field of the fluid 

layer when placed in an external magnetic field 

0
extH



H k , 


k  is unit vector in the z-direction, 

 0 0 a, ,  CaM M H T . 

 

The basic state is assumed to be quiescent state and is 

given by 

 0,   0,   0b q q ,  0, 0, 0b ω ω , ( )b z  , 

( )bp p z , ( )b aT T z z T    , L UT T

d



 , 

 b aC C z z C    , 32
0

1 1
b

K zK z
H



 

 
   

  
H k

L UC C

d



  , 32

0
1 1

b

K zK z
M



 

 
   

  
M k  and 

0 0 0
extH M H  ,              (11) 

where the subscript ‘b’ denotes the basic state. 

3. MATHEMATICAL ANALYSIS AND 

DISPERSION RELATION 

We shall analyze the stability of the basic state by 

introducing the following perturbations: 

b  q q q , b  ω ω ω , b    , ( )bp p z p  , 

( )bT T z   , ( )bC C z   , 

 b z  H H H   and   b z  M M M ,               (12) 

where  

 1 2 3( , v, w) ,  ,  ,  ,   ,   ,  ,  ,  u p          q ω H  

and M  are perturbations in velocity q, spin ω , density 

 , pressure p, temperature T, concentration C, 

magnetic field intensity H and magnetization M, 

respectively. 

 

The change in density  , caused mainly by the 

perturbations   and   in temperature and 

concentration, respectively, is given by 

 0        .                 (13) 

Then, the linearized perturbation equations of the 

magnetized ferrofluid become 

    21
0 0 0 0

u p H
M H u

t x z
   

   
      

  

        1 02 2 v     ,                         (14) 

    22
0 0 0 0

v p H
M H v

t y z
   

   
      

  

        2 02 2 u     ,                  (15) 

    23
0 0 0 0

Hw p
M H w

t z z
   

  
      

  

    0 2
3 3 2 02 1

1

K
H K g

 
  


        


   

  
 

 0 3 0 2 3
3 31

1 1

K K K
H K

  
    

 


     

 
,

                       (16) 
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   0 02 2 b bI
t

  


         


ω
q ω M H M H

     2           ω ω ,                  (17) 

0
u v w

x y z

  
  

  
,                                        (18) 

21
1 0 0 2 1C T K K

t t z


  

   
   

   

 
 

2
0 0 2

1 3
1

T K
C w

 
  



 
    

  

,           (19) 

22
1 0 0 3 1C C K K

t t z


  

   
    
   

 
 

2
0 0 3

1
1

C K
C w

 
 



 
   

  

,                (20) 

 
2

20
1 2 32

0

1 1 0
M

K K
H z zz

 


    
        

   
,                            

             (21) 

where 1 0 , 0 2 0V HC C K H    ,  

1 0 , 0 3 0V HC C K H     ,   1 2       H  

(by Eq. (7)) where   is the perturbed magnetic 

potential which is the difference of two potentials 

1 2,    analogous to temperature and solute. 

 

Eliminating u, v, p  between Eqs. (14)-(16), using Eq. 

(18), and taking curl once on (17) and considering only 

z-component, we obtain 

  2 2
0 w

t
  

 
     

 
 

   20 2
1 1 2 21

1

K
K

z

 
 



 
       

  
                                                

   20 3
1 1 2 31

1

K
K

z

 
 



  
       

  
 

 2 1
0 1 0 2g

z


    


    


      

 
 2 20 2 3

1 32
1

K K
   


      


,      (22) 

 2 23
0 3 32 2I w

t
  


         


.                  (23) 

The vertical component of the vorticity equation is 

  21
0 0 12

w

t z


    

 
    

 
,                          (24) 

where 1

v u

x y


 
 
 

 stands for the z-component of the 

vorticity. 

 

Further analysis has been carried out using the 

techniques of Sunil et al. (2007b, 2008). 

 

Now we analyze the normal mode technique. This can 

be written as 

     , , , , exp x yf x y z t f z t i k x k y  ,           (25) 

where  ,f z t  represents    ,  , ,  , ( , ),W z t z t Z z t  

     1 2 3( , ), ,  , ,  , ,  z t z t z t z t    ; xk , yk  are the 

wave numbers along the x- and y-directions, 

respectively and  2 2
x yk k k   is the resultant wave 

number. 

 

Following the normal mode analysis, the linearized 

perturbation dimensionless equations become 

    2 2 2 2 *
1*

1 N D a D a W
t

 
     

 

    1/2 * *
1 4 1 1 41aR M M D M M T     

 
 

   1/2 * *
1 4 2 1 41aS M M D M M C         

 

  2 2 * 1/2 *
1 32 AN D a T DZ    ,      (26) 

  2 2 * 1/2 *
1*

1 AN D a Z T DW
t

 
    

 
,              (27) 

    
*

2 2 * * 2 2 *3
1 3 3 3*

2 2I N D a W N D a
t


        


,    (28) 

   
*

* 2 2 *
2 1* *r r

T
P P M D D a T

t t

 
   

 
 

        1/2 * 1/2 *
2 5 31aR M W aR N    ,        (29) 

   
*

* 2 2 *
2 2* *s s

C
P P M D D a C

t t

 
   

 

  1/2 *
21aS M W  ,                     (30) 

2 * 2 * *
1 3 1 0D a M DT     ,                     (31) 

2 * 2 * *
2 3 2 0D a M DC     .            (32) 

where the following non-dimensional quantities and 

non-dimensional parameters are introduced: 

*

2

t
t

d


 , * Wd

W


 ,  
  1/2

1*
1 12

2 1

1 K aR

K C d



 


   , 

  1/2
1*

2 22
3 1

1 K aS

K C d



  


  

 
, 

4
1

1

g d C
R

K

 


 , 

4
1

1

g d C
S

K

  



  



, 

1/2
* 1

1

K aR
T

C d 
  ,

1/2
* 1

1

K aS
C

C d  


 

 
, 

a kd ,  * z
z

d
 , 

*
D

z





, 1
1

rP C
K


 , 

1
1

sP C
K


 


, 
 

2
0 2

1
01

K
M

g

 

 



, 

 

2
0 3

1
01

K
M

g

 

  


 


, 

 

2
0 0 2

2
11

T K
M

C



 



, 

 

2
0 0 3

2
11

C K
M

C



 
 


, 

 
 

0

0
3

1

1

M

H
M







, 

 
0 2 3

4
01

K K
M

g

 

 





, 

 
0 2 3

4
01

K K
M

g

 

  
 


, 
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34 1
5

1 4 2

KM M
M

M M K






  


, 1N




 , 3 2

N
d






 , 

5 2
1

N
C d




 , 

2

I
I

d
   and 

3
* 3
3

d




  , 

2
22

A

d
T



 
  
 
 

. 

The exact solution subject to the boundary conditions 

(for free-free boundaries) 

* 2 * * * * * *
3 1 2 0W D W T C D D          at 

1

2
z   ,                                                           (33) 

is written in the form 

**  t *
1 cosW A e z  , 

**  t *
1 cosT B e z  , 

**  t *
1 1 cosD C e z   , 

**  t *1
1 sin

C
e z 



 
   

 
, 

**  t *
3 1 cosD e z   , 

**  t *
2 1 cosD E e z   , 

**  t *1
2 sin

E
e z 



 
   

 
, 

**  t *
1 cosC F e z  ,       (34) 

where 1 1 1 1 1 1, B ,  ,  D , E ,  FA C , are constants and   is 

the growth rate which is, in general, a complex 

constant. 

 

Substituting solution (34) in linearized perturbation 

dimensionless equations and dropping asterisks for 

convenience, we get the equations involving the 

coefficients of 1 1 1 1 1 1, B ,  ,  D , E ,  FA C . For the existence 

of non-trivial solutions, the determinant of the 

coefficients of 1 1 1 1 1 1, B ,  ,  D , E ,  FA C  must vanish. This 

determinant on simplification yields 

5 4 3 2
5 4 3 2 1 0 0i i i i iiT T iT T iT T          .          (35) 

Here, 

5 1 2 2T bI L L ,                      (36) 

  

  

2
4 1 1 2 2 3 2 2

2 2 1 1 1        2 1 2

T b L I L L N L L

bL L N I N

    

  
,                          (37) 

   2 3 2 2
3 1 1 1 1 1 2 2 1 2 22 1 4T I L b b L I b N L L N L L     

    1 1 2 2 3 1 2 1 2 31 1xR I M L L xS M I L L       

               2
1 3 1 2 2 2 2 14 2 1b N bN L L L L L N      

   1

23
1 2 2 11 AI L L b N T   ,                    (38) 

    3 2
2 1 1 2 2 1 1 12 2 1T b L N L L I L b N      

          3 2
1 1 2 2 1 1 1 2 21 4 1b N N L L L I b N L L      

     1

23
1 3 2 2 14 1AN bN L L T b N      

         1 1 1 2 2 3 1 2 2 31 1 1xb N I R M L L S M L L         

         2
1 3 1 1 1 2 24 2 1N bN L b L b b N L L       

        1 3 1 2 2 3 1 2 2 34 1 1N bN xS M L L xR M L L         

  11 1 5 2 3 1 1 2 22 Ab xR N N L L T I L L L      

        1 2 1 1 3 1 2 1 1 31 1b xR M I L L xS M I L L      ,  (39) 

 
 

 

1 1 12 2 4 4
1 1 1 1 1 2

1 2 2

1
4 1

4

L I b N
T L N b b L N

N L L

  
     

   

       

    2
1 1 1 5 2 3 1 1 2 1 31 2 1b N N xR N L L L xR M I L      

          2
1 1 1 2 1 31 1b N L xS M I L     

            3
1 1 1 3 1 2 21 4 1b N L b N bN N L L      
 

 

         1 1 2 2 3 1 2 2 31 1 1b N x S M L L R M L L          

         1 3 1 1 2 3 1 2 34 1 1N bN bL xS M L xR M L        

         1

3
1 3 1 2 2 1 14 2 1AN bN bL T L L L b N       

    1

2
1 1 1 5 3 1 12 Ab L N xR N L L I T  ,      (40) 

     2
0 1 2 3 1 3 1 11 4 1T xR M L N bN b L N      

          2 3
1 3 1 1 1 2 3 1 14 1 1 1  N bN b L N xS M L L b N        

 
 

      3 2
1 1 1 1 5 3 1 12 1 2b L N N xR N L L N b      

 
1

2 2
1 3 14 AN bN L b T  ,                  (41) 

where 

2

1 1 i4 4 2 2
,   ,   ,  i , 

R S a
R S x




   
   

2 2 2
1 3 3 5 5I I ,  N N ,  N N ,        

1 4
A

A

T
T


 , 

1b x  ,  1 31L xM  ,  2 2 31rL P M xM   , 

 2 2 31sL P M xM    , 

 3 3 3 1 51 1L xM xM M M       and 

3 3 3 1
5

1
1 1L xM xM M

M

  
      

   

. 

4. RESULTS AND DISCUSSION 

4.1 The Case of Stationary Convection 

When the instability sets in as stationary convection 

(and 2 0M  , 2 0M   ), the marginal state will be 

characterized by 0i  , then the Rayleigh number is 

given by 

 
    

 

  

    

  

1

23

1 3 1

3
2 3

1 1

1 1 3 1

3 3 1

5

1

1 3 3 1 5

1 3 1 5

4 1
1

4 1

4 1

1
1 1

1 1 1

4 2

AN bN b N T
xM

N b N

xS N bN N

xM xM M
M

R
x N xM xM M M

N b N N N

        
 

    
   
 
    
     
    
  
    
 

    

                                        

        (42) 
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which expresses the modified Rayleigh number 1R  as a 

function of the dimensionless wave number x, 

buoyancy magnetization parameter 1M  (ratio of 

magnetic to gravitational forces), magnetization 

parameter 3M  (measures the departure of linearity in 

the magnetic equation of state), Taylor number 
1AT , 

solute gradient parameter 1S , ratio of the salinity effect 

on magnetic field to pyromagnetic coefficient 5M , 

coupling parameter 1N  (coupling between vorticity and 

spin effects), spin diffusion parameter 3N   and heat 

conduction parameter 5N   (coupling between spin and 

heat fluxes). 

 

The classical results in respect of Newtonian fluids can 

be obtained as the limiting case of present study. 

Setting 1 0N   and 1 0S  , and keeping 3N   arbitrary 

in Eq. (42), we get 

    
  

1

3
3

1
3 1

1 1

1 1

AxM x T
R

x xM M

  


 
,                                (43) 

which is the expression for Rayleigh number of 

ferrofluid in the presence of rotation. 

Setting 3 0M   in Eq. (43), we get 

 
1

3

1

1 Ax T
R

x

 
 ,                      (44) 

In the absence of rotation 
1AT  it further reduces to 

 
3

1

1 x
R

x


 ,                       (45) 

the classical Rayleigh Bénard result for the Newtonian 

fluid case. 

To investigate the effect of rotation, solute gradient, 

magnetization parameter, coupling parameter, spin 

diffusion parameter and heat conduction parameter, we 

examine the behavior of  

1

1 1 1 1 1 1

1 3 1 3 5

, ,  ,   ,      
A

dR dR dR dR dR dR
and

dT dS dM dN dN dN 
 

analytically. 

Eq. (42) gives 

 

   
1

1 1 31

3 1 1 3 1 5

4

1 4 2A

L N bNdR

dT xL N N b N N N




     

,    (46) 

 

 

1 3 3 3 1
51

1 3 1 3 1 5

1
4 1 1

4 2

N bN xM xM M
MdR

dS L N b N N N

   
      
   

    

. (47) 

This shows that, rotation and solute gradient have a 

stabilizing role if 3 1 52N N N  . In the absence of 

coupling parameter 1N ; rotation and solute gradient 

always have a stabilizing effect on the onset of 

convection. 

 

Eq. (42) also yields: 

 

 

  
 

  

    

 

1

1 3

2 3

1 1

2 3

1 1

5 1 1 3 1

1
1

5

1

2
3

1 3 3 1 5

1 3 1 5

4

1

4 1

1 4 1

1 1 1

4 2

A

N bN

M N b T

N b N

M xS N bN N

M
M

M

dR

dM N xM xM M M

N b N N N

  
  

    
  
     
     
 
  

  
  
 
 
 

    
 
       

  

        (48) 

which is always negative if 3 1 52N N N   and 

1 5 1M M M  .                                                          (49) 

 

This shows that the magnetization parameter has a 

destabilizing effect when conditions (49) hold. In the 

absence of coupling parameter  1 0N   and the effect 

on magnetization due to salinity  1 0M   , the 

magnetization parameter always has a destabilizing 

effect on the system. 

 

It follows from Eq. (42) that 

 

 

  
   

  

 

  
  

 

1

1

1

1

1 1 3 1 5

23
1

23
3 1

2
1 3 1 1 3 1 5

1 5

3
1 1 1

1 2 3
3 1

1 3 1 3 11

2
1 3 1

4 2

4 1 4

1

4 1 4 2

2 1 2

4 1 4

1

4 1

1

A

A

A

A

L N b N N N

b N T

bN b N T

xbS L N N b N N N

N bN

N b N N T

bL
bN N b T

xbS L N bN NdR

dN xbL N

    

  
 
 

    

       

  

   
  
  

     
 

     
  

2

1 3 1 54 2N b N N N    

, 

                   (50) 

which is always positive if 3 1 52N N N  , 
1

1AT   and 

5 2N  .                                                      (51) 

 

This shows that coupling parameter has a stabilizing 

effect when conditions (51) hold. 

Eq. (42) gives 

    

    
    

 

15 3 1 1 3

1 2 2
1 1 5 1 1

1

3 1 3 3 1 5

2

1 3 1 5

1 1
2

1 1 2

1 1 1

4 2

AN b xM T xS N L
bN

b L N b N N NdR

dN x N xM xM M M

N b N N N

    
 
       

     
 
      

, 

        (52) 

which is always negative if 5 2N  .                        (53) 

This shows that the spin diffusion parameter has a 

destabilizing effect when condition (53) holds. 
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Eq. (42) also yields 

    
 

  

   

1

2 3
1 3 1

1
2 3
1 1

1 1 1 3 1

3 3 1
5

1
2

5 3 1 1 3 1 5

4 1

4 1

2 4 1

1
1 1

1 4 2

AN N b N b T
L

N b N

bN xS N bN N

xM xM M
M

dR

dN xL N N b N N N

      
  
    

 
   

 
         
    
 

      

,                                

        (54) 

which is always positive. This shows that the heat 

conduction always has a stabilizing effect. 

 

For sufficiently large values of 1M  (Finlayson 1970), 

we obtain the results for the magnetic mechanism 

 
    

 

  

     
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23
1 3 1

3
2 3
1 1

1 1 3 1

3 3 1
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3 5 1 1 3 1 5

4 1
1

4 1

4 1

1
1 1

1 1 4 2

A

m

N bN b N T
xM

N b N

xS N bN N

xM xM M
M

R
x M M N N b N N N

      
   

    
 

   
 
         
    
 

    
,  

        (55) 

where mR  is the magnetic thermal Rayleigh number. 

As a function of x , mR  given by Eq. (55) attains its 

minimum when 

6 5 4 3 2
6 5 4 3 2 1 0 0P x P x P x P x P x Px P       .     (56) 

The coefficients 0 6,......,P P , being quite lengthy, has not 

been written here and are evaluated during numerical 

calculations. 

The values of critical wave number for the onset of 

instability are determined numerically using Newton-

Raphson method by the condition 0mdR

dx
 . With x  

determined as a solution of Eq. (56), Eq. (55) will give 

the required critical magnetic thermal Rayleigh number 

cN  which depends on 3M , 
1AT , 1S , 1 3,   NN   and 

5N  . Values of cN  determined for various values of 

3M , 
1AT , 1S , 1 3,   NN   and 5N   are illustrated in    

Figs. 2-7. 

 

Figure 2 represents the plot of critical magnetic thermal 

Rayleigh number cN  versus 3M  in the presence and 

absence of coupling parameter 1N . This figure indicates 

that non-buoyancy magnetization have a destabilizing 

effect. Also, it is observed from the Fig. 2 that even 

only for small values of 1N , onset of convection is 

delayed. This shows that higher values of cN  are 

needed for onset of convection in the presence of 1N , 

hence justifying the stabilizing effect of coupling 

parameter.  

 
Fig. 2. Marginal instability curve for variation of 

cN  

versus 
3M  for 

3N 2  , 
5N 0.5  , 

1M 0.1  , 
5M 0.2  ,

 

1AT 100  and 
1S 100 . 

 
Fig. 3. Marginal instability curve for variation of 

cN  

versus 
1AT  for 

3M 5 , 
3N 2  , 

5N 0.5  , 
1M 0.1  , 

5M 0.2   and 
1S 100 . 

 

Figure 3 represents plot of cN  versus 
1AT  in the 

presence and absence of coupling parameter 1N . This 

figure shows that rotation always has a stabilizing effect 

on the system. Figures 4-6 represent the plots of critical 

magnetic thermal Rayleigh number cN  versus 1N , 3N   

and 5N  . 

 
Fig. 4. Marginal instability curve for variation of 

cN  

versus 
1N  for 

3N 2  , 
5N 0.5  , 

1M 0.1  , 
5M 0.2  , 

1AT 100  and 
1S 100 . 

 

Figures 4 and 6 indicate that the coupling parameter and 

heat conduction parameter has a stabilizing effect, 

whereas Fig. 5 indicates that the spin diffusion (couple 

stress) parameter have a destabilizing effect on the 

system. It is observed from the Fig. 4 that cN  increases 

with increasing 1N . As 1N  increases, concentration of 

microelements also increases, and as a result of this a 

greater part of the energy of the system is consumed by 

these elements in developing twist velocities in the 
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fluid, and onset of convection is delayed. In Fig. 5, we 

observe that cN  decreases with increasing 3N  . As 3N   

increases, the couple stress of the fluid increases, which 

causes the microrotation to decrease; rendering the 

system prone to instability. Nevertheless, the above 

phenomenon is true in porous or non-porous medium.  

 
Fig. 5. Marginal instability curve for variation of 

cN  

versus 
3N  for 

1N 0.2 , 
5N 0.5  , 

1M 0.1  , 
5M 0.2  , 

1AT 100  and 
1S 100 . 

Figure 6 indicates that when 5N   increases the heat 

induced into the fluid due to microelements is also 

increased, thus inducing the heat transfer from the 

bottom to the top. The decrease in heat transfer is 

responsible for delaying the onset of convection. Thus, 

increasing 5N   leads to an increase in cN . In other 

words, 5N   stabilizes the flow.  

 
Fig. 6. Marginal instability curve for variation of 

cN  

versus 
5N  for 

1N 0.2 , 
3N 2  , 

1M 0.1  , 
5M 0.2  , 

1AT 100  and 
1S 100 . 

Figure 7 represents plot of cN  versus 1S  in the 

presence and absence of coupling parameter 1N . This 

figure indicates that the solute gradient always has a 

stabilizing effect when the system is soluted from 

below. 

4.2 The Case of Oscillatory Modes 

Here, we examine the possibility of oscillatory modes, 

if any, on stability problem due to the presence of 

magnetic parameters, angular momentum parameters, 

rotation and solute gradient. Equating the imaginary 

parts of Eq. (35), we obtain 

4 2
5 3 1 0i i iT T T     

 
.                     (57) 

It is evident from Eq. (57) that i  may be either zero or 

non-zero, meaning that the modes may be either non-

oscillatory or oscillatory. 

 
Fig. 7. Marginal instability curve for variation of 

cN  

versus 
1S  for 

3M 5 , 
3N 2  , 

5N 0.5  , 
1M 0.1  , 

5M 0.2   

and 
1AT 100 . 

 

Limiting case: 

In the absence of rotation  1
0AT  , the vanishing of 

the determinant of the coefficients of 1 1 1 ,  B ,   A C , 1D , 

1E  and 1F   obtained by substituting solution (34) in 

linearized perturbation dimensionless equations, gives 

4 3 2
4 3 2 1 0 0i i i iT iT T iT T        ,     (58) 

Where 4 2 2 1T bL L I ,   

    3 1 1 2 2 1 1 1 3 2 21 4T b bL I L L N bI N bN L L          , 

   

   
   

1 1 1 1 1 1 3 2 2
2

2 2
1 1 3 1 2 2

1 2 2 3 1 1 2 2 3 1

1 4

              1 4 4

          1 1 ,

L bL I N bI N bN L L
T b

N N bN N L L

xR M L L I xS M L L I

         
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Equating imaginary part of Eq. (58), we obtain 

 

  
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            (59) 

It is evident from Eq. (59) that i  may be either zero or 

non-zero, meaning that the modes may be either non-

oscillatory or oscillatory. In the absence of viscous 
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effect  1 0N  , microinertia  1 0I   and solute 

gradient  1 20  and L 0S   , we obtain the result as 

 1 2 0i L L   .                                 (60) 

Here the quantity inside the bracket is positive definite 

because the typical values of 2M  are 610  

(Finlayson 1970). Hence 

0i  ,                                         (61) 

which implies that the oscillatory modes are not 

allowed and the principle of exchange of stabilities is 

satisfied for ferrofluid heated from below, in the 

absence of viscous effect (coupling between vorticity 

and spin), microinertia and solute gradient. Thus, from 

Eq. (59), we conclude that the oscillatory modes are 

introduced due to the presence of the viscous effect, 

microinertia and solute gradient, which were non-

existent in their absence. Finally, in addition to above 

parameters, rotation may produce oscillatory modes. 

 

4.3 Sufficient Conditions for the Non-Existence 

of Overstability 

The present section is devoted to find the possibility 

that the observed instability may really be overstability. 

Since, we wish to determine the Rayleigh number for 

the onset of instability through a state of pure 

oscillations; it suffices to find conditions for which (35) 

will admit solutions with i  real. Equating real and 

imaginary parts of (35) and eliminating 1R  between 

them, we obtain 

3 2
3 1 2 1 1 1 0 0A c A c A c A    ,             (62) 

where 0 1 2 3, , ,A A A A  being quite lengthy has not been 

written here. Since i  is real for overstability, the three 

values of  2
1 ic   are positive. The product of roots 

of (62) is 0

3

A

A
 , and if this is to be negative, then 

3 0A   and 0 0A  . Now, the product is negative if 

1

2
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  3 2 2 2 2 1 51 2N M L L L N N     , 1 1 2L N L , 2 1L L  

and 2 2L L , 

which implies that  
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Thus, for 2

1 3

1
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1

r
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   
  and 

1

2
AT b  

overstability cannot occur and the principle of the 

exchange of stabilities is valid. Hence, the above 

conditions are the sufficient conditions for the non-

existence of overstability, the violation of which does 

not necessarily imply the occurrence of overstability. 

5. CONCLUSIONS 

The linear stability of double-diffusive convection in a 

magnetized rotating ferrofluid with internal angular 

momentum heated and soluted from below has been 

considered. The analysis is restricted to physical 

situation in which the magnetization induced by 

temperature and concentration variations is small 

compared to that induced by the external magnetic 

field. In conclusion, we see that convection can 

encourage in a ferrofluid with internal angular 

momentum by means of spatial variation in 

magnetization, which is induced when the 

magnetization of the fluid depends on temperature and 

solute concentration and a uniform temperature gradient 

and a uniform solute gradient are established across the 

layer. This problem represents thermal-salinity-

microrotational-mechanical interaction arising through 

the stress tensor, salinity and micro-rotation. We have 

investigated the effect of various parameters like 

magnetization, rotation, solute gradient, coupling 

parameter, spin diffusion parameter and heat 

conduction parameter on the onset of convection. The 

stabilizing behaviour of rotation, solute gradient are 

virtually unaffected by magnetic parameters but are 

significantly affected by angular momentum 

parameters. The presence of coupling between vorticity 

and spin effects (viscous effect), microinertia, solute 

gradient and rotation may bring overstability in the 

system.  

 

Thus, from the above analysis, we conclude that the 

angular momentum parameters, rotation and solute 

gradient have a profound influence on the onset of 

convection. 
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