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ABSTRACT 

The paper is concerned to find the distribution of the chemically reactant solute in the MHD flow of an electrically 

conducting viscous incompressible fluid over a stretching surface. The first order chemical reaction and the variable 

solute distribution along the surface are taken into consideration. The governing partial differential equations along 

with appropriate boundary conditions for flow field and reactive solute are transformed into a set of non-linear self-

similar ordinary differential equations by using scaling group of transformations. An exact analytic solution is 

obtained for the velocity field. Using this velocity field, we obtain numerical solution for the reactant concentration 

field. It reveals from the study that the values of concentration profile enhances with the increase of the magnetic 

field and decreases with increase of Schmidt number as well as the reaction rate parameter. Most importantly, when 

the solute distribution along the surface increases then the concentration profile decreases. 

 

Keywords: MHD boundary layer, Stretching surface, Chemically reactive solute, Scaling group of transformations.  

NOMENCLATURE 

a stretching constant 

B magnetic field 

C concentration 

C0 positive solute constant 

Cw solute distribution along the stretching  

 surface 

C constant solute in the free stream  

D diffusion coefficient 

E electric field 

f non-dimensional stream function 

f  variable 

G,H absolute invariants 

J current density 

k reaction rate of the solute 

M magnetic parameter 

 

n a power-law exponent 

RM magnetic Reynolds number 

Sc Schmidt number 

u, v  velocity components 

1 2 3 4 5 6  transformation parameters 

, , , , ,   transformation parameters 

 reaction rate parameter 

 similarity variable 

  variable 

 scaling group transformations 

 kinematic viscosity 

,   variables 

 density of the fluid 

 stream function 

* variable 
 

1. INTRODUCTION  

The flows due to stretching sheet in presence of 

electromagnetic fields are relevant to many practical 

applications in the metallurgy industries, polymer 

processing industries, paper production, filaments 

drawn through a quiescent electrically conducting fluid 

subject to a magnetic field and the purification of 

molten metals from nonmetallic inclusions. 

 

The boundary layer equations play a central role in 

many aspects of fluid mechanics because they describe  

the motion of a viscous fluid close to a surface. These 

equations are especially very important since they have 

the capacity to admit a large number of invariant 

solutions. Lie-group analysis, also called symmetry 

analysis was developed by Sophius Lie to find point-

transformations that map a given differential equation 

to itself. This method unifies almost all known exact 

integration techniques for both ordinary and partial 

differential equations (Pakdemirli and Yurusoy 1990). 

Group analysis is the only rigorous mathematical 
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method to find all symmetries of a given differential 

equation and no adhoc assumptions or a prior 

knowledge of the equation under investigation is 

needed. 

 

The non-linear character of the partial differential 

equations governing the motion of the fluid produces 

difficulties in solving the equations. In fluid mechanics, 

researchers try to obtain the similarity solutions in such 

cases. In case of scaling group of transformations, the 

group-invariant solutions are nothing but the well 

known similarity solutions (Mukhopadhyay et al. 

2005). A special form of Lie-group of transformations, 

known as scaling group transformations, is used in this 

work to find out the full set of symmetries of the flow 

problem (Mukhopadhyay et al. 2005). 

 

Sakiadis (1961a, b) was the first person to study the 

laminar boundary layer flow caused by a rigid surface 

moving in its own plane. Crane (1970) extended the 

work of Sakiadis in stretching sheet. The heat and mass 

transfer problem associated with the Newtonian 

boundary layer flow past a stretching sheet was studied 

by Gupta and Gupta (1977). Chakrabarti and Gupta 

(1979) analyzed the magnetohydrodynamic (MHD) 

flow of Newtonian fluid initially at rest, over a 

stretching sheet at a different values of parameter 

related with uniform temperature. Anjali Devi and 

Ganga (2010) exhibited dissipation effects on MHD 

nonlinear flow and heat transfer past a stretching porous 

surface embedded in a porous medium. 

 

The effects of chemically reactive solute distribution on 

fluid flow due to a stretching sheet also bear equal 

importance in engineering researches.  The chemical 

reaction effects were studied by many researchers on 

several physical aspects. The diffusion of a chemically 

reactive species in a laminar boundary layer flow over a 

flat plate was demonstrated by Chambre and Young 

(1958). The effect of transfer of chemically reactive 

species in the laminar flow over a stretching sheet 

explained by Andersson et al. (1994). Takhar et al. 

(2000) analyzed the flow and mass transfer on a 

stretching sheet with a magnetic field and chemically 

reactive species with n-th order reaction. Afify (2004) 

explicated the MHD free convective flow of viscous 

incompressible fluid and mass transfer over a stretching 

sheet with chemical reaction. Liu (2005) studied the 

momentum, heat and mass transfer of a hydromagnetic 

flow past a stretching sheet in the presence of a uniform 

transverse magnetic field. Akyildiz et al. (2006) 

obtained a solution for diffusion of chemically reactive 

species in a flow of a non-Newtonian fluid over a 

stretching sheet immersed in a porous medium. Cortell 

(2007) investigated the motion and mass transfer for 

two classes of viscoelastic fluid over a porous 

stretching sheet with chemically reactive species. 

Recently, Kandasamy et al. (2010) investigated the 

effects of temperature-dependent fluid viscosity and 

chemical reaction on MHD free convective heat and 

mass transfer with variable stream conditions. 

 

In the present investigation, we have studied the 

Newtonian MHD boundary layer flow and reactive 

solute transfer with first order reaction past a stretching 

surface. The variable initial solute distribution along the 

surface is taken into account. The scaling group of 

transformation is applied into the governing equations 

without adopting any adhoc assumption and finally set 

of self-similar ordinary differential equations are 

obtained. Then the transformed self-similar equations 

are solved. Exact analytical solution of MHD boundary 

layer flow is obtained and then solution of 

concentration distribution is obtained numerically. The 

results are discussed physically in various contexts. 

2. MATHEMATICAL FORMULATION OF 

THE PROBLEM  

Consider a steady MHD flow of an electrically 

conducting viscous incompressible fluid undergoing a 

first order chemical reaction over a stretching surface. 

The continuity, momentum and reactive concentration 

equations for governing the flow and concentration 

distribution in the boundary layer region along the 

stretching surface may be written as 

0
u v

x y

 
 

 
         (1) 

 
2

2

1
x

u u u
u v

x y y




  
  

  
J×B        (2) 

 
2

2

C C C
u v D k C C

x y y


  
   

  
,       (3) 

where u and v are velocity components in x- and y-

directions respectively,  is the kinematic viscosity,  is 

the density of the fluid, J is the current density and B is 

the magnetic field. C is the concentration, D is the 

diffusion coefficient k denotes the reaction rate of the 

solute and C is constant solute in the free stream. One 

may note that in writing Eq. (2), we have neglected the 

induced magnetic field since the magnetic Reynolds 

number RM for the flow is assumed to be small. 

 

The magnetic field B having components (0,B0,0) with 

B0 non-negative constant, the relation B=0 is 

automatically satisfied. It is noted that the electric 

current in the flow acts parallel to z-axis (i.e. normal to 

the plane of the flow). Hence from Ohm’s law we get 

the components of J as 

jx=0, jy=0, jz=[Ez+(qB)z]=[Ez+uB0],       (4) 

where  is the constant electrical conductivity of the 

fluid and Ez is the component of electric field along the 

z-direction and q is the velocity vector. Now as the flow 

is steady, Maxwell’s equation gives 

E=0          (5) 

where E is the electric field which is along the z-axis. 

This gives from Eq. (5) Ez/y=0 and Ez/x=0 so that 

Ez is a function of z only. 

 

Since the induced magnetic field is neglected in view of 

the assumption RM<<1 electric current in the flow is 

determined from Ohm’s law and not from B=eJ, e 

being the magnetic permeability. But the consequence 

J=0 of this equation must be satisfied (Shercliff, 

1965). This readily gives from Eq. (4), Ez=constant 

since Ez is independent of x and y. Thus using Eq. (4), 

we find from Eq. (2), 
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2 2

0 0

2

zu u u B B E
u v u

x y y

 


 

  
   

  
       (6) 

In the free stream one can write 

2

0 0 0z

B B
U E

 

 
  , 

which gives Ez=B0U. 

 

Here U is the free-stream velocity and according to this 

problem U=0. 

 

Finally, the momentum Eq. (6) becomes 

2 2

0

2

u u u B
u v u

x y y






  
  

  
        (7) 

The appropriate boundary conditions for the velocity 

components and reactant concentration are given by 

, 0 at 0

0 as

u ax v y

u y

   


  
        (8) 

and  0 at 0

as ,

n

wC C C C x y

C C y





    


  
       (9) 

where a is assumed to be stretching constant and we 

consider a variable solute distribution along the 

stretching surface i.e. Cw=C+C0xn, where C0 is a 

positive solute constant, n is a power-law exponent, 

which signifies the change of amount of solute in the x-

direction. 
 

Introducing the stream function to this boundary layer 

flow we get the following relation as 

,u v
y x

  
  
 

       (10) 

and the concentration C is related by  

 wC C C C C          (11) 

The continuity Eq. (1) is satisfied clearly by the 

relations (10). In view of the relations (10) and (11), the 

Eqs. (7) and (3) reduce respectively to 

2 2 3 2

0

2 3

B

y x y x y y y

      




     
  

      
      (12) 

2

2

C C C
x n C x xD xkC

y x y x y y

       
   

     
    (13) 

and the boundary conditions become  

and 0 at 0

0 at

ax y
y x

y
y

 



  
     


  

 

       (14) 

1 at 0

0 at .

C y

C y

  


  
      (15) 

3. INVARIANT SOLUTION THROUGH 

SCALING GROUP OF 

TRANSFORMATIONS 

We now introduce the simplified form of Lie-group 

transformations, namely, the scaling group of 

transformations (Mukhopadhyay et al. 2005) as 

31 2

5 64

* * *

* * *

, , ,
:

,

x xe y ye e

u ue v ve and C Ce

 

 

    
 

  

    (16) 

The transformation (16) may be considered as a point 

transformation, which transformed the coordinates 

(x,y,,u,v) to the coordinates (x*,y*,*,u*,v*). 

 

Taking the relations (16) in to account in Eqs. (12) and 

(13), we obtain respectively 

 

   

1 2 3

2 3 2 3

* 2 * * 2 *
2 2

2* * * * *

3 * 2 *
3 0

3 **

.e
y x y x y

B
e e

yy

   

     

   

  




 

 

    
 

      

 
 



                  (17) 

and 

 

 

   

2 3 6

2 3 6

2 1 6 1 6

* * * *
*

* * * *

*
*

*

2 *
2 * * *

2*

C C
e x

y x x y

e n C
y

C
e x D e kx C

y

   

   

      

 



 

 

   

    
 

    







 



                    (18) 

In order that, the system will remain invariant under the 

group of transformation  we then would have the 

following relations among the transformation 

parameters 

1 2 3 2 3 2 3

2 3 6 2 1 6 1 6

2 2 3

and 2

      

       

      


        
    (19) 

From (19) we can obtain easily 2=0 and 1=3. The 

relation 
*

*

*
u

y





 and 
*

*

*
v

x


 


 gives us 3=4, 

5=0. In view of these, the boundary conditions (14) 

and (15) are transformed to 

* *
* *

* *

*
*

*

and 0 at 0

0 at

ax y
y x

y
y

 



 
   

  


  
 

     (20) 

* *

* *

1 at 0

0 at

C y

C y

  


  
      (21) 

where the boundary condition C*=1 gives 6=0. Thus 

the set   finally reduces to a one-parameter group 

transformation 

1 1

1

* * *

* * *

, ,
:

, and

x xe y y e

u ue v v C C

 



    
 

  
     (22) 
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Firstly, we consider the absolute invariant,  which is a 

function of the independent variables and is taken as 
* *s

y x  . 

Since the quantity  is absolute invariant, we get 

* *s sy x y x .Now, 1* *s ss sy x y x e y x


   if 0s   

(since 1 cannot be 0). Hence, we get the first absolute 

invariant as =y*. 

 

We now find the second absolute invariant, G=f() 

which involves the dependent variable * and assume 

that 
* *r

G x  . Since G is an absolute invariant, we 

will find r such that 
* *r rx x  . Now, 

   1 1 1 1* *r r
rrx xe e x e e

      

 1 1r r re x x


 


   if  r=1. Putting r=1, the second 

absolute invariant G becomes 
1* *G x 


  i.e. 

 
1* *f x 


 . 

 

Lastly, we want to find the third absolute invariant, 

H=() which involves the independent variables and 

the dependent variable C* and is taken as 
* *p

H x C . 

H is an absolute invariant if * *p px C x C . 

Now,    1 1* *
pp ppx C xe C x e C

 
 

1 p p pe x C x C


   if p=0. Thus, the third absolute 

invariant is H=C* i.e. ()=C*. 

 

Finally, from three absolute invariants, we get the 

transformations as given below: 

=y*, *=x*f() and C*=()      (23) 

In view of the above relations, the Eqs. (17) and (18) 

become 
2

2 0 0
B

f ff f f





            (24) 

0D f n f k               (25) 

and the boundary conditions reduced to  

   

 

0, at 0

0 as

f f a

f

  

 

    


   

     (26) 

1 at 0

0 as

 

 

  


  
      (27) 

Again, we introduce the following transformations for 

, f and  in Eqs. (24)-(27): 

a    
 , f a f   

  and a    
            (28) 

and we obtain 
1

2
    , 

1

2
  , 

1

2
    and 

0    . 

 

Finally, in view of the above transformations and taking 

  , f f  and   , the Eqs. (24) and (25) 

reduce to the following forms: 

2 0f ff f Mf             (29) 

  0Sc f Sc n f              (30) 

where M=B0
2/a is the magnetic parameter, Sc=/D is 

the Schmidt number and =k/a reaction rate parameter 

of the solute. 

 

The boundary conditions (26) and (27) reduce to the 

following forms: 

   

 

0, 1 at 0

0 as

f f

f

  

 

    


   

     (31) 

( ) 1 at 0

( ) 0 as .

  

  

  


  
      (32) 

4. SOLUTION OF THE PROBLEM  

The Eq. (29) along with the boundary condition (31) is 

solved analytically (Sarpkaya 1961) and the exact 

solution is given by  

 
 1 exp 1

1

M
f

M




  



, 0.     (33) 

After substitution of the function f and using finite-

difference technique in the Eq. (30) along with the 

boundary conditions (32) is solved numerically. The 

expression for wall shear stress is given by 

 0 1f M    which increases with the increase of 

magnetic field M and consequently, the boundary layer 

thickness of the stretching surface decreases. 

5. RESULTS AND DISCUSSIONS  

The analytic solution of velocity has presented for 

various values of the magnetic parameter M. The 

reactant solute equation is solved numerically and the 

results are shown graphically. 

 

The velocity profiles for various values of the magnetic 

parameter M have been plotted in Fig. 1. From the 

figure it is noted that with increase of M, the velocity 

for any fixed value of  decreases. Thus it is clear that 

the magnetic field opposes motion. This is due to the 

fact that variation of M leads to the variation of Lorenz 

force producing more resistance to the transport 

process. Consequently, the momentum boundary layer 

thickness reduces with the increase in M and this fact is 

also seen from wall shear stress behaviour. 

 
Fig. 1. Velocity profiles f() for various values of M 
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In order to assure the accuracy of applied numerical 

method, we have compared our obtained results for 

concentration gradient at the surface (0) which is 

related with the Local Sherwood number by the relation 

Sh/Re1/2=(0) that of Takhar et al. (2000) and 

Andersson et al. (1994) for n=0 (i.e. with constant 

solute along the surface) in Table 1 and found in 

excellent agreement. 

 

Table1 Comparison of the values of (0) with that of 

Takhar et al. (2000) and Andersson et al. (1994) for 

n=0. 

Sc  
Present 

Study 

Takhar 

et al. 

(2000) 

Andersson 

et al. 

(1994) 

0.1 0.1 0.15057 0.15042 0.149 

1.0 0.1 0.66873 0.67044 0.669 

1.0 1.0 1.17679 1.17761 1.177 

10 1.0 3.87347 3.87469 3.880 

10 10 10.24535 10.24283 10.25 

 

Figure 2 exhibits concentration profiles for various 

values of M. The value of contaminate solute at 

particular value of  increases with the increase of the 

magnetic parameter M and also the concentration 

boundary layer thickness increases. This implies that 

the magnetic field acts to enhance the distribution of the 

reaction solute on the stretching surface in case of an 

electrically conducting fluid subject to magnetic field. 

This result may be useful, in the situation where the 

enhancement of solute transfer from the surface is the 

prime important. 

 
Fig. 2. Concentration profiles () for various values of 

M. 
 

Now, we concentrate on variation the solute curves for 

different values of Schmidt number Sc. The curves are 

drawn in the Fig. 3. The Schmidt number has major 

effects on the distribution of solute. The concentration 

boundary layer thickness as well as the concentration at 

a fixed point decreases quickly with increasing values 

of Sc. This is due to the fact that the rate of solute 

transfer from the surface increases when the Schmidt 

number increases. 

 

Figure 4 is the graphical representation of concentration 

profiles for various values of reaction rate parameter . 

It has been found that the reaction rate parameter affect 

the solute profiles in similar way as that of the Schmidt 

number i.e., the increase of  reduces both the solute 

boundary layer thickness and value of the solute at 

fixed . So, in case of the distribution of reactive solute, 

the reaction rate parameter is a decelerating agent. 

 
Fig. 3. Concentration profiles () for various values of 

Sc. 

 

 
Fig. 4. Concentration profiles () for various values of 

. 
 

Finally, Figs. 5 and 6 exhibit the concentration profiles 

in the boundary layer flow region for different values of 

power-law exponent n. It is noticed from Fig. 5 that for 

the increasing values of n with n>0, the curve 

representing the distribution of solute for specific value 

of  decreases.  

 
Fig. 5. Concentration profiles () for various values of 

n(0). 

 

 
Fig. 6. Concentration profiles () for various values of 

n(<0). 



M.S. Uddin et al. / JAFM, Vol. 4, No. 4, pp. 53-58, 2011.  

 

58 

 

While, in Fig. 6 the concentration profile increases with 

increase in the magnitude of n with n<0 and for large 

negative values of n, the overshoot of solute is observed 

near the surface. Thus, the effect of increase of n when 

the surface concentration is Cw=C+C0xn is completely 

opposite to the effect of increase n when the surface 

concentration is Cw=C+C0/xn. Note that, the wall 

concentration is constant when n=0. 

6. CONCLUSIONS  

In this investigation, an analysis is made to find the 

behaviour of the distribution of reactive solute undergo 

a first order reaction in steady MHD boundary layer 

flow of an electrically conducting incompressible fluid 

over a stretching surface taking variable surface 

concentration. Using the scaling group of 

transformation a set of self-similar equations is obtained 

from the governing equations. The analytical solution is 

found for the momentum equation and the equation of 

reactive solute is solved numerically. The results show 

that the magnetic field tends to reduce the rate of flow 

from the wall and is broadening the solute layer. The 

Schmidt number and the reaction rate parameter reduce 

the solute boundary layer thickness. Most, importantly, 

the effects of initial variable solute distribution over a 

stretching surface is interesting i.e. for the increase in 

magnitude of n, the concentration decreases when n>0 

whereas increases when n<0. 
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