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ABSTRACT 

This paper undertakes a critical examination of Stokes’ law in its final form. The examination and insights of the 

viscosity principle substantiate grounds to suspect that the controlling dynamics are viscous shear rates across a 

geometry set by solid boundaries only. The examination sets grounds to conduct an analysis of the dynamics based on 

the viscosity principle alone and a flow model is derived. Based on the relationship between the pressure gradient and 

the shear forces as mandated by the viscosity principle the analysis suggests that the pressure gradient surrounding 

settling particles can be computed, is a single value and expands as required to mobilize a force equal to the driving 

force. In this context, the pressure gradient arises as a consequence of the contest between body forces in the fluid 

and the shear forces promoted by shear rates. The flow model suggests that Stokes’ law may be missing important 

information. An analysis is conducted for the settling velocity of non spherical particles based on the same dynamics 

and a mathematical solution is reached. The solution is in good agreement with published measured values and 

defines the influence of particle shape in settling phenomena.   
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NOMENCLATURE 

Ac surface area of a coin like solid 

Ao surface area of a an oblate spheroid 

ASS specific surface area 

ASSc specific surface area of a coin like solid 

ASSo specific surface area of an oblate spheroid 

a radius of an oblate spheroid  

ar aspect ratio 

b ½ the thickness of an oblate spheroid 

e tributary ratio  

e1 pseudo tributary ratio  

e1max maximum pseudo tributary ratio  

emax maximum tributary ratio  

Fd drag force 

Fv viscous drag force 

Gs specific gravity of solid 

Gsf specific gravity of fluid 

f(a,b) function of a and b 

g acceleration due to gravity 

h tributary volume 

he non spherical expansion 

 

hemax maximum non spherical expansion 

hg height 

hgmax maximum height 

hmax maximum tributary volume 

P Pressure 

R maximum radius of a spherical system 

r radius 

u velocity 

Vf volume enclosed between two concentric

 spheres 

Vmax maximum velocity 

Vs settling velocity 

μ viscosity 

μh viscosity in the tributary volume 

σ vertical stress 

ξ spherical expansion 

ξmax maximum spherical expansion 

τ shear stress 

τw wall shear 

 

 

1.  INTRODUCTION 

Stokes’ law and its applications are well known by the 

scientific and engineering community worldwide. Its 

derivation is readily available and its weaknesses and 

strengths have been highlighted widely in the literature.  

Criticism of its final form for the settling velocities of 

spheres is rare since one, it correlates very well with 

experimental data and two, is rendered with the 

authority  of being an analytical solution of a simplified  
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Navier Stokes equation.  

 

Since the early 1900’s scrutiny of the relationship has 

assumed Stokes’ relationship as being a law at infinite 

dilution. The consensus has remained nearly flawless 

for more than a hundred years. Recently, Goodstein 

(2001) points out Millikan (1913) attempt to apply a 

correction procedure to Stokes’ law and cast the 

qualifying statement “the nineteenth-century 

hydrodynamicist George Stokes had produced an exact 

formula applicable to a sphere moving slowly through 

an infinite, continuous viscous medium”. Nevertheless, 

within a different trend of thought Jinghwa (2004), after 

25 years of teaching experience recognizes with regard 

to Stokes’ law “My students were totally confused. I 

myself did not quite understand the physics of the 

problem, even though I could follow Stokes’ 

mathematical solution step by step” and continues in 

the next paragraph “In hydraulic engineering, Stokes’ 

law is presented as an experimental relation, an 

empirical law, valid for a limited range of conditions”. 

It is not the purpose of this examination to undertake a 

struggle through the dynamics of the mathematical 

formulation as the efforts of 25 years by Jinghwa Hsü 

and many other scientists have led to enlightening 

conclusions. The examination is intended to gather 

information and insights that could lead to a better 

understanding of creeping flow. The insights led to a 

fresh analysis of the problem and became the driving 

force behind this paper and presented below. 

 

Let us examine the velocity between two plates driven 

by a pressure gradient in laminar flow with a coordinate 

system at midpoint between the plates and the x axis 

oriented horizontally positive with the pressure 

gradient: 
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       (1) 

Where: 

u = the velocity at any point between the plates  

dx

dp
= the pressure gradient in the x direction 

h = ½ the distance between the two plates 

μ = the viscosity  

The maximum velocity Vmax at y = 0 turns into 

2

2

max
h

dx

dp
V          (2) 

As a consequence of the previous relationship and in 

virtue of the viscosity principle the shear stress τ at any 

point can be written as: 

y
dx

dp
         (3) 

At the wall y = h and the shear stress τ = τw , hence: 

h
dx

dp
w          (4) 

Note from Eq. (1) that for application of the viscosity 

principle the geometry is set externally and the shear 

stresses act along surfaces that are parallel to the shear 

surface at the boundaries; integration of the shear 

stresses along surfaces of defined geometry lead to the 

velocity. The simple relationship in Eq. (2) for the 

maximum velocity is just a single value on the curve. 

Note also that the pressure gradient is constant at any 

point and the shear stress at any surface is the product 

of the pressure gradient times the tributary volume of 

fluid overlying that surface. An interesting fact is that 

the pressure gradient act in the volume, thus, what has 

been quoted as a “height” or ½ the distance between the 

two plates is a tributary volume (m3/m2) over the square 

meter of surface. Technically, the drag force of the 

creeping motion is simply the wall shear τw times the 

area of the plate, no pressure drag is present, neither 

necessary. Moreover, one can categorically state, in 

laminar creeping motion, that a relationship of the form 

pressure gradient times “height” squared divided by the 

viscosity will give the velocity at some point in a 

profile of fluid. 

2.  STOKES’ LAW 

Stokes’ relationship for the settling velocity Vs in 

creeping flow is presented below: 

  22

9
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         (5) 

where: 

 

ρs = the density of the solid 

ρf  = the density of the fluid 

g = the gravitational constant 

r = the radius of a settling sphere of density ρs. 

Reordering Stokes’ law we obtain: 
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         (6) 

The fraction on the right side makes up a pressure 

gradient; times “height” squared equal the velocity at 

some point in a profile. Stokes’ analytical solution seem 

to have concluded that the settling velocity of a particle 

is the same as the maximum velocity (or fraction 

thereof) between two flat plates at distance 2r driven by 

a pressure gradient 4(ρs-ρw)g/9. Note that it can only be 

shear stresses integrated along a planar surface as there 

is no other geometry factors to make a “statement” of 

the spherical nature of the surfaces, if it is that the 

viscosity principle is to be satisfied and integration 

across geometry, set by the solid surface is possible. 

However, examination of its form and its success 

provide substantial evidence that in creeping flow the 

viscous shear is the controlling operator, there is 

nothing available in the relationship to link to the 

kinetic energy or pressure drag. To emphasize the 

dependence of the motion to shear rates across a 

velocity profile, let us examine Stokes’ law for the drag 

force Fd mobilized by a particle settling at velocity Vs 

presented below: 

sd VrF 6         (7) 

In arriving to the previous relationship the analytical 

solution claims to have encountered the form of a 

vertical stress σ acting on the entire surface presented 

below: 
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r

Vs

2

3
          (8) 

Consequently, Eq. (7) is obtained by multiplying the 

stress by the area. The dynamics of the forces that 

convert tangential shear forces at any angle to a single 

value of stress acting vertically at any point cannot be 

explained. Note however that according to the viscosity 

principle and the relationship between the shear stresses 

and the pressure gradient the shear stress at the wall can 

be written as: 

h

V
h

dx

dp
w

max2
          (9) 

In form, identical to Stokes “complex” vector quantity. 

As mentioned previously for a laminar viscous regime 

the drag force Fv is simply the wall shear times the area. 

Let us assume h = r and apply the force to the entire 

area of a sphere: 

max
2max 84

2
Vrr

r

V
Fv 


         (10) 

a conclusion almost identical to that delivered by the 

analytical solution in the absence of consideration of 

any pressure drags. As far as the logic of the principles 

set by the viscosity, Stokes’ law is the value of shear 

stress at some point across a flat profile between two 

plates at distance 2r multiplied by the area.  This drag 

force depends on the viscosity alone. A fact that 

emphasizes viscous shear rates across the geometry set 

by solid boundaries as the controlling dynamics. 

 

The previous insights made a strong case for a re-

examination of the problem based on the viscosity 

principle alone. The examination led to the analysis 

presented below. 

3. FORCE TRANSFER 

Consider a settling sphere. At the beginning of the 

settling process the solid body simultaneously forces 

the fluid outward in a radial direction and sucks at the 

top pole causing a resultant tangential force. The 

tangential force finds opposition to the movement by 

shear forces in the fluid; the Newtonian condition 

mandates a shear response equal to zero at the 

beginning and acquires a value as soon as the motion 

starts and the viscosity principle govern the motion as 

the driving forces are comparable with shear stress 

mobilized by the fluid. Shear rates are originated in this 

process and extend outward at decreasing shear rates as 

much as necessary to mobilize across the volume a 

force equal to the skin force. According to the 

definitions set by the viscosity principle the contest 

between the shear forces and the body forces become a 

pressure gradient and the equilibrium condition is set by 

a transfer of force equal to the gravitational force. The 

particle forms a system that makes his way downward 

by displacing fluid by shear rates. As noted in the treat 

to highlights of the viscosity principle the value of the 

shear stress at any point throughout the profile is 

defined by a single value of pressure gradient acting on 

the fluid overlying any given spherical surface. Any 

imbalance in the ambient pressure gradient yield to an 

equilibrium value. According to the previous scheme 

the inter phase between the solid and the fluid 

continuum offer the single available mean to transfer 

the submerged weight, a known quantity, by means of 

shear rates to the fluid. This fact imposes the first 

question, how would the solid phase transfer its energy 

through the skin?. Consider an object of area A and 

mass M; by definition in the absence of buoyancy the 

specific surface area ASS (in units of m2/kg for this 

discussion) is A/M, hence the quantity ASS-1g (N/m2), 

the inverse of the specific surface area, times the 

gravitational constant expresses the gravitational force 

available to be transferred in the form of shear stress to 

a viscous medium or the wall shear of the particle. The 

submerged weight Ws of a solid of weight W and 

specific gravity Gs within a fluid of specific gravity Gsf 

can be shown to be Ws =((Gs - Gsf )/ Gs )W; hence, the 

wall shear τw of the submerged particle can be written 

as: 

 
g
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GG

ASS s

sfs
w




1
         (11) 

Note that the solid continuum is bounded to the skin, 

the only available mean to transfer the force to the fluid 

continuum and that the dynamics of the motion 

mandate a single value response by the fluid on the skin 

or wall, hence, the previous parameter appear to be an 

ideal measure of the driving force. The wall shear times 

the area of the particle equal to the submerged weight 

of the particle. Let us conduct an enquiry on whether 

the portrayed dynamics can realistically be linked to the 

settling phenomena or not with measured settling 

velocities for quartz sand (Gs = 2.65) in water at 15 Co 

(ρf = 999 kg/m3 and μ = 0.001139 Pa-s) from Zegzhda 

(1934), Arkangel’skii (1935) and Sarkisyan (1958) 

reproduced by Cheng (1997) shown in Table 1. It is 

found that Vs is proportional to τw
2 in the form Vs ≈ 

0.0775 τw
2. Note also that for a particle of sand with Gs 

= 2.65 in water the wall shear take the value of 0.0027 

N/m2, a value comparable with the viscosity itself and 

by the definition μ(du/dy) = τ the shear rate at the wall 

can be computed as τw/μ. For a sphere of density ρs, ASS 

takes the form ASS = 3/(rρs) and Eq. (11) turns into: 
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         (12) 

The possibility of relating the specific surface area to a 

characteristic dimension for spheres makes an 

advantage for the application of the viscosity principle 

as the driving force grows at the same pace as the 

characteristic dimension for different particle sizes. For 

other geometries commonly encountered in geological 

materials this advantage is not available. This is 

suspected to be the reason of the difficulty of applying 

Stokes’ law to different geometries.   

4. GEOMETRY 

Establishing the geometrical settings and the physical 

dimensions of the system has been shown to be the 

most relevant condition in order to quantify shear forces 

based on the viscosity principle. Integration through the 

geometry or “height” delivers the velocity. Consider a 

point symmetric spherical system; the velocity and 

shear stress is maximum at the solid surface and zero at 
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some point, the pressure gradient yield to an 

equilibrium value, is ambient and depends on the 

contest between the shear stresses and body forces on 

the mass of the fluid, the driving force is shear rate at 

the wall. Consider a sphere of radius R enclosing the 

velocity profile and defining the size of the entire 

system (including fluid and solids) at the point of zero 

shear stress and a smaller sphere of radius r within the 

fluid at the same center point (not necessarily the solid 

sphere of radius rs). The volume of fluid Vf between the 

two spheres can be computed as: 

33

3

4

3

4
rRV f           (13) 

And the ratio e of the volume Vf to the volume of the 

smaller sphere can be computed as: 
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denoted e to take advantage of the void ratio, a widely 

known parameter in geotechnical engineering that is 

defined similarly. The tributary ratio will be term used 

in this paper. The maximum tributary ratio emax can be 

computed at the wall of the solid, where r = rs as: 

3
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        (15) 

According to the previous definition of e the following 

relationship is satisfied (4/3)πrs
3(1+e) = (4/3)πR3;        

R can be written as: 

  3
1

1 erR s          (16) 

At the wall r = rs, e = emax and R can be computed as: 

 3
1

max1 erR s          (17) 

The height or distance hg (the subscript g to denote 

geometric height) measured from R of the overlying 

fluid on any square meter of the sphere of radius r can 

be calculated as hg = R-r; hence: 

  113  erh sg         (18)  

The maximum distance hgmax occurs at the wall with      

r = rs and e = emax, hence: 

  113
maxmax  erh sg         (19)  

The tributary volume h in m3/m2 of the fluid Vf 

overlying the area of the sphere of radius r can be 

expressed in the form:  
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The tributary volume takes its maximum value hmax at 

the wall with r = rs, and e = emax hence: 
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         (21) 

Equations (18) and (20) show that for a spherical 

system hg and h are different as oppose to a planar flow 

in which hg and h are the same and there is no need to 

define them separately. It also shows that application of 

the viscosity principle in a loose boundary requires due 

consideration to the volumetric nature of the pressure 

gradient. Ignoring this fact induce a violation of the 

dynamics by the breakdown of the constituent 

relationship between the pressure gradient and the shear 

rates. The computed values would hence deviate from 

experimental values. The viscosity is an operator in the 

geometry domain or the height hg but the pressure 

gradient bears a volumetric relationship with the shear 

stress at any point through the profile. 

 

Equation (20) quantify the dimensions of the volume 

domain and how it relates in the per meter square basis 

to the entire size of the system and provide an 

appropriate mean to conduct the integration to obtain 

the velocity. In other words in a spherical system of 

radius R Eq. (20) allows for the computation of the 

tributary volume overlying any spherical surface of 

radius r.   

 

Noting that 3/rs = ρs ASS the maximum tributary 

volume can also be expressed as: 

ASS

e
h

s

max
max          (22) 

5. THE WALL SHEAR AND THE SETTLING 

VELOCITIES 

Consider a spherical coordinate system attached to the 

center of a settling sphere with wall shear τw and a 

horizontal plane across the center. Consider the 

geometric settings envisioned in the previous section, 

and the dynamics of the force transfer. A ring of 

influence of the viscous shear is formed and the 

surrounding fluid is static. Any streamline is contained 

on a vertical plane through the center of the sphere, is 

parallel to the surface of the solid sphere and an 

identical velocity profile forms perpendicular to any 

line crossing the center of the sphere; the flow is fully 

developed and spherical. Equation (20) solves for the 

quantification of the dimensions of shear surfaces as 

they relate to the entire system and sets grounds for 

integration across the geometry preserving the 

volumetric relationship between the pressure gradient 

and the shear stresses. The pressure gradient at any 

distance r within the profile p(r) is identical at any point 

and by definition can be expressed as p(r) = τw/hmax; the 

shear stress at any point across the profile is related to 

the pressure gradient and the tributary volume h in 

m3/m2 by the relationship τ = p(r)h, where h is 

measured from the point of zero shear stress and given 

that the velocity u, the viscosity μ and the shear stress τ 

are related by τ = μ(du/dr) one can write: 

maxh

h

dr

du
w          (23) 
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In consideration that the geometry of the profile is 

identical at any location and the tributary volume h at 

any distance r from the center of the spherical 

coordinate system with respect to a boundary surface at 

a distance R defined by zero shear stress can be 

expressed from Eq. (20) as: 

2

33

3r

Rr
h


         (24) 

Equation (23) takes the form:  
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Equation (25) paves the way to conduct the integration 

across the geometry of the profile and maintain the 

integrity of the relationship between the tributary 

volume and the shear stresses. Solving for the velocity, 

Eq. (25) takes the form: 

 
C

r

rR

h
u w 




3

2

2

33

max


        (26) 

At r=R, u = 0; hence
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substituting r in virtue of Eq. (18) to write as a function 

of the tributary ratio we obtain: 
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The maximum velocity Vmax occurs where r = rs and the 

tributary ratio e equal zero, hence: 
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        (29) 

Our treat shows that the maximum velocity and shear 

stress occurs at the wall, hence, Vmax = Vs. The wall 

shear is available and matching to the experimental 

settling velocity results for quartz sand particles 0.5 to 

25.0 μm in water at 15 Co shown in Table 1. (Gs taken 

as 2.65, μ = 0.001139 Pa-s and ρf = 999.3 Kg/m3) from 

Zegzhda (1934), Arkangel’skii (1935) and Sarkisyan 

(1958) reproduced by Cheng (1997), we find the 

tributary ratio emax = 16.34 from Eq. 29. Equation 28 

reaches a great accomplishment by allowing the settling 

velocity to be written entirely as a function of emax with 

all other known values. Note also that the viscosity 

principle dictates that the ratio of the shear stress at any 

given surface divided by the tributary volume overlying 

that surface equals the pressure gradient in the form      

τ = p(r)h. At the wall the values can be computed as: 

 maxw h P r          (30) 

Substituting the wall shear and the maximum tributary 

volume from Eqs. (11) and (21) respectively, we obtain: 
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         (31) 

The tributary volume and the wall shear increase with 

the radius of the particle and the pressure gradient is 

constant at 991N/m3 for the given value of density and 

viscosity of the fluid at standard temperature of 15 oC. 

Equation (31) implies that the pressure gradient times 

the volume held within the limits of the ambient 

pressure gradient equal the submerged weight of the 

particle as verified for the sand particle of 0.5 μm radius 

F = (4/3)πrs
3emaxP(r) =  8.48 × 10-15N. The equilibrium 

condition is set by the transfer of a force equal to the 

submerged weight of the particle to the fluid medium in 

the form of a pressure gradient. The same conclusion is 

reached by noting that for a sand particle 0.5 μm the 

wall shear can be computed from Eq. (12), τw = 0.0027 

N/m2 and the tributary volume hmax = emaxr/3 = 

2.723×10-6m, hence, P(r) = 991 N/m3.  

 

For convenience, based on our acquired knowledge let 

us rewrite Eq. (27) substituting the pressure gradient 

from Eq. (30) as: 
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consequently Eq. (28) can be written as: 
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    (33) 

Equation (33) is equivalent to Eq. (32) as a function of 

e and the value of the velocity can be computed for the 

entire velocity profile by varying e from 0 to emax to 

compute the radius and apply the relationship. For the 

maximum velocity at the wall of the particle (or e = 0) 

the settling velocity is computed as: 
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        (34) 

In further discussion the relationship between brackets 

in Eq. (33) will be quoted as the spherical expansion ξ 

and the maximum spherical expansion ξmax from the 

large brackets in Eq. (34) is constant at the given value 

of density and viscosity of the fluid for the given 

specific gravity of solids. Table 1 presents comparison 

of settling velocities computed from Eq. (29) and the 

experimental values for sand particles 0.5 to 25.0 μm 

(Gs taken as 2.65) from Zegzhda (1934), Arkangel’skii 

(1935) and Sarkisyan (1958) reproduced by Cheng 

(1997). Note in Table 1 that Vs is computed using      

Eq. (29) but the same result is accomplished by         

Eq. (34). The velocity profile from Eq. (32) for the 

particle rs = 0.5 μm is shown in Fig. 1. Note in Fig. 1 

that the geometry is defined by the pressure gradient, 
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the velocity is cero at r = R = 1.29 μm (or e = emax) and 

maximum at the wall of the solid sphere (r = rs or e = 

0). The conclusion drawn in Eq. (31) shows that the 

specific gravity has no impact in the pressure gradient; 

instead, the different specific gravities change the size 

of the expansion. For instance a particle A of specific 

gravity 2.8 has a maximum tributary ratio 17.8         

(Eq. (31)) and a maximum expansion ξmax = 5.8 and a 

particle B of Gs = 2.4 has a maximum tributary ratio of 

13.85 and the maximum expansion ξmax = 4.19. Particle 

A settles 38% faster with respect to B.  This result is in 

contrast with a difference of 29% predicted by Stokes. 

 

Table 1 Calculated settling velocities from Eq. (29) and 

experimental values for sand in water at 15 Co from 

Zegzhda (1934), Arkangel’skii (1935) and Sarkisyan 

(1958) reproduced by Cheng, N. (1997). Average error 

less than 1%. 

r 

(μm) 

Computed 

from Eq. 

12 

Tw (mPa) 

Computed 

from Eq. 

29 

Vs (μm/s) 

Measured 

(μm/s) 

0.5 2.70 0.56 0.57 

2.5 13.49 14.11 14.10 

5.0 26.97 56.46 56.50 

10.0 53.94 225.83 223.00 

25.0 134.85 1411.42 1410.00 
 

 

 

Fig. 1. Velocity profile for a 0.5 μm sand particle in 

water at 15o C 

 

6. NON SPHERICAL GEOMETRIES   

In terms of science and engineering the greater interest 

for a flow model for the settling velocity of non 

spherical geometries is by far on its applicability to 

natural occurring materials such as clay minerals. In 

sedimentation analysis the selection of a geometry 

model for clay particles is often necessary. The general 

intend of this section is to emphasize the need to select 

a geometry model describing as closely as possible the 

volume-mass-area relationships of the particles. In 

general, morphology treats describe clay particles in 

terms of mean dimensions: thickness, lengths, 

slenderness and specific surface area. Thicknesses and 

specific surface areas are somewhat stable quantities for 

different minerals. It doesn’t seem feasible to work with 

ASS only as the viscosity is an operator in the geometry 

of the ambient fluid. For non spherical geometries, the 

need arises to describe the particle in at least 2 

dimensions. Clay particles are widely described in the 

literature as platelets of oblate spheroid geometry. For 

instance, Sayed et al. (2006) based on atomic force 

microscopy (AFM) display how particles are sliced in 

planes perpendicular to the minor axis to estimate edge 

and basal areas. The edge of the planes appear as 

concentric circles that further support the oblate 

spheroid shape. The procedure used by Sayed et al. 

(2006) is supported by previous research starting with 

Bickmore et al. (2002) and Jodin et al. (2004). Within a 

similar trend they are often described as coins with the 

measured basal areas and thicknesses. Based on 

morphology treats it appears feasible to describe a wide 

variety of clay particles in two dimensions. The specific 

surface area of oblate spheroids ASSo and coins ASSc of 

density ρs and dimensions ½ the length and ½ the 

thickness a and b respectively is presented below:    
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The term between brackets in Eq. (35) is a complex 

term. For aspect ratio ar = 8 Eqs. (35) and (36) turn 

into: 
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044.13
         (37) 

sb
ASSc

4
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         (38) 

respectively. The difference is 25 %.  For aspect ratios 

up to 100 commonly reported in the literature for a 

number of clay minerals the difference can be verified 

to be 50 %.  By means of Eq. (37) and Eq. (38) one can 

verify which model is better suited for the given 

mineral when specific surface areas are available.  The 

oblate spheroid model often yields better match 

between the measured ASS and the reported 

morphology but the coin model appears feasible for 

some clay minerals where “distinct right angles” and 

uniform thickness have been observed such as those 

reported by Żbik and Smart (1998) for Georgia 

kaolinite (KGa-1).  A hexagonal prism could also be 

used for KGa-1.  Note in addition that the specific 

surface, for aspect ratios greater than 6, becomes 

insensitive to a i.e. for a given mineral thickness and ar 

say 10 as reference value, an increase in ar to 20, 

decreases the term (1+ f(a,b))  from 1.030 to 1.009. The 

differences become smaller for higher aspect ratios and 

the specific surface area becomes virtually independent 

of a for a wide variety of clay minerals. The geometric 

issue is similar to that resulting by cutting a corner of a 

sheet of paper and calculate the specific surface area for 

the corner and the entire sheet; the values are virtually 

the same as the edge area does not significantly 

contribute to the area. Further examination confirm that 

the term (1+f(a,b)) can be simplified as: 

   2

3

1,1 









a

b
baf         (39) 

The computed values from Eq. (39) for aspect ratios 4 

to 20 vary less than 1% with respect to the exact 

formula. The term (b/a)3/2 can be safely assumed to be 0 
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for ar > 20. The area Ao of the oblate spheroid is 

suggested to be computed as: 



























2
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2 12
a

b
aAo          (40) 

The small differences in the specific surface area for 

aspect ratios greater than 6 allow for great advantage in 

characterizing the geometry of clay particles based on 

the specific surface area and rough knowledge of the 

aspect ratios to provide good estimates of the thickness 

by means of Eq. (35). 

7. ANALYSIS 

As a part of these undertaking, a solution for the 

settling velocity of non spherical particles was sought 

by characterizing the tributary volume in the geometry 

domain of non spherical geometries; an approach that is 

a prerequisite to apply the viscosity principle. Oblate 

spheroid geometry was used with the intent to identify a 

characteristic length that would correlate with the size 

and geometric height hg as identified for spherical 

systems without altering the volumetric relationships. 

As previously envisioned, with the previous approach, a 

solution without adding unnecessary complexity was 

found to be very difficult.  The reason for the difficulty 

is that the sought outcome is just as ambitious as to 

derive a characteristic dimension that allows for the 

computation of the entire set of volume mass area 

relationships for non spherical geometries. It is later 

found that the entire system can be better characterized 

in the tributary volume domain without compromising 

rational arguments, dynamics and precision. The latter 

findings are discussed below. 

 

From the basis of the analyses conducted in this paper 

the following issues can be considered factual aspects 

of the geometric relationships between the fluid 

medium and the solids: 

(1) The wall shear is constant through the entire 

surface of the particle. Hence, the tributary 

volume, by the definition τw/hv = P(r), is constant 

through the entire fluid interstice but it varies in 

geometry. 

(2) Despite the differences in geometry of the tributary 

volume the flow regime at any point cannot be 

considered independent of some average condition 

dictated by the constant pressure gradient. This 

condition makes an x,y characterization technically 

feasible  

(3) The characterization of the tributary volume can be 

done independently of a detailed characterization 

in the geometric height domain (this will be shown 

later on this paper).   

(4) The viscosity is an operator in the geometry 

domain. This raises the difficulty of obtaining a 

characteristic length of the solid that correlates 

with the geometry of the fluid medium and the 

driving force at the same time. 

Due to (3) if one sets grounds for an operator in the 

tributary volume domain without compromising the 

operator in the geometry domain (as it is still the 

controlling operator) many difficulties imposed by (4) 

may become removed.   

Let us recover additional information from Eq. (25) 

shown below: 
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Re-writing as a function of the tributary ratio we obtain: 
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Note that between brackets the volume and the area are 

the required parameters, which are known quantities. 

Eq. (42) shows that as long as we can define the volume 

and the area of the particle we can calculate the 

tributary volume without any geometric correlation 

between the solids and the fluid medium which 

confirms the statement in (3). Equation (42) can 

potentially remove some difficulties in (4) to address 

the issue of non spherical geometries; however,         

Eq. (42) still has a serious limitation, e g. a 

characteristic dimension r that correlates   with both, 

the driving force and the geometry of the fluid is not 

available, hence, integration with respect to r is useless. 

Let us define μh as the shear stress per unit velocity 

gradient with respect to the tributary volume h to satisfy 

μh(du/dh) = μ(du/dr) and rewrite Eq. (36) as: 
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μh is an unknown operator. Note that for two concentric 

volumes A and B; B considered an expansion of A, the 

definition of the quantity h and hg for the volumes A 

and B (m3/m2) imply that the greater the expansion is B 

from A the greater is the difference between the 

tributary volume and the geometric “height”, h and hg 

respectively and approximate the same value the 

smaller the expansion is B from A.  In contrast for 

planar surfaces as shown in the examination of the 

viscosity principle h and hg are the same quantity and 

the shear stresses can be quantified as P(r)y or μ(du/dy)  

as hg = y = h at any point leading to the equation: 

 yrP
dy

du
         (44) 

and the integration delivers  u = P(r)y2/(2μ)+C. Setting 

the boundary conditions for the planar flow between 

two plates Eq. (44) turns into Eq. (1). However, for 

particles A and B Eq. (44) is not satisfied.  The tributary 

volume h and y differ from one another by a different 

amount through the entire profile and the velocity with 

respect to the tributary volume du/dh differ from the 

velocity with respect to the distance du/dr by a different 

amount at every point. However, the product μhdu/dh 

must yield the same value as μdu/dr implying that μh 

can not be a constant value. This fact emphasizes that μ 

is still the controlling operator and we are just trying to 
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find a mean to move the same operator to the volume 

domain. Returning to Eq. (43), between brackets we 

have m3/m2 = m. Hence, integration over the tributary 

volume can only lead to:  
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At e = emax u = 0, hence C = 0. Rewriting: 
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Let us denote he, the non spherical expansion, as the 

relationship between brackets in Eq. (46) and rewrite it 

as: 
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Solving Eq. (46) for the maximum velocity at e = 0 we 

obtain: 
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Let us define the maximum non spherical hemax as 

hemax=(emax/3) in Eq. (42) and rewrite it as: 
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and let us bring forward the equation for the settling 

velocity of spherical particles as a function of e from 

Eq. (33): 
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Technically, for a sphere, we can either conduct 

integration through the tributary volume or through r, 

the geometry domain, to obtain the same result. 

Equating both relationships should yield relevant 

information and insights. Let us substitute the 

expansion ξ in Eq. (50) and present the result of the 

equality of Eqs. (46) and (50): 



 2
eh h

         (51) 

μh is not a constant, it varies along the entire profile or 

where the shear stresses are being taken. As e tend to 

emax, μh tends to μ, meaning simply that the relationship 

between the tributary volume and the geometric height 

becomes similar to that of a flat surface in which h and 

hg are the same; note that the ratio he
2/ξ tends to one as 

e tend to emax but it becomes undefined as e = 0. 

Nevertheless, we can write with impunity: 










0001.0

0001.0 2
eh h

        (52) 

 Note also that the greater the tributary volume the more 

it differs from the geometric height; hence, the shear 

stress per unit velocity gradient with respect to the 

tributary volume becomes a greater quantity. This 

should not be taken as to suggest a viscosity that varies 

depending on the geometry of the settling particle; 

instead, is a geometric consequence of moving the same 

controlling operator to the volume domain. It is 

apparent that a small tributary volume being held by a 

large sphere is “flatter” than a large tributary volume 

being held by a small sphere.  As a consequence,       

Eq. (52) offers a mean to decide on the shape of the 

velocity profile based on the geometry of the particle 

itself.  The evolution of μh for a larger sphere can 

successfully portray the flatter tributary volume of the 

flatter particle. This is equivalent to consider the surface 

of a quasi flat particle as a portion of a sphere 

somewhere approaching infinite. Let us deposit the 

amount of water held by a non spherical particle of a 

and b dimensions over a sphere of radius a to obtain the 

pseudo tributary ratio e1 over that sphere as follows:  

a

be
e
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And the maximum pseudo tributary volume e1max takes 

the value: 

a

be
e max

max1          (54) 

It is expected based on the rational provided previously 

that the tributary volume over the particle of radius a is 

flatter, as expected for the non spherical particle.       

Eq. (53) furnishes the capacity to make a statement of 

the flatness of the tributary volume based on the 

geometry of the particle itself. The shear stress per unit 

velocity gradient with respect to the tributary volume 

takes the value: 
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or simply written as: 
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As stated previously if we accomplish our goal on (4) 

of conducting integration over the tributary volume and 

derive an expression for the variation of the shear stress 

per unit velocity gradient with respect to the tributary 

volume we only need to be able to describe the volume 

and the area of the particle. Let us apply our 

morphology model (volume and area) in Eq. (46): 
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Substituting μh according to Eq. (52): 
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Solving for the maximum velocity with e = 0 and e1 = 0 

we obtain: 
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or 
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Equation (60) removes the difficulty induced by the 

absence of a characteristic dimension that correlates 

with the driving force and the geometry of the fluid 

medium at the same time. By means of the relationship 

between the largest brackets in Eq. (57) an appropriate 

quantification of the tributary volume is made and the 

integrity of its relationship with the pressure gradient is 

preserved. Finally, by establishing the variation of the 

shear stress per unit velocity gradient with respect to the 

tributary volume, not only Eq. (52) gives meaning to 

the original integration due in Eq. (43) but also allows 

for a mean to make a statement of the flatness of the 

tributary volume based on the morphology of the 

particle.  

 

Although, simple, Eq. (60) is the result of an intense 

scrutiny of the relationships between the viscosity 

principle, the geometry of the particles and their impact 

to the geometry of the fluid medium. It doesn’t seem to 

incur in any significant violation of the controlling 

dynamics and because of its form could be used for 

many geometries with appropriate considerations for 

the ratio he1
2/ξ1max. Note that the relationship between 

the large brackets in Eq. (57) is the same as he and in 

consequence, for a sphere the ratio he
2/he1

2 cancel and ξ1 

= ξ i.e. the mission of the expansion is the transfer of 

the volumetric domain to the geometry domain that 

allows the use for the single value of viscosity. Finally, 

note that the ratio (0.0001+he1
2)/(0.0001+ξ1) varies 

from 1.00 to 1.63 and from 1.00 to 1.07 for Kaolinite 

and Montmorillonite respectively. 

8. VALIDATION 

Consider the results published by Lu et al. (2000) who 

measured settling velocities of Georgia Kaolinite and 

report highly non spherical geometry with the average 

major dimension within the range of one to three μm.. 

The mean particle taken as an oblate spheroid with 2a = 

2 μm, aspect ratio of 10 and Gs = 2.65. The average 

length as furnished by a “limited representative 

elemental volume” by Scaning Electron Microscopy 

(SEM) analysis and the aspect ratio and specific gravity 

are representative values for the given mineral. 

Additional measurements by Lu et al. (2000) include 

mica particles (“platy flakes”) of relatively uniform 

thickness between No. 200 and No. 325 sieves (75 μm  

and 43 μm respectively) and Gs ≈ 2.82. SEM images of 

the tested samples are also presented in the subject 

paper showing an approximate average thickness in the 

order of 7μm and elongated particles exceeding by far 

the nominal range.  The minimum and greatest length 

can be taken as being 43 μm and 100 μm with mean 

particle size of 71 μm. For the geometry model the 

particles are taken as coin like structures. Note that for 

the specific gravities used, the maximum tributary ratio 

emax computed from Eq. (31) and the pressure gradient 

of 991 N/m3 takes the values of 17.25 and 18.01 for 

Georgia kaolinite and mica respectively. Another set of 

experimental values from settlement experiments to 

consider are those presented by Pruett and Webb (1993) 

and Żbik and Smart (1998). Pruett and Webb state that 

“SediGraph 5100 particle size measurements indicate 

KGa-IB is 57.8% <2 μm and 32.0% <0.5 μm whereas 

KGa-1 is 47.3% <2 μm and 21.4% <0.5 μm.”.  Żbik and 

Smart summarize the general description of KGa-1 as 

“Ninety percent by weight of the particles have an 

equivalent spherical diameter less than 2 μm with a 

median particle size of 0.7 μm and specific surface area 

of 15.3 ± 0.5 m2/gr (BET nitrogen adsorption)”. Pruett 

and Webb report BET surface area measurements of 8.4 

and 11.7 m2/gr for KGa-1 and KGa-1B respectively. 

Reported ranges of aspect ratios for KGa-1 from Brady 

et al. (1996) and Żbik and Smart (1998) are 2 to 10 and 

4 to 8 respectively. The median particle size of 0.7 μm 

described by Żbik and Smart fall well within the 

measured particle sizes.   

    

For validation purposes two scenarios are considered. 

In the first scenario, the known general morphology of 

the particles will be used to assess the validity of the 

portrayed dynamics and flow model. In the second 

scenario it is assumed that there is no knowledge of the 

geometry in order to find what is there to reveal about 

the morphology from the settling velocity.  

 

Assuming a standard temperature of 15 Co the 

measured settling velocity for the size defining 50 % 

finer by Lu et al. (Stokes’ radius ≈ 0.275 μm) of 

Georgia kaolinite is in the order of 2.7×10-7 m/s. If we 

assume knowledge of the aspect ratio only in the order 

of 10 in Eq. (60), the oblate spheroid has dimensions 2a 

= 1.86 μm and 2b = 0.186 μm. Note the close 

agreement with the SEM analysis. Considering an 

aspect ratio of 9 for KGa-1 median particle reported by 
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Żbik and Smart (0.7 μm equivalent diameter) is an 

oblate spheroid of dimensions 2a = 2.26 μm and 2b = 

0.25 μm. Using coin like structures for the mica 

particles and a thickness of 6.7 μm Eq. (60) satisfies for 

the mean particle velocity of 5.7 ×10-4 m/s. Variation of 

the thickness from 2 to 8 μm satisfy for the entire range 

of experimental values.  

 

For the second scenario note also that a thickness for 

the large aspect ratio particle and an equivalent 

diameter can also be easily computed for any velocity. 

Equation (60) turns into the settling velocity of spheres 

as portrayed by Eq. (34) for either coins or the oblate 

spheroid model when the aspect ratio is 1. As there is 

always an equivalent sphere for a flat particle one can 

write: 
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hence, 
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The fraction on the right depends only on the aspect 

ratio for the given temperature and fluid.  Note the role 

of the expansion and the tributary ratio to account for 

different densities of solids and fluid. Let us return to 

the experimental results to note that the 0.7 and 0.5 μm 

size particles of kaolinite (Gs = 2.62) described at 

assumed temperature of 15o C settled at approximately 

0.380 and 0.194 μm/s respectively. By means of        

Eq. (62) the simple graph shown in Fig. 2 defines the 

general geometry of all the oblate spheroids and coins 

settling at the given velocities.  

 

Fig. 2. Combination of aspect ratio thickness of 

particles with Gs = 2.62 settling at 0.380 and 0.194 

μm/s for coins and oblate spheroids. 

 

Based on TEM micrographs Żbik et al. (2007) 

describes the course fraction of KGa-1 as “pseudo-

hexagonal in shape plates a few micrometers in size”. 

Żbik and Frost (2009) show an SEM image showing the 

finest colloidal fraction of KGa-1. The clay particles are 

pseudo hexagonal euhedral crystals of approximately 

0.75 μm in major dimension with a few exceptions in 

the range of 0.14 to 0.35 μm.  Żbik and Frost inferred 

an average aspect ratio of 5.3. Note also that the range 

of particle sizes for “as shipped” KGa-1 may range in 

the order of 0.1 to 40 μm (Chipera and Bish 2001) in 

equivalent diameter and the sample may contain "larger 

stacks and defoliated pseudo-hexagonal in shape plates 

a few micrometers in size" Żbik et al. (2007).  Using 

the ranges of aspect ratio given in the literature, Eq. 

(62), as noted in Fig. 2 is in good agreement with the 

observed morphology. Given that the velocity profile is 

modeled along the flatter side of the particle the good 

agreement also suggests that, as expected, the particles 

settle along its long axis. Equation (62) embraces the 

discussion regarding the influence of particle size and 

shape in settling phenomena to furnish great advantage 

in sedimentation analysis.  It also adds practical 

significance to the research effort in morphology and 

specific surface area of clay particles.  

 

9. CONCLUSION 

From the beginning of the study of the principles of 

fluid dynamics the impact of the kinetic energy, 

pressure drags and the viscosity concepts has been 

naturally linked to the forces mobilized by fluids 

against solid objects or vice versa. For large particles or 

objects logical and experimental evidence show that the 

motion occurs by displacement of fluid by the kinetic 

energy and in a smaller quantity by viscous shear. It is a 

natural approach to use the same logic for creeping 

motion. However, this paper suggests and substantiates 

that in creeping motion the displacement of fluid occurs 

by shear rates only, i.e. the shear resistance of the fluid 

is comparable with the shear stress mobilized by the 

particle. The equilibrium condition is satisfied by the 

transfer of the force to the fluid medium in the form of 

a pressure gradient and the magnitude of the pressure 

gradient is the result of the contest of the body forces 

against the shear forces. Not only the flow model 

derived in this paper provides useful insights of the 

fluid dynamics in creeping motion but also provided a 

rational approach to derive a flow model for non 

spherical particles in creeping motion. The model 

shows that settlement analysis of natural occurring 

materials can be performed with very basic knowledge 

of their morphology and embrace the influence of 

particle size and shape in sedimentation phenomena. 
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