
 

 
Journal of Applied Fluid Mechanics, Vol. 4, No. 4, pp. 77-83, 2011. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.36884/jafm.4.04.11949 
 

 

Solutions in Variably Inclined MHD Flows 

C. S. Bagewadi1  and S. Bhagya2† 

1Department of Studies in Mathematics, Kuvempu University, Jnana Sahyadri, -577 451, Shimoga, India 
2Department of Mathematics, P.E.S. College, Bangalore-560 050, India 

†Corresponding Author Email: bhagyapes@yahoo.co.in 

(Received October 8, 2009; accepted August 3, 2010) 

ABSTRACT 

We study the plane MHD flows when the velocity and magnetic fields are variably inclined and investigate the steady 

viscous incompressible flow problems of a fluid having infinite electrical conductivity in the presence of a magnetic 

field. Accounting for infinite electrical conductivity makes the flow problem realistic and attractive because the 

magnetic Reynolds number is very small for most liquid metals. Particular problems are discussed when magnetic 

lines are variably inclined but nowhere aligned with streamlines, when the fluid is viscous and non-viscous. 

Streamlines are parabolic as shown in the graphs. 
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1. INTRODUCTION  

A vast amount of research has been carried out on the 

motion of electrically conducting fluids, moving in a 

magnetic field.  Mathematical complexity of the 

phenomenon induced many researchers to adopt a 

rather useful alternate technique of investigating special 

classes of flows such a aligned or parallel flows, 

crossed or orthogonal flows, constantly inclined flows 

and transverse flows. Chandna and co-workers 

(1979,1982,1989,1990) studied finitely conducting 

orthogonal magneto hydrodynamic plane flows.  In 

which they discussed that the velocity and magnetic 

field vectors are mutually orthogonal everywhere in the 

flow region. Bagewadi and Siddabasappa (1993,1995) 

have studied Steady plane rotating MHD flows by using 

differential geometry technique and hodograph 

transformation. Bagewadi and Bhagya (2004) 

investigated the Behavior of streamlines in aligned flow 

by using differential geometry technique and hodograph 

transformation. Bagewadi and Bhagya (2006) obtained 

solutions for second grade fluid in ( , ) net, where 

 (x, y) = constant, an arbitrary family of curves and 

 (x,y) = constant stream lines. The solutions for 

steady plane orthogonal flow of second grade fluids 

using complex variable techniques were carried out by 

Bagewadi and Bhagya (2007). Rahmati and 

shrafizaadeh (2009) analyzed a 19-bit Incompressible 

Generalized Lattice Boltzmann (IGLB) method for 

three-dimensional incompressible fluid flow simulation. 

Equilibrium moments in moment space are derived 

from an incompressible BGKLB method. Very recently 

Anjali Devi and Ganga (2010) analyzed MHD flow 

with heat transfer in a porous medium over a stretching 

porous   surface  with   viscous   and   Joule  dissipation  

 

effects. The present paper investigates the steady 

viscous incompressible flow problems of a fluid having 

infinite electrical conductivity in the presence of a 

magnetic field.  Since the magnetic Reynolds number is 

very small for most liquid metals, our accounting for 

infinite electrically conductivity makes the flow 

problem realistic and attractive from both a 

mathematical and a physical point of view. 

 

The plan of this paper is as follows; in section 2, the 

basic equations are formulated by using the stream 

function and the equations written in magnetic flux 

function.  In section 3, Cartesian plane for inclined 

flows.  In section 4, we discussed two problems for 

parallel straight streamlines and magnetic lines. 

2. BASIC EQUATIONS 

The steady plane flow of an incompressible electrically 

conducting viscous fluid of infinite electrical 

conductivity is governed by the following system of 

equations, Chandna and co-workers (1989) 

0vdiv                                         (2.1) 

vvv 2

Re

1
)((  HcurlHHRgradpgrad)  (2.2)                                                                

0( H)vcurl                                                         (2.3)  

0Hdiv                                                                   (2.4)                         

where v  the velocity vector field, H the magnetic field 

vector, p the pressure function,  Re the Reynold number 

and  RH the magnetic pressure number.  We write (2.1) 

to (2.4) in Cartesian co-ordinate system 
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kvHuH  12                                       (2.8)                                                                       
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where 
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0
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v
v   are non dimensional velocity 

component, ,
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1
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H
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0

*
2
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H
H  are the non 

dimensional components of the magnetic field and 

2
0

*
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p
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
  is the non dimensional pressure function.  

Re=


 LU0  and 
2
0

2
0

U

H
RH




 are respectively the flow 

Reynolds number and the magnetic pressure number.   

 

The constant k is an arbitrary constant and ),( yx  is 

the angle between the velocity vector v and the 

magnetic vector H at any point (x,y).  The constants L, 

U0 and H0 are characteristic length, speed and magnetic 

field strength respectively. 

 

Introducing the two-dimensional vorticity function  , 

the current density function j and energy function e 

defined by 
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where q2=u2+v2, the above system of equations is 

replaced by the following system;         
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of seven equations in seven unknowns u, v, H1, H2,  , 

j and e as function of x, y.  The advantage of this 

system over the system of Eqs. (2.5) to (2.9) is that the 

order of the partial differential equations has decreased 

from two to one. Martin (1971) has, with much success, 

used a similar reduction of order to study viscous non-

MHD flows. 

3. INCLINED PLANE FLOWS 

We consider variably inclined plane flows and let  (x, 

y) be  the variable angle such that   (x, y) 0 for 

every (x, y) in the flow region.  The vector and scalar 

products of v and H, using the diffusion equation in 

(2.13), yield       

 kqHvHuH  sin12  

 cotcos21 kqHvHuH                               (3.1)   

where 22 vuq  and 2
2

2
1 HHH  .           

 

Considering these as two linear algebraic equations in 

the unknowns H1, H2, we solve for H1, H2 in terms of u, 

v and  .  We have  

)cot(),cot(
2221 uv

q

k
Hvu

q

k
H             (3.2)          

One can eliminate  H1 and  H2 from the system of     

Eqs. (2.11) to (2.16) by using Eq. (3.2) and obtain a 

system to be solved for u, v, e,  , j and    as 

functions of x, y.  Eliminating   H1 and H2 from the 

system of Eqs. (2.11) to (2.16), by using (3.2), we 

obtain the following system of six partial differential 

equations 
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For six unknown functions u, v, j,  , e,   of x, y.  

Once a solution of this system is determined, the 

pressure and the magnetic field are obtained by using 

the definition of e in (2.10) and Eq. (3.2) respectively.  

 

The equation of continuity (3.3) implies the existence of 

a stream function  (x,y) such that        

udyvdxd   
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(3.8), it follows that Eq.(3.3) is identically satisfied and 
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Equations (3.12) and (3.15) form a system of two 

equations in two unknown functions  (x,y) and 

 (x,y) after   and j are eliminated from  these  

equations by employing their expressions from (3.13) 

and (3.14).  Given a solution of this system, the velocity 

field u, v is  given  by (3.9), the vorticity   is given by 

(3.13), the current density j is given by (3.14), the 

magnetic field is  given by (3.2) and e is given by the 

integration of (3.10) and (3.11).  Finally, the pressure 

function is determined from (2.6) and (2.7). 
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form  a system of two equations  in two unknown 

functions.  (x, y) and   (x, y)  after  and j are 

eliminated from these equations by employing (3.26) 

and (3.27).  Given a solution   of this system the 

magnetic field is given by (3.23), the vorticity by 

(3.26), the current density by (3.27), the velocity field 

by (3.16) and e by the integration of the linear 

momentum Eqs. (3.4) and (3.5).  Finally the pressure 

function is determined from (2.6) and (2.7). 

4. APPLICATIONS 

4.1 Problem 1 

Next we investigate that, when the magnetic lines are 

variably inclined but no where aligned with the 

streamlines.  Also we discuss when the magnetic lines 

are constantly inclined but non-aligned with the 

streamlines.   

 

We assume that                    
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(y)  0                                                 (4.1) 
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(y) is the derivative with respect to the 
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Eliminating  ,   and j  from the Eqs. (3.12) and 

(3.15) by using their expressions from (4.1) and (4.2), 

we find that G(y) and cot must satisfy 
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Solving (4.3), we have  
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Where F(y) is an arbitrary function of y. Employing this 

expression for cot  in Eq. (4.4), we obtain that the 

functions G(y) and F(y) must satisfy 
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Since this equation must hold true for all x, the 

coefficients of powers of x must be zero.  Hence, the 

functions G(y) and F(y) must satisfy the two equations. 
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in Eq. (4.8), Eq. (4.8) is replaced by      
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For the determination of G(y) and F(y) such that G(y) 

satisfies (4.9), and F(y) satisfy (4.7), we have the 

following possible two Cases;             
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4.1.1 Case (1) 

 If )('' yG =0 

11)( ByAyG                                               (4.10) 

Where A1 0 and B1 are arbitrary constants. 

22)( ByAyF                                                     (4.11) 
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Where A2  0 and B2 are arbitrary constants. 

Employing (4.10) and (4.11) in (3.9), (4.5), (4.2) and 

(3.2), we have 
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We use these solutions in the linear momentum         

Eq. (2.12) and find e by integrating these equations.  

Having found e, we use (2.6) and (2.7) to find the 

pressure function given by  
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4.1.2 Case (2) 
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Where c2 0 and c1 are two arbitrary constants. 

Choose c1=0 results in case (1).  Using (4.14) in (4.7), 

we find that F(y) satisfies the differential equation  
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Solving this linear equation, we have  
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Where c3 and c4 are arbitrary constant.  Using (4.14) 

and (4.15) in Eqs. (3.9), (4.5), (4.2) and (3.2), we get  
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 (4.16)               

Using (4.16) in linear momentum equations and 

integrating for p, we obtain                                     
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   (4.17)                                                                                                                                                                                                          

4.2 Results for Problem 1 

If the streamlines in a steady plane flow of an 

electrically fluid of infinite electrical conductivity are 

parallel straight lines and the magnetic lines are 

variably inclined to the streamlines in the flow plane 

then 

(i) The possible magnetic lines pattern is of the form  

2x-A3y2-2A4y=constant                                          (4.18) 

and                                           
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(ii) The solutions to the flow problem are given by Eqs.  

(4.12) and (4.13) or (4.16) and (4.17) according as the 

magnetic lines are the family of curves (4.18) or (4.19).   

 

Figure 1 represent the graph of the Eq. (4.18), which are 

magnetic lines pattern are represented by a parabolic 

form.  

 

 

Fig.1. Magnetic line pattern of 
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4.3 Problem 2 

When the magnetic lines are variably inclined but 

nowhere aligned with the streamlines for non-viscous 

fluid flows.  We assume  

0)(')(),(  ygandygyx                   (4.20) 
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Substituting (4.20) in Eqs. (4.26) and (3.27), we obtain                 
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Employing (4.20) and (4.21) in Eqs. (3.24) and (3.25), 

we find that the unknown functions g(y) and  (x, y) 

must satisfy                     
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solving (4.22) and (4.23), we obtain 
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Where f(y) is an arbitrary function of y.  Since           

Eq. (4.25) must hold true for all x, it follows that g(y) 

and f (y) must satisfy 
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There are two possible cases from (4.26) and (4.27) that 

is,  
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4.3.1 Case  (1) 
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Where b1, b2, b3 and b4 are arbitrary constants.  

Employing (4.28) in (3.23), (4.24), (4.21) and (3.16), 
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4.3.2 Case (2) 
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where d1, d2, d3, d4 and d5 are arbitrary constants.  

Employing (4.30) and (4.31) in (3.23), (4.24), (4.21) 

and (3.16), we obtain             
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4.4 Results for Problem 2 

If the magnetic lines in a steady plane flow of an 

electrically conducting non viscous fluid of infinite 

electrically conductivity are straight lines parallel to x-

axis and the streamlines are variably inclined to the 

magnetic lines in the flow plane, then  

(i) The possible streamline pattern is of the form  

 ybybx 4
2

3 22 Constant                                 (4.33)  

and     

 )2exp()(22 154111 yddydddxd Constant (4.34)  

 (ii) The solution to the flow problem are given by the 

Eqs. (4.29) or (4.32) according to the streamlines (4.33) 

or (4.34) respectively. 
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Figure 2 represent the graph of the Eq. (4.33), which is 

streamlining pattern represented by a parabolic form. 

Figure 3 represent the graph of the Eq. (4.34), which is 

streamline pattern.  

 

Fig. 2. Streamline pattern of 

1

1541

2

)2exp()(21

d

yddydd
x


  

 

Fig. 3. Streamline pattern of 

2

21 4
2

3 ybyb
x


  

5. CONCLUSION 

MHD flows when the velocity and magnetic fields are 

variably inclined are analyzed. In problem 1, when the 

magnetic lines are variably inclined but nowhere 

aligned with the streamlines and the magnetic lines are 

constantly inclined. In problem 2, If the magnetic lines 

in a steady plane flow of an electrically conducting non 

viscous fluid of infinite electrical conductivity are 

straight lines parallel to x-axis and the streamlines are 

variably inclined to the magnetic lines in the flow 

plane. The parabolic nature of streamlines and magnetic 

lines are presented in the graphs. 
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