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ABSTRACT 

In the present study, we investigate the flow of a paramagnetic fluid in a two dimensional heated channel when an 

external magnetic gradient is imposed. In the fully developed regime, an analytical solution shows that a flow 

reversal may occur; the condition of this is given n terms of the Reynolds number. Numerical simulations are then 

carried out for more general situations. It is shown that the analytical model gives good qualitative predictions. 
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1. INTRODUCTION 

The ability to control flow and heat transfer in 

electrically conductive fluids has long been recognized 

(Amaouche et al. 2005; Amaouche et al. 2007; Ghosh 

2001). In the case of paramagnetic non conducting 

fluids where the Lorentz force is useless, it has been 

shown that Kelvin forces can be used efficiently in 

many situations (Yang et al. 2003; Akamatsu et al. 

2003; Khaldi et al. 2005; Sophy et al. 2005; Khaldi et 

al. 2001; Uetake et al. 2000). Further, the variation of 

the magnetic susceptibility (and thus of Kelvin forces) 

with temperature according to Curie-Weiss law (in the 

case of paramagnetic fluids), allows the possibility to 

generate and control the fluid motion. One of the first 

experimental evidence of this phenomenon has been 

made in 1991 (Braithwaite et al. 1991). Since then, 

many studies have been done as the applications are 

numerous in many fields. Recent advances in material 

science have allowed for the commercial manufacture 

of rare earth permanent magnets with strengths on the 

order of or even greater than 1 Tesla. This allows the 

possibility of i) generating magnetoconvection with a 

sufficient effect in microgravity environment or ii) 

control of natural and forced convection. When the 

considered fluids have low or small conductivity, the 

magnetic Reynolds and Prandtl numbers are small and 

the induced magnetic fields are negligible compared to 

the exterior magnetic field. The additional body force 

can then be deduced from the concept of free energy of 

Helmholtz (Landau et al. 1960) and can be written (in 

the presence of a gradient of magnetic field) in the 

form: 
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Where and are respectively the magnetic 

susceptibility and permeability of vacuum which are 

related to the medium permeability  by the following 

relations:  1r   and
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The main goal of this paper is to show that a magnetic 

field can cause the reversal of flow in a channel. For 

one, an analytical model is developed in the case of a 

fully developed flow leading to the definition of a 

reversal condition. Secondly, numerical results are 

presented for more general and realistic situations 

where the reversal phenomenon is highlighted. 

2. PROBLEM STATEMENT 

Consider the flow of a paramagnetic fluid in a channel 

sketch in Fig. 1. Suppose that the walls are maintained 

to temperature T1 and T2 with T1>T2. A magnet device 

provides a non uniform magnetic field shown in Fig. 2. 

Temperature gradient in the fluid leads to a spatial 

inhomogeneity of the Kelvin force (Eq.1). This force is 

always headed in the direction of higher magnetic 

fields, but is more intense on fresh air near the cold 

wall.  

 

Fig. 1. Schematic configuration of the channel problem 

in presence of magnetic gradient field 
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Fig. 2. Calculation domain with boundary conditions 

and truncate rule 

3. FULLY DEVELOPED ANALYTICAL 

SOLUTION 

If we suppose the existence of a fully developed flow, 

the governing equations of the problem are:  
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Assume now that T=Tr+where Tr is a given 

temperature of reference. At first order one can writes: 
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By using the following variable changes: ;
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Prandtl number Pr=,  the Eqs. (3) and (4) become: 
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In fully developed flow, 
*dP

dX
is constant and  is a 

function of Y only (see Annex). If we suppose that the 

fluid is flowing in the positive direction and that R is 

constant (as it is the case in experimental conditions of 

Braithwaite et al. (1991), for example) and that Tr=T2, 

it can be shown that the analytical solutions are: 
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where:  2 1
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The previous form of adimensional speed clearly shows 

that situations may exist where the flow is reversed. 

They correspond to cases where: 

'(0) '(1) 0U U                                                            (12) 

This condition leads to: 
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Expressed in terms of Reynolds number, the previous 

condition leads to the following inequalities (according 

to the sign of R): 
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Reintroducing to the physical variables (and by using 

the definition of R) these inequalities now read: 
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The flow reversal is therefore possible when the 

imposed inlet velocity is smaller than a given quantity 

whatever the sign of R: i) For a negative value of R, the 

magnetic forces are opposite to the flow direction and 

they act with more strength on cold fluid (because of 

the higher susceptibility of cold air). A reversal of the 

flow can occur when these magnetic forces are strong 

enough to produce an opposite motion which begins in 

the boundary layer where the velocity of fresh air is 

small ii) Even if not so intuitively evident, the model 

shows that the flow reversal is also possible for positive 

values of R while obviously the magnetic force is 

headed in the direction of the flow.  

 

Equation (12) shows that in this case the pressure 

gradient becomes positive while at the same time the 

flow is still in the positive direction. The reason of this 

seems more subtle: Kelvin forces act to accelerate the 

flow but this acceleration is not uniform (stronger for 

fresh air, smaller for hot air); when these forces 

themselves are more than sufficiently strong to assume 

the generation of a flow as important as the imposed 

flow itself, by virtue of the mass conservation principle, 

a flow reversal takes place in the hot side. 

 

The strong acceleration of fresh air (relatively to hot air 

acceleration) can lead to deform enough the velocity 

profile so that the net positive flow is entirely 

monitored by the cold side of the duct.  

 

In order to get more insight on this phenomenon, this 

analytical model is confronted to two dimensional 

numerical experiments in the following sections. 

4. NUMERICAL VALIDATION  

Eliminating the pressure terms, the two-dimensional 

Navier-Stokes (where the external magnetic force is 

introduced) and energy equations can be written as 

follows: 

                                                                (16)       (16) 
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Where
0

.h

U


   and 

0hU


  are the adimensional 

vorticity and streamfunction.  

 

The calculation domain (H*L) with L/H=5 has been 

discretized with regular grids and the equations (16-18) 

have been solved by using a finite difference method. 

As shown in Fig. 2, Dirichlet and Neuman boundary 

conditions are used for streamlines and temperature for 

several magnetic conditions. -production takes place 

at walls and Eq. (17) describes diffusion and convection 

of this vorticity in the interior flow region. Boundary-

values of vorticity at walls are obtained by using the 

conventionally first-order accurate formula. It takes the 

following form at the bottom wall:   

   2

1 , 1 , 22j i j i j Y       , where i, j are the 

classical indexes and Y, the vertical grid step. The 

simulations have been carried out with air as working 

fluid  (=1.56 10-5 m²/s, Pr=0.71) and with a reference 

temperature T2=T0=293K .  

 
(a) 

 
(b) 

Fig. 3. Velocity profiles for Re=30 and constant values 

of R: a) R=-2.105 and b) R=2.105 (r=0.98294, Condition 

(14) satisfied: Re=30 < 47.378) 

4.1 Uniform Magnetic Gradient (Constant 

Value of R) 

Let us suppose first that the magnetic gradient is 

constant, which is one of the assumptions used in the 

analytical model. Following Eq. (8), results are 

presented with negative and positive values of R fixed 

to R=±2.105, and R=±1.105 while the temperature 

difference is (T1-T2) =5K leading to r= 0.98294. 

 

For Re=30, R=±2.105, the inequalities (14) are satisfied 

(Re < 47.378). The velocity profiles at the channel exit 

are presented on Fig. 3 where it can be seen that the 

numerical results match perfectly the analytical model 

and that the flow reversal is indeed obtained. This is 

confirmed by the streamlines shown on Fig. 4 where the 

formation of a recirculation bubble is evidenced. 

 

For Re=30, R=±1.105, the inequalities (14) are not 

satisfied (Re>23.689); the analytical model does not 

predict a reversal as it can be seen on the velocity 

profiles of Fig. 5. The streamlines presented on Fig. 6 

show that the flow is just deflected in the channel. 

 
(a) 

 
(b) 

Fig. 4. Streamlines for Re=30 and constant values of R: 

a) R=-2.105 and b) R=2.105 (r=0.98294, Condition (14) 

satisfied: Re=30 < 47.378) 

 

 
(a) 

 
(b) 

Fig. 5. Velocity profiles for Re=30 and constant values 

of R: a) R=-1.105 and b) R=1.105 (r=0.98294, Condition 

(14) not satisfied : Re=30 < 23.689) 
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(a) 

 
(b) 

Fig. 6. Streamlines for Re=30 and constant values of R:  

a) R=-1.105 and b) R=1.105 (r=0.98294, Condition (14) 

not satisfied : Re=30 < 23.689) 

 

4.2 Channel in the Air Gap of Two Large 

Magnets Bar 
 

We now consider a more realistic situation where a 

portion of the channel is placed in the air gap of two 

magnet bars as shown on Fig. 7. The magnetic field is 

calculated according to the analytical solution of 

(Manikonda et al. 2006). We note S the adimensional 

dimension of the magnet faces and the distance between 

the two magnets is fixed to 1.02. We also assume that 

rare earth permanent magnets of 1.25 T. the axial line 

of magnetic device of is placed at the inflow channel, 

generating a magnetic field that decrease from the axial 

line to exterior of air gap, and from the vicinity of 

magnet faces to the axial line of the channel. The 

gradient of magnetic field is not uniform and is very 

wide in the vicinity of the corner of magnet bars (X=3). 

 

Fig. 7. Induction lines produced in the air-gap of 

magnet bars of adimensional inner section S=6, the 

magnetic axis is centred at X=0  

 

Fig. 8. Streamlines in the presence of magnet bars for 

S=6 and estimation of inequality (14), Re=10, 

r=0.98294 Physical dimensions : B0=1.25T, h=1.5cm 

U0=1.04cm/s, (T1-T2)=5K   

 

The streamlines are presented on Fig. 8 for Re=10 

(h=1.5cm, U0=1.04cm/s and (T1-T2)=5K); a 

recirculation bubble in the vicinity of magnet corner 

near the cold wall (as predicted by the analytical model 

in this case) is developed. Even if the fully developed 

flow regime does not exist in the studied problem, we 

propose here to extend the scope of the analytical model 

by defining Rmean(X), the average section value of the 

parameter R (Eq. (8)). This approach allows the 

evaluation of condition (14) as given in the upper part 

of Fig. 8. It can be seen that the satisfaction of the 

inequality (14) predicts accurately the beginning of the 

flow reversal, but underestimates the length of the 

bubble. It is worth noting that the central position of the 

bubble is located where the magnetic field gradient is 

maximal, at the exact level of exit of the air-gap. 

 

To go further in the extension of the model, the velocity 

profile given by Eq. (10) is estimated by using the 

average value Ravg, in the region where the inequality 

(14) is satisfied. It can be seen in Fig. 9, that the model 

is not too bad to qualitatively approach the profile the 

more marked by backflow effect, but in absence of fully 

developed regime, the effect is a little overestimated by 

the model. 

 
Fig. 9. Velocity profiles for Re=10, r=0.98294 and Ravg 

=-93501 Physical dimensions : B0=1.25T, h=1.5cm 

U0=1.04cm/s, (T1-T2)=5K 

 

We now turn to examine a situation where the magnet 

axis is placed after the inflow section namely at X=5 in 

Fig. 10; the magnetic field gradient is positive when 

X<5 and negative when X>5. The two predictable 

recirculation bubbles are once again obtained by 

simulations when the strength of Kelvin forces is strong 

enough. As shown on Fig. 11, they occur in the vicinity 

of the inlet section (along the hot wall) and of the outlet 

of the magnet air-gap (along the cold wall). As before, 

the satisfaction of the inequality (14) predicts accurately 

the beginning of the reversal, but underestimates the 

size of the bubbles. The central position of the cold 

bubble seems to be located at the exact level of exit of 

the air-gap as it was observed in the precedent 

simulation. 

 

Fig. 10. Induction lines produced in the air-gap of 

magnet bars of adimensional inner section S=6, the 

magnetic axis is centred at X=5 
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In turn, the central position of the hot bubble is not 

located where the magnetic field gradient is maximal 

and is delayed downstream the inlet of the air gap. An 

argument that can explain this can be advanced by 

looking the evolution of the right member of inequality 

(14) (given in the upper part of Fig. 11). The spatial 

evolution of this term is very stiff at the inlet of the 

magnet device while it evolves more progressively 

when the flow approaches the exit of air gap. Velocity 

profiles for the inlet and outlet sections of magnetic air-

gap are presented on Fig. 12 together with those given 

by the extended analytical model. A good agreement 

with the model is observed at the outlet (X=8). The inlet 

profile (at X=2) does not match so well because of the 

delayed formation of the recirculation bubble. 

 

 

Fig. 11. Streamlines in the presence of magnet bars of 

adimensional inner section S=6, centred at X=5 and 

estimation of inequality (14), Re=10, r=0.94883 

Physical dimensions: B0=1.25T, h=1cm, U0=1.56cm/s, 

(T1-T2)=15K   

 

Fig. 12. Velocity profiles for Re=10, r= 0.94883 and 

Ravg = ±36705; Physical dimensions: B0=1.25T, h=1cm, 

U0=1.56cm/s, (T1-T2) =15K   

5. CONCLUSION 

It was shown that an external magnetic field could lead 

to the partial reversal of the airflow in a two-

dimensional channel. A simplified model has been used 

to highlight the condition of inversion confirmed by 

numerical simulations. Although present results are 

obtained from simplified analytical and numerical 

models, we believe that the present study will shed the 

light on the behaviour of flows of paramagnetic fluids. 

Applications can be found in microfluidics and in low 

gravity environments. 
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