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ABSTRACT 

The objective of this paper is to analyze the effect of mass transfer on unsteady hydromagnetic free convective flow 

of a viscous incompressible electrically conducting fluid past an infinite vertical porous plate in presence of constant 

suction and heat source. The governing equations of the flow field are solved using multi parameter perturbation 

technique and approximate solutions are obtained for velocity field, temperature field, concentration distribution, skin 

friction and the rate of heat transfer. The effects of the flow parameters such as Hartmann number M, Grashof number 

for heat and mass transfer Gr, Gc; permeability parameter Kp, Schmidt number Sc, heat source parameter S, Prandtl 

number Pr etc. on the flow field are analyzed with the help of figures and tables. It is observed that a growing 

Hartmann number or Schmidt number retards the mean velocity as well as the transient velocity of the flow field at 

all points. The effect of increasing Grashof number for heat and mass transfer or heat source parameter is to 

accelerate both mean and transient velocity of the flow field at all points. The mean velocity of the flow field 

increases with an increase in permeability parameter while the transient velocity increases for smaller values of Kp 

(1) and for higher values the effect reverses.  A growing Hartmann number decreases the transient temperature of 

the flow field at all points while a growing permeability parameter or heat source parameter reverses the effect. The 

Prandtl number increases the transient temperature for small values of Pr (1) and for higher values the effect 

reverses. The effect of increasing Schmidt number is to reduce the concentration boundary layer thickness of the flow 

field at all points. The problem has some relevance in the geophysical and astrophysical studies. 
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1. INTRODUCTION 

The phenomenon of hydromagnetic flow with heat and 

mass transfer in an electrically conducting fluid past a 

porous plate embedded in a porous medium has 

attracted the attention of a good number of investigators 

because of its varied applications in many engineering 

problems such as MHD generators, plasma studies, 

nuclear reactors, oil exploration, geothermal energy 

extractions and in the boundary layer control in the field 

of aerodynamics. Heat transfer in laminar flow is 

important in problems dealing with chemical reactions 

and in dissociating fluids. 

 

In view of its wide applications, Hasimoto (1957) 

initiated the boundary layer growth on a flat plate with 

suction or injection. Soundalgekar (1974) showed  the  

effect  of  free  convection  on steady MHD flow of an 

electrically conducting fluid past a vertical plate. 

Yamamoto and Iwamura (1976) explained the flow of a 

viscous fluid with convective acceleration through a 

porous  medium. Mansutti et al. (1993) have   discussed  

 

the steady flow of a non-Newtonian fluid past a porous 

plate with suction or injection. Jha (1998) analyzed the 

effect of applied magnetic field on transient free 

convective flow in a vertical channel. Chandran and his 

associates (1998) have discussed the unsteady free 

convection flow of an electrically conducting fluid with 

heat flux and accelerated boundary layer motion in 

presence of a transverse magnetic field. Acharya et al. 

(1999) have reported the problem of heat and mass 

transfer over an accelerating surface with heat source in 

presence of suction and blowing. 

 

The unsteady free convective MHD flow with heat 

transfer past a semi-infinite vertical porous moving 

plate with variable suction has been studied by Kim 

(2000). Singh and Thakur (2002) have given an exact 

solution of a plane unsteady MHD flow of a non-

Newtonian fluid. Sharma and Pareek (2002) explained 

the behaviour of steady free convective MHD flow past 

a vertical porous moving surface. Singh and his co-
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workers (2003) have analyzed the effect of heat and 

mass transfer in MHD flow of a viscous fluid past a 

vertical plate under oscillatory suction velocity. 

Makinde et al. (2003) discussed the unsteady free 

convective flow with suction on an accelerating porous 

plate. Sarangi and Jose (2005) studied the unsteady free 

convective MHD flow and mass transfer past a vertical 

porous plate with variable temperature. Das and his 

associates (2006) estimated the mass transfer effects on 

unsteady flow past an accelerated vertical porous plate 

with suction employing finite difference analysis. Das 

et al. (2007) investigated numerically the unsteady free 

convective MHD flow past an accelerated vertical plate 

with suction and heat flux. Das and Mitra (2009) 

discussed the unsteady mixed convective MHD flow 

and mass transfer past an accelerated infinite vertical 

plate with suction. Recently, Das and his co-workers 

(2009) analyzed the effect of mass transfer on MHD 

flow and heat transfer past a vertical porous plate 

through a porous medium under oscillatory suction and 

heat source. More recently, Das et al. (2010) 

investigated the hydromagnetic convective flow past a 

vertical porous plate through a porous medium with 

suction and heat source.  

 

The study of stellar structure on solar surface is 

connected with mass transfer phenomena. Its origin is 

attributed to difference in temperature caused by the 

non-homogeneous production of heat which in many 

cases can rest not only in the formation of convective 

currents but also in violent explosions. Mass transfer 

certainly occurs within the mantle and cores of planets 

of the size of or larger than the earth.  In the present 

study we therefore, propose to analyze the effect of 

mass transfer on unsteady free convective flow of a 

viscous incompressible electrically conducting fluid 

past an infinite vertical porous plate with constant 

suction and heat source in presence of a transverse 

magnetic field. This paper basically highlights the 

effect of mass transfer on hydromagnetic flow in 

presence of suction and heat source.         

2. FORMULATION OF THE PROBLEM 

Consider the unsteady free convective mass transfer 

flow of a viscous incompressible electrically 

conducting fluid past an infinite vertical porous plate in 

presence of constant suction and heat source and 

transverse magnetic field. Let the x-axis be taken in 

vertically upward direction along the plate and y-axis 

normal to it. The physical sketch and geometry of the 

problem is shown in Fig. 1. Neglecting the induced 

magnetic field and the Joulean heat dissipation and 

applying Boussinesq’s approximation the governing 

equations of the flow field are given by:  

Continuity equation: 
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Fig. 1. Physical sketch and geometry of the problem 

 

Energy equation: 
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Concentration equation: 
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 The boundary conditions of the problem are: 
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and parameters, 
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where g, , , , , *, , 0, k, T, Tw, T, C, Cw, C, Cp, 

D, Pr, Sc, Gr, Gc, S, Kp,  Ec and M are respectively the 

acceleration due to gravity, density, electrical 

conductivity, coefficient of kinematic viscosity, 

volumetric coefficient of expansion for heat transfer, 

volumetric coefficient of expansion for mass transfer, 

angular frequency, coefficient of viscosity, thermal 

diffusivity, temperature, temperature at the plate, 

temperature at infinity, concentration, concentration at 

the plate, concentration at infinity, specific heat at 

constant pressure, molecular mass diffusivity,  Prandtl 

number, Schmidt number, Grashof number for heat 

transfer, Grashof number for mass transfer,  

heat source parameter, permeability parameter, Eckert 

number and Hartmann number.  
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Substituting Eq. (6) in Eqs. (2), (3) and (4) under 

boundary conditions (5), we get: 

2
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The corresponding boundary conditions are:  

0, 1 , 1i t i tu T e C e        at 0y  ,                                               

 0, 0u T  , 0C   as y  .                         (10) 

3. METHOD OF SOLUTION 

To solve Eqs. (7), (8) and (9), we assume  to be very 

small and the velocity, temperature and concentration 

distribution of the flow field in the neighbourhood of 

the plate as 
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Substituting Eqs. (11)-(13) in Eqs. (7)-(9) respectively, 

equating the harmonic and non-harmonic terms and 

neglecting the coefficients of 2, we get 

Zeroth order: 
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First order: 
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The corresponding boundary conditions are  
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Solving Eqs. (16) and (19) under boundary condition 

(20), we get 
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Using multi parameter perturbation technique and 
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Now using Eqs. (23)-(26) in Eqs. (14), (15), (17) and 

(18) and equating the coefficients of like powers of Ec 

neglecting those of Ec
2, we get the following set of 

differential equations: 
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First order: 
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Solving Eqs. (27)-(30) subject to boundary condition 
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Solving Eqs. (32)-(35) subject to boundary condition 

(36), we get 
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Substituting the values of C0 and C1 from Eqs. (21) and 

(22) in Eq. (13) the solution for concentration 

distribution of the flow field is given by 

1cS y m yi tC e e e   .                                             (45)       

3.1 Skin Friction 

The skin friction at the wall is given by  
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(46) 

3.2 Heat Flux     

The heat flux at the wall in terms of Nusselt number is 

given by 
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4. RESULTS AND DISCUSSIONS 

The effect of mass transfer on unsteady free convective 

flow of a viscous incompressible electrically 

conducting fluid past an infinite vertical porous plate 

with constant suction and heat source in presence of a 

transverse magnetic field has been studied. The 

governing equations of the flow field are solved 

employing multi parameter perturbation technique and 

approximate solutions are obtained for velocity field, 

temperature field, concentration distribution, skin 

friction and rate of heat transfer. The effects of the 

pertinent parameters on the flow field are analyzed and 

discussed with the help of velocity profiles (Figs. 2-13), 

temperature profiles (Figs. 14-17), concentration 

distribution (Fig. 18) and Tables 1-5. To be more 

realistic, during numerical calculations we have chosen 

the values of Pr =0.71 representing air at 20C, Sc =0.60 

representing H2O vapour, Gr >0 corresponding to 

cooling of the plate and S >0 representing heat source.  

4.1 Velocity Field 

The velocity of the flow field is found to change more 

or less with the variation of the flow parameters. The 

major factors affecting the velocity of the flow field are 

Hartmann number M, permeability parameter Kp, 

Grashof number for heat and mass transfer Gr, Gc; 

Schmidt number Sc,  heat source parameter S and 

Prandtl number Pr. The effects of these parameters on 

the velocity field have been analyzed with the help of 

Figs. 2-13. The velocity profiles closely agree with 

those of Das et al. (2010). 

 

Figures 2 and 8 depict the effect of magnetic field on 

mean and transient velocity of the flow field 

respectively. It is observed that a growing Hartmann 

number decelerates both mean and transient velocity of 

the flow field at all points due to the magnetic pull of 

the Lorentz force acting on the flow field. The effects of 

permeability parameter on mean and transient velocity 

of the flow field are shown in Figs. 3 and 9 

respectively.  

 

The permeability parameter is found to enhance the 

mean velocity of the flow field at all points while the 

transient velocity increases for small values of            

Kp (Kp 1) and the effect reverses for higher values. 

Figures 4 and 10 show the effect of Grashof number for 

heat transfer on mean and transient velocity 

respectively. The Grashof number for heat transfer is 

found to enhance both mean and transient velocity at all 

points due to the action of free convection current in the 

flow field. Figures 5 and 11 present the effect of 

Grashof number for mass transfer on mean and 

transient velocity respectively. Both the figures show 

the accelerating effect of the parameter on the velocity 

of the flow field at all points. Figures 6 and 12 discuss 

the effect of heat source parameter on the velocity of 

the flow field. In both mean and transient velocity of 

the flow field a growing heat source parameter 

enhances the effect at all points. In Figs. 8 and 13, we 

depict the effect of mass transfer on mean and transient 

velocity of the flow field respectively. The presence of 

heavier diffusing species in the flow field is found to 

decelerate both mean and transient velocity at all points. 
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Fig. 2. Mean velocity profiles against y for different values 

of M with Gr=5, Gc=5, Ec=0.002, =5.0, =0.2, t=/2, 

Kp=1, S=0.1, Sc=0.60, Pr=0.71 

 
Fig. 6. Mean velocity profiles against y for different 

values of S with Gr=5, Gc=5, M=1, Ec=0.002, =5.0, 

=0.2, t=/2, Kp=1, Sc=0.60, Pr=0.71 

 

 
Fig. 3. Mean velocity profiles against y for different values 

of Kp with Gr=5, Gc=5, M=1, Ec=0.002, =5.0, =0.2, 

t=/2, S=0.1, Sc=0.60, Pr=0.71 

 

 
Fig. 7. Mean velocity profiles against y for different 

values of Sc with Gr=5, Gc=5, M=1, Ec=0.002, =5.0, 

=0.2, t=/2, Kp=1, S=0.1, Pr=0.71 

 

 
Fig. 4. Mean velocity profiles against y for different values 

of Gr with Gc=5, M=1, Ec=0.002, =5.0, =0.2, t=/2, 

Kp=1, S=0.1, Sc=0.60, Pr=0.71 

 

 
Fig. 8. Transient velocity profiles against y for different 

values of M with Gr=5, Gc=5, Ec=0.002, =5.0, =0.2, 

t=/2, Kp=1, S=0.1, Sc=0.60, Pr=0.71 

 

 
Fig. 5. Mean velocity profiles against y for different values 

of Gc with Gr=5, M=1, Ec=0.002, =5.0, =0.2, t=/2, 

Kp=1, S=0.1, Sc=0.60, Pr=0.71 

 

 
Fig. 9. Transient velocity profiles against y for different 

values of Kp with Gr=5, Gc=5, Ec=0.002, S=0.1, 

Sc=0.60, Pr=0.71, M=1, =5.0, =0.2, t=/2 
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4.2 Temperature Field 

The temperature of the flow field suffers a substantial 

change with the variation of the flow parameters such 

as Prandtl number Pr, Hartmann number M, heat source 

parameter S and permeability parameter Kp. These 

variations are shown in Figs. 14-17. The temperature 

profiles are in good agreement with those of Das et al. 

(2010).  

 

Figure 14 depicts the effect of Prandtl number on the 

temperature field keeping other parameters of the flow 

field constant. It is interesting to observe that for lower 

value of Pr (1), it enhances the transient temperature 

while for higher values the effect reverses. Figure 15 

shows the effect of magnetic parameter on the 

temperature field. The effect of Hartmann number is to 

retard the temperature of the flow field at all points. 

Curve with M=0 corresponds to the non-MHD flow. 

This shows that in absence of magnetic field the 

temperature first rises near the plate and thereafter, it 

falls. In other curves there is a decrease in temperature 

at all points. This shows the dominating effect of the 

magnetic field due to the action of the Lorentz force in 

the flow field. The effect of heat source parameter on 

the temperature field is presented in Fig. 16. The heat 

source parameter is found to enhance the temperature of 

the flow field at all points. In Fig. 17, we analyze the 

effect of permeability parameter on the temperature 

field. A growing permeability parameter is found to 

increase the temperature of the flow field at all points. 

4.3 Concentration Distribution 

The variation in the concentration boundary layer of the 

flow field is shown in Fig. 18 due to the change in the 

Schmidt number Sc. Curves with Sc=0.22, 0.30, 0.6 and 

0.78 respectively, represent the concentration 

distribution in presence of H2, He, H2O vapour and NH3 

in the flow field. Comparing the curves of the said 

figure it is observed that a growing Schmidt number 

decreases the concentration boundary layer thickness of 

the flow field at all points. 

4.4 Skin Friction 

The values of skin friction at the wall against Kp for 

different values of Hartmann number M and heat source 

parameter S are entered in Tables 1 and 2 respectively. 

From Table 1, it is observed that a growing Hartmann 

number M reduces the skin friction at the wall for a 

fixed value of the permeability parameter due to the 

action of Lorentz force in the flow field. It is further 

observed from Table 2 that both permeability parameter 

Kp and heat source parameter S enhance the skin 

friction at the wall. Our observation for skin friction 

agrees with those of Das et al. (2010). 

4.5 Rate of Heat Transfer 

The rate of heat transfer at the wall varies with the 

variation of Prandtl number Pr, Hartmann number M, 

permeability parameter Kp. These variations are entered 

in the Tables 3-5.  From Table 3, we observe that a 

growing Prandtl number or permeability parameter 

increase the magnitude of the rate of heat transfer at the 

wall. Further, it is observed from Table 4 that an 

increase in Hartmann number reduces its value for a 

given value of Prandtl number. Again from Table 5, we 

see that for a given value of permeability parameter it 

enhances the magnitude of rate of heat transfer for 

small values of M and for higher values the effect 

reverses due to the magnetic pull of the Lorentz force 

acting on the flow field. These variations agree with 

those of Das et al. (2010) with a little deviation for 

higher value of M. 

5. CONCLUSIONS 

We summarize below the following results of physical 

interest on the velocity, temperature and the 

concentration distribution of the flow field and also on 

the wall shear stress and rate of heat transfer at the wall. 

 

1.   A growing Hartmann number or Schmidt number 

retards the mean velocity as well as the transient 

velocity of the flow field at all points. 

 

2.   The effect of increasing Grashof number for heat 

and mass transfer or heat source parameter is to 

accelerate both mean and transient velocity of the 

flow field at all points. 

 

3.    The mean velocity of the flow field increases with 

an increase in permeability parameter while the 

transient velocity increases for smaller values of 

Kp (1) and for higher values the effect reverses.   

 

4.   A growing Hartmann number decreases transient 

temperature of the flow field at all points while a 

growing permeability parameter or heat source 

parameter reverses the effect. 

 

5.  The Prandtl number Pr increases the transient 

temperature of the flow field at all points for small 

values of Pr (1) and for higher values the effect 

reverses. 

 

6.   The effect of increasing Schmidt number is to 

reduce the concentration boundary layer thickness 

of the flow field at all points. 

 

7.  A growing Hartmann number reduces the skin 

friction at the wall while a growing permeability 

parameter or heat source parameter reverses the 

effect. 

 

8. The effect of increasing Prandtl number or 

permeability parameter is to increase the 

magnitude of the rate of heat transfer at the wall. 

On the other hand, a growing Hartmann number 

reduces its value for a given value of Prandtl 

number while for a given value of permeability 

parameter it enhances the magnitude of rate of heat 

transfer for small values of M and for higher 

values the effect reverses due to the magnetic pull 

of the Lorentz force acting on the flow field. 
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Fig. 10. Transient velocity profiles against y for different 

values of Gr with Gc=5, M=1, Ec=0.002, =5.0, =0.2, 

t=/2, Kp=1, S=0.1, Sc=0.60, Pr=0.71 

 

 
Fig. 14. Temperature profiles against y for different 

values of Pr with Gr=5, Gc=5, M=1, Ec=0.002, =5.0, 

=0.2, t=/2, Kp=1, S=0.1 

 
Fig. 11. Transient velocity profiles against y for different 

values of Gc with Gr=5, M=1, Ec=0.002, =5.0, =0.2, 

t=/2, Kp=1, S=0.1, Sc=0.60, Pr=0.71 

 
Fig. 15. Temperature profiles against y for different 

values of M with Gr=5, Gc=5, Ec=0.002, =5.0, =0.2, 

t=/2, Kp=1, S=0.1, Pr=0.71 

 

 
Fig. 12. Transient velocity profiles against y for different 

values of S with Gr=5, Gc=5, Ec=0.002, M=1, Kp=1, 

Sc=0.60, Pr=0.71, =5.0, =0.2, t=/2 

 

 
Fig. 16. Temperature profiles against y for different 

values of S with Gr=5, Gc=5, M=1, Ec=0.002, =5.0, 

=0.2, t=/2, Kp=1, Pr=0.71 

 

 
Fig. 13. Transient velocity profiles against y for different 

values of Sc with Gr=5, Gc=5, Ec=0.002, M=1, Kp=1, 

S=0.1, Pr=0.71, =5.0, =0.2, t=/2 

 

 
Fig. 17. Temperature profiles against y for different 

values of Kp with Gr=5, Gc=5, M=1, Ec=0.002, =5.0, 

=0.2, t=/2, S=0.1, Pr=0.71 
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Fig. 18. Concentration profiles against y for different 

values of Sc with =5.0, =0.2, t=/2 
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Table 1 Values of skin friction () at the wall against Kp 

for different values of M with Gr =5, Gc=5,  

Ec=0.002,=5.0, =0.2, t=/2, S=0.1, Sc=0.60 

Kp 
 

M=0 M=0.1 M=5 M=20 

0.1 5.653382 5.534346 4.728732 3.473894 

0.5 10.02986 9.805144 6.488265 3.995386 

5 14.57578 14.11291 7.273244 4.150112 

10 15.09217 14.57578 7.326112 4.159260 

1000 15.66754 15.08670 7.379662 4.168377 

Table 3 Values of rate of heat transfer (Nu) at the wall 

against Pr for different values of Kp with Gr=5, Gc=5, M=1, 

Ec=0.002, =5.0, =0.2, t=/2, S=0.1, Sc=0.60 

Pr 
Nu 

Kp=0.1 Kp=0.5 Kp=10 Kp=1000 

0.71 -0.22261 0.25378 1.62899 1.84067 

1 -0.37971 0.62512 5.88600 6.94199 

7 -5.24947 -6.50457 -9.07674 -9.39557 

9 -6.64083 -7.97398 -10.7089 -11.04849 

11 -8.06782 -9.50515 -12.4663 -12.83434 

 

Table 2 Values of skin friction () at the wall against Kp for different  values of S with 

Gr=5, Gc=5,  Ec=0.002, =5.0,=0.2, t=/2, Sc=0.60 

Kp 


S=-0.5 S=-0.2 S=-0.1 S=0.1 S=0.2 S=0.5 

0.1 5.12145 5.24706 5.29364 5.39647 5.45411 5.67230 

0.5 8.30214 8.53049 8.61904 8.82282 8.94266 9.44074 

1 9.40552 9.66218 9.7637 10.00108 10.14313 10.75373 

5 10.62662 10.95844 11.09 11.39881 11.58467 12.39587 

10 10.82795 11.1691 11.30463 11.62338 11.81564 12.65832 

1000 11.04011 11.3912 11.53098 11.86037 12.05950 12.93613 

 

 

Table 4 Values of rate of heat transfer (Nu) at the wall 

against Pr for different values of M with Gr=5, Gc=5, M=1, 

Ec=0.002, =5.0, =0.2, t=/2, S=0.1, Sc=0.60 

Pr 
Nu 

M=0 M=0.1 M=5 M=20 

0.71 1.84299 1.62899 -0.32462 -0.25617 

1 6.95398 5.88600 -0.47670 -0.44308 

7 -9.39900 -9.07674 -5.62259 -5.10180 

9 -11.0522 -10.70889 -7.03978 -6.44508 

11 -12.8383 -12.46632 -8.49695 -7.85540 

 

 

 

 

 

 

 

 

 

  

Table 5 Values of rate of heat transfer (Nu) at the wall 

against Kp for different values of M with Gr=5, Gc=5, 

M=1, Ec=0.002, =5.0, =0.2, t=/2, S=0.1, Sc=0.60 

Kp 
Nu 

M=0 M=0.1 M=5 M=20 

0.1 -0.21328 -0.21433 -0.24373 -0.26289 

0.5 0.60664 0.54699 -0.16004 -0.25733 

5 6.32474 5.23180 -0.08245 -0.25511 

10 7.77240 6.32474 -0.07593 -0.25497 

1000 9.72173 7.75568 -0.06914 -0.25483 

 

 

 

 

 

 

 

  


