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ABSTRACT 

The one phase Stefan problem is discussed using the Goodman HBI method and an explicit numerical method 

including modified boundary immobilization scheme. The main advantage of the HBI method lie in the remarkable 

association of simplicity, flexibility and acceptable accuracy which an error less than 2.5% in predicting the moving 

front location for Stefan number less than unity which covers most usual isothermal phase change material. An 

accurate explicit numerical model to track the moving front in Stefan-like problems is provided. The scheme is 

obtained using the variable space step method based on variable domain. The method is developed using central 

difference approximations to replace spatial and temporal derivatives. Furthermore, iterative procedure, in numerical 

calculation, is avoided by introducing simple assumptions. The numerical results show that the accuracy of the 

method has been considerably improved without additional computational cost. 
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NOMENCLATURE 

c specific heat 

e relative error 

h space step size 

k time step size 

M number of time stepping 

N number of space stepping 

s moving front dimensionless position 

Ste dimensionless latent heat 

t      dimensionless time 

x         dimensionless coordinate 

I   i    space index  

 j    time index during integration 

       dimensionless temperature 

            freezing constant 

γ  ζ   shape function in temperature profile 

 
 

1. INTRODUCTION 

 “One-phase Stefan problem” refers to heat conduction 

problem involving phase change in medium which is 

initially at its melting temperature and remains in 

thermal equilibrium during the phase change process. 

Heat transfer equations are then written in the formed 

phase only (where thickness changes with time 

according to the problem conditions). On the other 

hand, when heat transfer equations are to be considered 

in both solid and liquid phases the problem is referred 

as “two-phase Stefan problem” Carslaw and Jaeger 

(1959).  

 

The solution of such problems is inherently difficult 
because of the nonlinear form of the thermal energy 

balance equation at the solid/liquid interface. The 

latter’s position being unknown, at first, must be 
followed as a part of the solution. Therefore, analytical 

solutions are, in general, difficult to obtain. As it is 

outlined in Sadoun et al. (2009), the ‘Heat-Balance 

Integral’ (HBI) is a technique that has received a 

considerable attention including aerodynamic heating 

by forced convection Sucec  (1985);  heat transfer with 

transpiration Zien (1976); prediction of the response of 

a positive temperature coefficient thermistor  Kutluay et 

al (2006), Wood et al. (1995); conduction-controlled 

rewetting problems Sahu et al. (2006); boilover 

phenomenon occurring in fuel tanks Hristov ( 2007); 

nuclear reactor safety analysis El-Genk (1978); casting 

metals and spray forming Mitchell et al. (2008).  On the 

overall, the method allows satisfactory results and, in 

some cases, could lead to analytical solutions. 
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Furthermore, this technique shows remarkable 

flexibility to include cylindrical and spherical 

coordinates Poots (1962), Caldwell et al. (2000, 2005) 

with various boundary conditions and trials were 

carried on for two-dimensional Poots (1962) and three-

dimensional Riley et al.(1976) heat diffusion problems. 

The HBI method allows deriving the moving front 

velocity, heat fluxes or internal energy variations 

straightaway from the temperature profile.  Such 

technique provides starting solutions for complex 

numerical schemes. The method appears, presently, to 

be a definite powerful approach to many nonlinear 

diffusion problems since it doesn’t need any 

linearization of the required equations. It should be 

observed the nonlinearity can either be induced by the 

phase change at the interface, by the temperature 

dependency of the transport properties Goodman 

(1961), Vokov et al.(1970) or by the nonlinearity of the 

boundary conditions Goodman (1964). The main 

advantage is due to the transformation of the governing 

equation, from a partial derivative form to an ordinary 

differential equation where the assumed profile 

constitutes the central part of the original Goodman’s 

technique (Goodman 1958; Sadoun et al. 2009). 

However, the method accuracy depends on the chosen 

profile.  

 

Despite a large number of investigations (Goodman 

1961; Poots 1962a; Vujanovic and Djukic 1972; 

Langford 1973; Fox 1975; Sadoun et al. 2006b; Sadoun 

and Si-Ahmed 1993,1995; Mosally et al. 2005) there is, 

unfortunately, no systematic procedure to choose the 

most appropriate profile; for that purpose works were 

oriented towards a decrease on the accuracy 

dependence of the method on an arbitrarily profile 

(Poots 1962, Hamil et al. 1963, Elmas 1970, vokov et 

al. 1970, Noble 1975, Bell 1978, Özisik 1985, Sadoun 

and Si-Ahmed 1993). Various approximate numerical 

methods are developed and have been the subject of 

many comprehensive books and papers Carslaw et al. 

(1959),  sadoun (2006). These approximations can be 

conveniently handled into explicit or implicit methods 

according to the procedure used to localize the moving 

boundary. 

 

In the implicit methods, the solution of the energy 

equation doesn’t require the knowledge of the 

solid/liquid interface position which is implicitly 

deduced from the enthalpy or temperature distribution. 

These methods, called “one-phase methods” or 

“enthalpy methods” (Voller and Cross 1981, Elsen and 

Kutluay 2004), treat the solid/liquid domain as one 

phase for which the thermophysical properties are 

strongly dependant on temperature. The heat balance 

equation at the interface is implicitly bounded up in a 

new form of the energy equation available for the whole 

domain. On the other hand, in the explicit methods 

(Sadoun 2006; Savović and Caldwell 2003; Kutluay 

2005), the governing equations are formulated for each 

phase (liquid and solid) and coupled at the interface by 

the temperature continuity and the energy balance. 

Then the moving front position constitutes a part of the 

problem solution and is to be tracked at each time step, 

making then the solution more complex because the 

nonlinear form of the energy balance equation at the 

interface. The methods are also referred to as ‘two-

phase methods” or “front-tracking methods”.  

 

In the present paper the one-phase Stefan problem with 

some refinement procedures, developed in the 

literature, are reported and compared. Furthermore a 
numerical explicit method which uses a technique based 

on front-tracking and referred to as variable space grid 

method (VSGM) is developed. Such method makes the 

numerical effort easier by subdividing the space into 

equal size intervals so that the moving boundary always 

remains at a grid point at each time step. Two Stefan-

like problems are considered as physical models for 

application; the first concerns the classical one-phase 

Stefan problem with imposed temperature at the fixed 

boundary whereas the second deals with one-phase 

Stefan problem with periodically time dependent 

boundary condition. The paper’s contribution aims to 

showing that the numerical scheme obtained by this 

method can lead to the solution for given initial time 

and space stepping. Furthermore, it considers the 

modified boundary immobilisation scheme used by 

Kutluay et al. (1997) and shows-up the lack of accuracy 

and proposes a way to make it as precise as the original 

scheme. 

2. CLASSICAL ONE-PHASE STEFAN 

PROBLEM 

The classical mathematical model of one-phase Stefan 

problem refers to nonlinear diffusion equation. The 

nonlinearity is associated to the equation expressing the 

jump condition in terms of flux at the moving boundary.  

For the classical Stefan problem, in the case of the heat 

diffusion, the medium holds the half-plane 0x and 

the phase change is initiated at the boundary 0x  with 

a sudden temperature decrease (freezing) or increase 

(melting) and maintained fixed during all the process. 

The transport properties are considered constant.  

 

The heat transport equation is then written in terms of 

dimensionless variables in the layer with appropriates 

initial and boundary conditions. The Stefan number,

   LcSte  / ,expressing the dimensionless latent 

heat is defined by the ratio of the heat needed to cool 

the solid to the latent heat required to transform the 

liquid to solid ( c and L  refer to specific and latent heat 

respectively and  stands for temperature variation).  

The condition closing the mathematical model specifies 

that the moving front is at rest initially.  The exact 

solution of this problem, available in literature (Carslaw 

and Jaeger 1958), can be easily derived by using the 

similarity variable to transform the governing equation 

from partial derivative to ordinary differential equation. 

Our interest is focused on the moving front position 

expressed by  2)( s where   is the freezing 

constant given by the root of the transcendental 

equation   /)( Steerfe    where erf  is the 

error function.  Finding an analytical and semi-

analytical expression for  constitutes the next section. 

2.1 Goodman HBI Solution 

The HBI is analogous to the momentum integral 

method; the formulation doesn’t require any 
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linearization of the considered equation. The analysis 

introduces the well known notion of penetration depth, 

beyond which there is no heat transferred. It is observed 

that, the latter, when no phase change is involved, is set 

instantaneously to infinity, according to Fourier’s law. 

However, this is not the case in Stefan like-problem 

since the thermal depth penetration coincides with the 

phase change front.  

 

The suitable approximating profile for the description 

of the temperature distribution in the layer is assumed 

to be quadratic. The technique is based on the 

approximation of the heat conduction equation by an 

overall energy balance in the domain considered. The 

result is referred to as the heat balance integral for the 

region of interest and expresses the macroscopic heat 

balance across this region. The technique satisfies the 

heat conduction equation only on the average. 

Moreover, derivatives of an arbitrarily profile may 

induce errors. 

 

After substituting the profile in HBI equation which 

takes into account the Stefan condition, the moving 

boundary location is tracked through the following 

analytical expression: 

     
2

2 6 12 6s t Ste Ste Ste t     
  

 

One should note the computational simplicity 

introduced by the HBI procedure compared to the exact 

solution which, requires evaluations of both the 

freezing constant through numerical iterative sequences 

and tabulated functions (the error function). Moreover, 

as shown in Fig.1, the obtained 

 

Fig. 1: Freezing constant, , as given by exact and HBI 

solutions and its associated relative error 

(%)/ exaappexa     

results from the above equation compared to the exact 

solution are satisfactory. The method predicts the 

moving front location with an error that does not exceed 

2.5% for Stefan number less than unity which covers 

most usual isothermal phase change material. The 

relative error is defined as 

. .

.

100
exa app

s

exa

e
 




  

These features motivated an appreciable number of 

investigations devoted to refinement procedures. 

2.2 Some analytical expressions for   

The various approaches developed, using Goodman 

HBI technique, to track the moving boundary in the 

case of the one-phase Stefan problem provided several 

approximate analytical solutions.  Table 1 summarizes 

some analytical expressions of the freezing constant. 

On the overall, all expressions provide accurate 

localisation of the moving boundary for small Stefan 

numbers or at the beginning of the process (short 

times). This is due to the fact that the cumulated heat is 

negligible in both cases. Furthermore for small Ste the 

stored heat is small compared to latent heat while for 

short time the crust layer is very thin. In such cases the 

temperature profile can be well approximated by a 

simple linear form. Thus, these approaches provide an 

efficient device to compute starting solution for 

numerical schemes when required. 

 

Table 1: Analytical freezing constant expressions 

obtained by analytical methods developed using heat 

balance integral technique 

 
2  

Authors 

   
21

6 12 6
2

    
  

Ste Ste Ste

 

1 2 1 2
3

5 2 1 2

  

  

Ste Ste

Ste Ste  

(Goodman 1961) 

1 1
3

2 1

  

  

Ste Ste

Ste Ste  

(Poots 1962a) 

1 1 2
6

1 2 1 2

  

   

Ste Ste

Ste Ste  

(Wood 1995) 

2

4

Ste

Ste  

(Mennig and 

Özişik 1985) 

2 

Ste

Ste  

(Hamill and 

Bankoff 1963; 

Elmas 1970) 

 
 

2 2 1

8 1

  



Ste Ste Ste

Ste
 

3

5 1 2  

Ste

Ste Ste  

(El-Genk and 

Cronenberg 

1979) 

 

3

2 3

Ste

Ste
 

(Sadoun and  

Si-Ahmed 1995). 

   
21

6 24 6
4

    
  

Ste Ste Ste

 

(Sadoun et al. 

2006b) 

 

Freezing constant obtained from exponential and 

Gaussian basic heat balance integral method and refined 

HBI with simple exponential distribution sadoun et 

al.(2006) are summarized in Table 2.  It should be 

observed that the solution requires solving 

transcendental equations.  

 

Simple exponential or quadratic profile leads to the 

same order of accuracy in the Goodman’s basic HBI. 

Gaussian profile provides, as expected, more accurate 

solution.  This can be understood since the latter is 

suggested by the exact solution. As matter of fact, the 

first term in the power series of the error function 
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)(erf  is described by 
2e .  However, in most cases 

the exact solution is unfortunately unknown 

beforehand.   

 

Table 2: Semi-analytical freezing constant expressions 

obtained by analytical methods developed using heat 

balance integral technique 

 

Equation 

for 
2   

Transcendental equation to be solved 

Authors 

2 1

e

e









Ste

 

 1 2
2


Ste

 

   21 2 0e e           Ste Ste Ste
 

 

     1 2 2 1 1 2 0e          Ste Ste
 

(Mosally et al. 2005) 

2


Ste

  
 2

72 1
2 6 12 0


 


    Ste Ste

Ste

 0,1 
 

(Wood 1985). 

2 1

e

e









Ste

 

      1 1 2 2 1 0e e e e e e                
 

Ste
 

(Sadoun et al. 2006a) 

 

Figure 2 shows the relative error for the freezing 

constant using various correlations. 

 
Fig. 2: Relative error (%)/ exaappexa   on the 

freezing constant, , as given  by different approaches 

constructed using Goodman’s HBI technique 

3. MODIFIED VARIABLE SPACE STEP 

METHOD FOR ONE- PHASE STEFAN 

PROBLEM  

3.1 Problem Statement 

Consider the freezing of semi-infinite liquid, occupying 
the region 0x and is initially at its melting 
temperature 0),(  tx . Then solidification is initiated 
instantaneously since the fixed boundary 0x is 
raised at 0t  to a temperature above the melting 
temperature and subsequently maintained fixed or time-
dependent. If we note by s the position of the freezing 
front at time t and assume than the process is controlled 
by the heat conduction, then the temperature 
distribution ),( tx  is expressed as: 

2

2 ),(),(

x

tx

t

tx









;    )(0 tsx                (1) 

with the related Stefan condition (case of  Ste = 1) 

x

tx

dt

tds






),()(
;     )(tsx  ;  0t             (2) 

3.1.1Problem1:Classical one-phase Stefan problem 

The classical one-phase Stefan problem is considered 

here with fixed boundary raised up, from 0t , above 

the melting temperature. Mathematically that is 

expressed by the following dimensionless equation. 

1),0(  t ;  0x ;  0t                                  (3) 

The exact analytical solution can be deduced from the 

generalized Neumann solution (Carslaw and Jaeger 

1959) as follows: 

  
 


erf

txerf
tx

2/
1),(                             (4) 

Where the moving boundary position )(ts is obtained 

from the following expression 

tts 2)(            (5) 

with a freezing constant   being the root of the 

transcendental equation 1)(
2

  erfe  

 

3.1.2 Problem2: One-phase Stefan problem with time-

dependent boundary condition 

The second problem considers one-phase Stefan 
problem with periodically time-dependent boundary 
temperature:  

)5.0sin(5.01),0( tt  ; 0x ; 0t           (6) 

Taking into account that no exact solution is available 
in the literature for such case, the numerical results will 
be compared to the analytical solution developed using 
the refined heat balance integral method with a linear 
approximant Sadoun et al. (2006); that is: 











)(
1),0(),(

ts

x
ttx                                (7) 

Where )(ts is given by: 

 



t

dtt
tU

ts
0

),0(
),0(3

6
)(                                (8) 

For both problems, the method leads to analytical 

solutions. In the case of one-phase classical Stefan 

problem (problem 1), the numerical results are in good 

agreement with the exact solution particularly at the 

beginning of the phase change process (for thin layer) 

(Sadoun et al. 2006b)..  

3. 2 Numerical Solution 

Following Murray and Landis (1959), the mathematical 

model is written over by applying partial derivative 
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with respect to time, tracking then a given line instead 

of a constant x . The heat conduction equation becomes 

tt

i

x xxs

x

dt

ds

t 2

2














; )(0 tsx            (9) 

Related initial and boundary conditions remains 

unchanged. It should be noted that suffices x  and t  

indicate constant values.  

 

Various numerical schemes can be deduced from the 

above governing equations (Crank 1957). The variable 

step grid method is considered hereafter. This is 

achieved by locating, through a mathematical model, 

the liquid/solid interface at given moving grid point. 

The transformed heat diffusion equation (Eq.9) will be 

solved by partial discretization using central difference 

approximations to replace spatial and temporal 

derivatives. Also, a three-term central difference 

formula is used for numerical evaluation of the 

temperature gradient in the energy balance at the 

moving boundary.  

 

In this method, the time interval k  is kept constant and 

the space domain )(0 tsx   is divided into N

intervals of width h with )(tsNh  . Thus, the moving 

boundary is always located at the last grid point by 

increasing the space width step with the growth of the 

solidified layer. If we put 
jh  the size at the time jk  

,...2,1j , then any point  ji tx ,  in tx  domain is 

given by ),( jkih j
 and 

j

i ),...,1,0( Ni   denotes the 

finite difference approximation of its temperature. 

After a few arrangements according to the above 

mentioned discretization procedure, Eqs. (1-2) in terms 

of finite differences leads respectively to: 

 

 
 2/1

1

2/12/1

122/1

2/1

1

2/1

1

2/1

2/1

1

2

2




































j

i

j

i

j

i
j

j

i

j

i

j

j

j

i

j

i

h

k

dt

dh

h

ki
U

         (10) 

2/1

2/1

2

2/1

1

2/1
4






















j

j

N

j

N

j

Nhdt

dh                               (11) 

It should be noted that eq. (11) takes into account the 

moving boundary condition ( 0)(  tN for 0t ) and 

allows locating the moving boundary at the next time 

step according to following approximation 

2/1

2/1

2

2/1

11 4








 


j

j

N

j

Njj

Nh
hh                               (12) 

To avoid numerical iterations, we assume that the 

variation of the nodal temperature, 
i , with time and 

along a half time step is negligible. The temperatures
2/1

1



 j

i
, 2/1 j

i
 and 2/1

1



 j

i
 are then replaced by j

i 1 , 
j

i  and j

i 1  respectively. Furthermore, the step size 
2/1jh  is approached by the average value of jh  and 

1jh  as follows  

  2/12/1 jjj hhh                                          (13) 

Rearranging Eq.(11) to lead to the new front position 

location:  

   j

N

j

N

jj

N
hh 21

21 4
2



                      (14) 

and Eqs. (10-11) could be written as: 

2/1

21

2/1
4
















j

j

N

j

N

j

Nhdt

dh                              (15) 

 

 
 j

i

j

i

j

i
j

j

i

j

i

j

j

j

i

j

i

h

k

dt

dh

h

ki

1122/1

11

2/1

2/1

1

2

2
























             (16) 

 

The system of equations is closed with the given 

condition ),0( t  at the fixed boundary  0x  .  

 

The resulting explicit numerical scheme is somewhat 

similar to those developed by Kutluay et al. [1997, 

2004, 2005]; Elsen et al. , 2004, Savović et al 2003;  
except that the present one uses both freezing front 

velocity and location at the time 
2/1jt  instead of their 

values at time jkt j  . 

 

From known values of 
j

i  ),...,0( Ni   and 
js at 

time jkt j  , the solution procedure involves: 

i)Calculation of space step size Nsh jj /  and the 

grid point locations 
jj

i ihx  . 

ii)Determination of the step size
1jh using Eq.(14) 

and then interpolation of
2/1jh from Eq.(13).  

iii)Calculation of the freezing front velocity at time 

 kjt j 2/12/1 
 using Eq. (15). 

iv)Solution of Eq.(16) for the grid points 

1,...,1  Ni . 

The steps (i)-(iv) are repeated for the next step 

after setting the performed values as starting solution 

4. RESULTS AND DISCUSSION 

4.1 Starting solutions 

To start numerical calculations for both problems, and 

to circumvent the singularity at time 0t , i.e. 

0)( ts ,  we used the temperature distribution and the 

corresponding position of the freezing front at 1.01 t  

which is used in Kutluay et al. (1997, 2005) as the 

initiated time. The corresponding nodal temperatures, 

),( 1tihj

i  , and moving boundary position, 

)( 1

1 tss  , are determined from the exact Eqs.(4,5) and 

analytical Eqs.(7,8) solutions for the problems 1 and 2 

respectively.  One can note that   kttM /1 time 

steps are to be used to obtain the numerical solution at a 

given time t . 
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4.2 Numerical Results 

The weighted 1-norme 
1

e  and the relative error on the 

moving front location, xe , defined below are 

considered to test the accuracy of the obtained 

numerical scheme and to compare against available 

results in the Refs. [8,9,10] 












1

1
1 ),(

1
1

1 N

j

i

j

i

txN
e ,  TNeeee 121 ....  , 

 and
)(

1102

j

j

s
ts

s
e   ;where )( jts and ),( jtx  

are the exact values. 

 

Fig. 3: Evolution of the relative error on the moving 

boundary position for two space stepping in the case of 

the problem 1 

 

Figures 3 and 4 show the variation of the relative error 

on the moving boundary position, s , with time, t . 

Different numbers of space subdivisions N are 

considered. It can be seen that for a given space 

subdivision, the numerical predictions of the interface 

location depart from the exact positions as time 

increases but still sufficiently accurate. On the other 

hand, Fig. 3 compares accuracies of the present method 

with those given by modified VSGM and BIM 

developed by Kutluay and al. (1997, 2005)  
 

The plots demonstrate clearly that the present scheme 

improves considerably the accuracy of the numerical 

solution. The figures exhibit the expected convergence 

of the scheme with the refinement of the mesh size. One 

can note, from Fig. 4, that increasing n  times the 

number of space intervals refines the accuracy about 
2n –fold ( n corresponds to the ratio of the two 

corresponding time steps). 

 

Figure 5 illustrates the dependence of the weighted 1-

norme error 
1

e on the temperature defined below on 

the number of space subdivisions, and computed at time

5.0t . One can note the rapid decrease of the error 

with the increase of the number of subdivisions. The 

vertical dashed line on the figure indicates the number 

minimum of subdivisions allowed by the numerical 

scheme, that is 3N . 
 

The numerical results given by the present scheme are 

displayed in Table 3, with a comparison of three other 

numerical solutions available in the literature at final 

times 0.2, 0.3, 0.4 and 0.5. From data, it’s observed that 

the results exhibit the convergence as the space 

stepping is reduced. It’s clearly seen that the present 

scheme generates more accurate solutions than schemes 

developed using MVSGM, BIM and IMM. 

 
Fig. 4: Evolution of the relative error on the moving 

boundary position for different space stepping in the 

case of the problem 1 

 

Fig. 5: Weighted 1-norme error 1
e

on the temperature 

versus the number of space subdivisions for the 

problem 1 at time 5.0t . 

 

Finally, the scheme is considered in the case of the 

second problem. Figure 6 shows the time evolution of 

the moving front boundary as given by the numerical 

and analytical solution Sadoun et al. (2006). It’s clearly 

seen that they are very close to each other. 

 

Fig. 6: Numerical and analytical moving front position 

pre-dictions for the problem 2 
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5. CONCLUDING REMARKS 

The computational simplicity introduced by the HBI 

procedure compared to the exact solution was 

highlighted. The results showed that the method 

predicts the moving front location with an error that 

does not exceed 2.5% for Stefan number less than unity 

which covers most usual isothermal phase change 

material.  Furthermore, a new explicit numerical 

scheme is developed using the variable space method. 

Despite the use of central difference approximation to 

replace both spatial and temporal partial derivatives, the 

numerical scheme is expressed in explicit form 

avoiding then the iterative procedure to achieve 

numerical calculation. The numerical results obtained in 

the case of two Stefan like problems demonstrate the 

good accuracy of the present scheme. 
 

 

 

Table 3 Comparison of the relative error of predicted location of the moving boundary with results from the present 

method, the modified variable step method (MVSGM) (Kutluay 2005), boundary immobilization method (BIM) 

(Kutluay et al. 2005)and isotherm migration method (IMM) (Kutluay and Elsen 2004) at various times and mesh 

sizes for the problem 1 

t method 
Relative error, se (%) 

N = 10 N = 20 N = 40 N = 80 

0.2 

Present 

VSGM 

BIM 

IMM 

0.002831 

0.028870 

0.070370 

0.012555 

0.000400 

0.007240 

0.017610 

0.003230 

0.000096 

0.001810 

0.004405 

0.000820 

0.000024 

0.000455 

0.001100 

0.000205 

0.3 

Present 

VSGM 

BIM 

IMM 

0.002035 

0.075487 

0.068353 

0.019093 

0.000401 

0.018940 

0.017093 

0.005120 

0.000087 

0.004740 

0.004273 

0.001320 

0.000020 

0.001187 

0.001067 

0.000337 

0.4 

Present 

VSGM 

BIM 

IMM 

0.005464 

0.098720 

0.085112 

0.024728 

0.001101 

0.024820 

0.021268 

0.006997 

0.000243 

0.006218 

0.005312 

0.001848 

0.000047 

0.001555 

0.001328 

0.000472 

0.5 

Present 

VSGM 

BIM 

IMM 

0.012830 

0.052922 

0.166242 

0.031792 

0.002670 

0.013452 

0.041576 

0.009490 

0.000602 

0.003386 

0.010386 

0.002558 

0.000143 

0.000850 

0.002596 

0.000662 
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