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ABSTRACT 

The results of three-dimensional numerical simulations of drop collisions without the effect of a surrounding 

environment are presented.  The numerical model is based on an Eulerian, finite-difference, Volume-of-Fluid 

method. Surface tension is included using the Continuum Surface Force method. Head-on collisions using equal size 

drops with three different fluid properties of water, mercury and tetradecane are presented. Various drop diameters 

ranging from 200 μm to 5 mm are considered. A separation criterion based upon deformation data is found. The 

lower critical Weber numbers are found for mercury and water drops while tetradecane drops did not result in 

separation for the range of Weber numbers considered. The effect of Reynolds number is investigated and regions of 

permanent coalescence and separation are plotted in the Weber-Reynolds number plane.  The role of viscosity and its 

effect on dissipation is also investigated.  Finally, the validity of the assumptions made in some of the collision 

models is assessed. 
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1.    INTRODUCTION 

Drop collision studies are relevant to a broad spectrum 

of fields ranging from large scales such as astrophysics 

and meteorology, to much smaller scales as seen in 

aerosols and nuclear physics. Due to the complex nature 

of colliding drops, the majority of previously published 

works have been restricted to experimental 

investigations and phenomenological analysis 

(Jayarante and Mason 1964; Gunn 1965; Ryley and 

Bennett-Cowell 1967; Adam et al. 1968; Park 1970; 

Whepdale and List 1971; Brazier-Smith et al. 1972; 

Bradley and Stow 1978; Bradley and Stow 1979; Low 

and List 1982a; Low and List 1982b; Arkhipov et al. 

1983; Ashgriz and Givi 1987; Brenn and Frohn 1989; 

Ashgriz and Givi 1989; Ashgriz and Poo 1990; Jiang et 

al. 1992; Qian and Law 1997; Menchaca-Roca et al. 

1997; Brenn et al. 1997; Guido and Simeone 1998; 

Orme 1997; Estrade et al. 1999; Willis and Orme 2000; 

Hu et al. 2000; Brenn et al. 2001; Post and Abraham 

2002; Willis and More 2003; Roisman 2004; Leal 2004; 

Gao et al. 2005; Ko and Ryou 2005; Yoon et al. 2005; 

Baldessari and Leal 2006). Experimental observations 

suggest that there are five major types of outcome when 

two liquid masses collide in a gaseous environment. 

They are bouncing, partial coalescence, coalescence, 

separation, and shattering. In a bouncing collision, 

contact of drop surfaces is prevented by the intervening 

gas film, and drops bounce apart without any mass 

exchange. A partial coalescence collision happens only 

for drops with very large size difference and very small 

velocities.  The small drop attaches to the big drop and 

flows into the big drop because of the pressure 

difference between them. Before the small drop is 

completely absorbed by the large drop, the surface 

tension cuts off the bridge and a secondary drop is 

generated. Coalescence collisions refer to the collisions 

in which two drops permanently combine and generate 

one single drop. A separation collision is one in which 

drops coalesce temporarily and later separate into one 

single string of two or more drops of various sizes. A 

shattering collision, which is the characteristic of high 

relative velocity collision, is one in which the collided 

drops disintegrate into a cluster of many liquid 

fragments shortly after the collision. These five types 

are only the most general ones and  more sub-categories 

within them can be defined if other factors, such as 

number of drops generated, mass transfer rate or shape 

relaxation rate, are taken into account. 
 

The major objective of drop collision studies has been 

to develop models and correlations for various types of 

collision outcomes in terms of some initial conditions 

of the two drops. However, a limited number of 

quantitative models exist at the present time. These 

models can be divided into three categories. In the first 

category, the onset of breakup after the collision is 

modeled based on comparing the angular momentum of 
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the collided pair, which pulls the drops apart, and the 

surface tension forces, which hold the drops together. 

These models are exemplified by the works of Park 

(1970), Brazier-Smith et al. (1972), Arkhipov, et al. 

(1983), Brenn et al. (2001), and Post and Abraham 

(2002). In the head-on collision of two drops - the topic 

of the present work – the angular momentum does not 

play an important role. Therefore, these models cannot 

explain the onset of separation for the head-on 

collisions. In the second category, the breakup is 

modeled based on comparing the total energy before 

and after the collision. The total energy includes 

kinetic, surface, and dissipation energies.  Certain 

assumptions are made for the shape of the drop after the 

collision and for the dissipated energy. These models 

are exemplified by those of Jiang et al. (1992), Qian 

and Law (1997), and Willis and Orme (2000, 2003). 

And in the third category, some capillary instability 

criterion along with the energy consideration is used to 

predict the breakup. These models are exemplified by 

those of Ashgriz and Poo (1990) and Brenn et al. 

(1997).  

 

The objective of the present paper is to gain further 

insight on the head-on collision dynamics of two drops 

and to provide a critical evaluation of above mentioned 

models using direct numerical simulation. The 

evolutionary behavior of the head-on drop collisions 

without the effect of the surrounding environment is 

considered. By not modeling the surrounding 

atmosphere, the effects due to the internal flow patterns 

and trapped gas between the approaching drops are 

removed.  

2.    NUMERICAL METHODOLOGY 

2.1 Review of the Previous Work 

Nobari et al.  (1996) used the front-tracking method 

developed by Unverdi and Tryggvason (1992) to study 

the head-on collisions of equal sized drops. In their 

method, the governing equations are solved both inside 

and outside the drops, thus including the effect of the 

surrounding environment. By applying a body force to 

accelerate the drops toward each other both bouncing 

and coalescence were investigated. The presence of a 

double interface always resulted in bouncing, while 

coalescence was modeled by artificially rupturing the 

interfaces at prescribed rupture times.  

 

Their results indicated that different rupture times result 

in different final outcomes for similar collisions. They 

could not predict the boundary between the coalescence 

and separation without an empirical input for the 

rupture time. The rupture times were adjusted to obtain 

the experimental seperatoin conditions.  

 

Rieber and Frohn (1995) modified their previous work 

with Schelkle et al. (1996) to model drop collisions. In 

their algorithm they computed the volumetric surface 

tension force based on a conservative discretization for 

the curvature computation based on the work of 

Lafaurie et al. (1994). Using this technique, they 

performed a brief investigation of equal sized binary 

water drop collisions occurring in air. They considered 

Weber numbers between the range of 19 and 59, while 

maintaining a constant Reynolds number of 5000 and 

numerically computed the boundary between 

coalescence and separation (parameters are defined in 

the nomenclature).  A two dimensional simulation of 

drop collision was conducted by Poo and Ashgriz 

(1990) using a volume of fluid method (Asgriz and Poo 

1990). Since two dimensional drops do not provide the 

proper surface energy, the physically observed reflexive 

action could not be simulated with such models. 

Mashayek et al. (2003) studied the coalescence 

collision of two liquid drops using a Galerkin finite 

element method in conjunction with a spine-flux 

method for the free surface tracking (Mashayek and 

Ashgriz 1995). The effects of Reynolds number, impact 

velocity, drop size ratio, and internal circulation on the 

coalescence process was investigated. Only the 

coalescence collisions were studied and separation 

conditions were not reached.  

 

Morozumi et al. (2005) conducted a numerical study to 

obtain a criterion between permanent coalescence and 

separation in head-on binary drop collisions. They used 

a Lagragian finite-element method to model the 

problem. They found that the ratio of the maximum 

length of the coalesced droplet to the initial diameter of 

the droplets is about 2.85, beyond which the coalesced 

drop will breakup. Finally, Nikolopoulos et al. (2009) 

conducted an axis-symmetric numerical study on 

collision of two equal size drops employing a VOF 

solver and provide detailed results about the size of the 

satellite droplets forming after collision. 

2.2 Method of Solution 

A numerical model based on an Eulerian, finite-

difference, Volume-of-Fluid (VOF) method with 

surface tension effects is used (Bussmann et al. 1999; 

Hsu and Ashgriz 2004a; Hsu and Ashgriz 2004b).  We 

consider two drops composed of the same fluid with 

constant viscosity, μ, density, , and surface tension 

coefficient, . The flow inside the drops is solved using 

the standard conservation of mass and momentum 

equations:  

0 V  
(1) 

  bFVpVV
t

V




 2  
 

(2) 

where V  is the velocity vector, p  is the pressure and 

bF   is any body force per unit volume acting on the 

drops. At the free surface boundary condition, both 

mass and momentum are conserved. For drops 

surrounded by a less dense/viscous fluid or gas, the 

viscous stresses at the surface can be neglected. 

Additionally, assuming a constant surface tension 

coefficient allows the stress boundary condition to 

reduce to Laplace's equation: 

sp  
 

(3) 

where, sp  is the pressure jump across the surface and 

 is the surface curvature. The above governing 

equations are solved in the three-dimensional space 

using a two-step projection method as described by 

Kothe et al. (1991). In order to solve for the new 

velocity field, the momentum equation is divided into 

two steps 
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where n  and 1n  represent the previous and next 

time step, respectively. Equation (4) is solved for an 

intermediate velocity, V
~

, by explicitly updating the 

known velocity field, 
n

V , with the convective, viscous 

and surface tension effects. The surface tension effect is 

modeled using a form of the Continuum-Surface Force 

(CSF) method. In this method the surface tension effect 

is converted into a volumetric force for computational 

cells near the free surface.  Although specific details  

are provided in the papers by Brackbill et al. (1992) and 

Bussmann et al. (1999), it is worth commenting that 

Bussmann et al. (1999) modified the original CSF 

method for use in simulations involving fluids in a 

vacuum. Their modification included the addition of a 

weighting function in the smoothed volumetric surface 

force calculation. This weighting function allows the 

volumetric surface force to be a nonzero, uniform body 

force in cells containing fluid and zero in empty cells. 

The time step restriction is computed based upon the 

smallest step size considering fluid advection, 

momentum transfer and capillary wave growth. 

Typically, the surface tension criterion is the most 

restrictive. 

 

The second step of the method is used to project the 

intermediate velocity onto a divergence free field by 

combining the continuity Eq. (1) with Eq. (5). This 

results in the Poisson pressure equation which is 

symmetric and positive definite and is solved using an 

incomplete Cholesky conjugate gradient solver for the 

new pressure field, 
1np . Lastly, the intermediate 

velocity field is updated using the new pressure field to 

give the new velocity, 1nV  at the next time step. The 

free surfaces are resolved using the Volume-of-Fluid 

(VOF) method. VOF methods use a scalar defined as 

the volume fraction, f , which represents how much 

fluid is contained within a cell. If the cell is completely 

filled with fluid then f =1, while if the cell is 

completely void of fluid, f =0. For a partially filled 

cell (i.e. a surface cell) then 0< f <1.  Thus once the 

new velocity field is computed this information is used 

to determine the updated fluid fraction field at the next 

time step. However, in free surface problems, it is not 

sufficient to just solve for the fluid flow.  The free 

surface must be evaluated in terms of both its new 

position and its orientation. This is done by using a 3D 

volume tracking method developed by Youngs (1984).  

In this methodology, polygonal planes are computed 

which match the volume fraction of a given cell.  The 

orientation of the plane is then adjusted based upon the 

computed normal vector directed into the liquid phase.  

2.3 Simulation Setup 

Since only head-on collisions are considered in this 

investigation, planes of symmetry were used to reduce 

the amount of computational time and cost.  

Specifically, all simulations were modeled using one-

quarter profiles for each of the two drops (20 cells per 

drop radius) and two planes of symmetry.  In order to 

cause the drops to collide, each drop was given a non-

zero initial velocity. These individual drop velocities 

were subsequently used to compute the relative 

velocity, rV . Various simulations were conducted for 

two drops composed of either water, mercury or 

tetradecane C14H30. Constant fluid properties were used 

(collisions between different fluids were not 

considered). Same size water drops with diameters of 

D  = 300 μm, 500 μm, 700 μm and 2 mm were 

simulated for the majority of the computations.  

However, during the investigation concerning the effect 

of Reynolds number, simulations for drop diameters of 

200 μm, 1 mm, 1.5 mm, 3 mm and 5 mm were also 

performed. All mercury and tetradecane collisions were 

for drops with a diameter of 300 μm. The fluid 

properties used are summarized in Table 1. 

 

Table 1 Drop Fluid Properties 

 

Fluid 

Density 

[kg/m3] 

Kinematic 

Viscosity 

[m2/s] 

Surface 

Tension 

[N/m] 

Water 1000 1.0 x 10-6 0.073 

Mercury 13550 1.2 x 10-7 0.484 

Tetradecane 763 3.02 x 10-6 0.027 

 

The droplet dynamics is described based on Weber and 

Reynolds numbers, defined as  /2DVW e r  and 

 /Re DVr , respectively.  Numerical simulations of 

drops colliding at high impact energies require a fine 

grid to resolve the flow in either the radial or axial 

direction. Therefore, collisions are limited by a 

maximum collision velocity beyond which a proper 

grid resolution could not be achieved. These velocities 

are as follows: For water drop collisions, relative 

velocities less than 3.8 m/s, 2.7 m/s, 2.3 m/s and 1.6 

m/s were used for 300 μm, 500 μm, 700 μm and 2 mm 

drops, respectively.   

 

Fig. 1. Surface Evolution for a Binary Water Drop 

Collision with We=40 and Re=936. Droplet diameter of 

each drop is 300µm, and their relative velocity is 

3.12m/s. Collision times are equal to (0.05ms)i, where  

i = image number. 
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For Mercury drop collisions, relative velocities less 

than 2.7 m/s, while for tetradecane drop collisions, 

relative velocities less than 11 m/s were considered. 

3.    RESULTS AND DISCUSSION 

We have conducted an extensive numerical simulation 

of head-on collisions of two drops. Figures 1 and 2 

show typical surface evolutions for two different 

collisional outcomes. Figure 1 shows the evolution 

sequence for two 300 μm water drops with a relative 

velocity of 3.12 m/s. This results in We=40 and 

Re=936, with an outcome of permanent coalescence. 

This series of images is provided to illustrate the 

various surface configurations as the combined mass 

evolves toward a single spherical drop at t > 40. 

Subsequently, as the impact velocity is increased to 

3.76 m/s, the colliding drops will combine temporarily 

and eventually separate as shown in Fig. 2. This figure 

represents a collision between the same 300 μm  water 

drops as in Fig. 1, but with a relative velocity of       

3.76 m/s, resulting in We=58 and Re=1127.  

 

Fig. 2. Surface Evolution for a Binary Water Drop 

Collision with We=58 and Re=1127. Droplet diameter 

of each drop is 300µm, and their relative velocity is 

3.76m/s.  Collision times are equal to (0.05ms)i, where 

i = image number. 

 

We can divide the collision process into several phases. 

Snap shots of surface shapes during various phases of 

collision are shown in Fig. 3.  The collision coordinate 

system is shown on the upper right corner of this figure. 

The z-axis is referred to as the axial direction, whereas 

the flow in the x-y plane is referred to as the radial 

direction.  The following phases are defined for head-on 

binary drop collisions:  (i) the collision phase: radial 

expansion and axial contraction (0  t  t1) ; (ii) the 

reflex phase: radial contraction (t1 < t  t2) and axial 

expansion (t1 < t  t4); and (iii) the oscillation or the 

break up phase depending upon whether the final 

outcome is coalescence or separation (t > t4).  In 

addition, time  t3  is defined as the time  when the fluid 

flow has reversed its direction from radial to axial 

direction. Since this time reflects a change in the bulk 

direction of the internal flow, the corresponding shape 

of the drop at this point is provided. The collision phase 

(i) or the radial expansion is very similar to the 

spreading effect observed in drop impaction studies as 

is depicted in images 1-4 on Figs. 1 and 2. Once the 

fluid has reached its maximum deformation or Rmax, the 

combined mass begins to contract due to the surface 

tension forces as shown by images 5-8 on the figures. 

At this point, the flow is re-directed 90 degrees or in the 

axial direction. As the fluid continues to flow in this 

direction, the combined mass stretches or expands until 

a maximum deformation defined as Zmax is obtained. 

This process is shown as images 9-14 on each of the 

figures. Once Zmax occurs, the surface tension force 

pushes the fluid back toward the center and the mass 

begins to contract (phase iii) as shown in the remaining 

images. The last phase can consist of either an 

oscillatory behavior (images 15-40 of Fig. 1) or 

separation (image 24 of   Fig. 2). 

 
Fig. 3. Example of phase boundaries for two drop 

collision with We = 58 and Re = 1127. Solid line 

represents the axial deformation while the dashed line 

represents the radial deformation. 

3.1 Internal Flow Patterns 

Figure 4 shows both the internal pressure and velocity 

field for three specific times during the evolution of two 

300 μm water drops colliding at We=58 and Re=1127. 

For each of the figures, the left side contains the 

pressure contours while the right side consists of 

velocity vectors and streamlines indicating the overall 

flow pattern.  

 

Fig. 4a represents the flow just before beginning of the 

axial expansion period. A high pressure region at the 

center of the combined mass is formed due to the initial 

merging process. This redirects the flow outward or 

away from the center of the combined mass.  Figure 4b 

illustrates the flow pattern once the combined mass has 

reached its maximum deformation along the axial 

direction. At the next time step the flow near the 

bulbous ends is re-directed inward due to the surface 

tension effects. In Fig. 4b, the flow is still flowing 

outward and away from the center, while a high 

pressure region due to the surface curvature has 

developed at the top/bottom regions of the bulbous 

ends.  Figure 4c represents the internal pattern when the 

combined mass has contracted and nearly separated. 

 

An example illustrating the typical flow patterns during 

each stage of the evolution is provided in Fig. 5. In this 

figure, 11 images or slices represent the internal flow 

patterns for two 700 μm water drops colliding at a 

relative velocity of 2.28 m/s resulting in a We=50 and 

Re=1596. As the two drops come into contact and 
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collide with one another (image 1) a stagnation region 

develops at the center. 

 
(a) 

 
             (b)           (c) 

Fig. 4. Velocity and pressure fields inside an evolving 

drop (a) when kinetic energy is near its maximum 

value, (b) when kinetic energy is near its minimum 

value, and (c) just before liquid bridge separates from 

bulbous ends. We=58 and Re=1127. Contours are for 

the Y-Z plane at X=0. 

 

 

Fig. 5. Internal Flow Patterns at various stages of shape 

evolution for two 700 m water drops colliding at a 

relative velocity of 2.28m/s, resulting in  We=50 and 

Re=1596. 

 

This in turn causes a high pressure region which forces 

the fluid away from the center and the drop to expand 

radially as shown in the second image. The third image 

is indicative of the flow pattern within a contracting 

torus as observed at the beginning of the second period 

of radial contraction. It is interesting to note that in the 

rim of the torus a circulation pattern develops which is 

due to the combined effect of surface curvature and the 

high pressure region near the center. Eventually, the 

torus collapses and the flow is redirected outward 

(images 4-6). Once the combined mass has stretched to 

its maximum length, the curvature of the bulbous ends 

causes the fluid near the surface to be redirected back 

toward the center of the combined mass as shown in the 

eighth image on Fig. 2.  

 

At this point, fluid is still flowing outward (causing the 

contraction which is observed along the radial axis) and 

collides with the re-directed fluid flowing inward due to 

the surface curvature. This stagnation region causes the 

flow to be re-directed radially in the middle of the 

bulbous ends which in turn is forced inward at the 

surface due to surface tension. This increases the 

curvature of the bulbous end and as a result contributes 

to the observed necking at the attachment region 

between the ligament and the ends. This flow pattern 

continues until break up is observed. The final flow 

pattern in the separated drops, therefore, contains four 

regions of circulating flows and resembles the internal 

flow patterns of a drop exposed to an external 

hyperbolic shear flow. 

 

Fig. 6. Example of Pinching. Result of a We=50 and 

Re=1596 collision at time equal to 4.24ms. (a) 

Magnified view of pinched region, pressure contours 

(left) and velocity vectors (right). (b) Pressure variation 

along the axial direction. 

 

Figure 6 illustrates the details of the breakup for a 

collision with We=50 and Re=1596.  Figure 6a contains 

both the pressure contours and velocity vectors of an 

enlarged area of the necking region. A companion     

Fig. 6b, represents the pressure variation along the axial 

direction. The breakup is initially caused by the 

presence of two high pressure regions. Curvatures in the 

radial and lateral directions cause a high pressure region 

to develop in the ligament. Similarly, another high 

pressure region develops in the bulbous ends due to its 
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curvature. This pressure difference causes more mass to 

be accumulated in the end region, which results in a 

negative curvature at the surface where the ligament 

and bulbous ends are connected. This sets up a 

minimum pressure which subsequently causes a local 

decrease in fluid mass and thus the formation of a neck. 

Once the neck is formed, it helps to increase the 

pressure, which causes the fluid to recede further 

causing more “necking”.  This process continues until 

the neck becomes so thin that it breaks. 

3.2 Critical Weber Number for the Onset of 

Separation 

Comparisons of Fig. 1 and 2 show that at some Weber 

number between W e  = 40 and 58, there is a critical 

Weber number, crW e , which marks the boundary 

between coalescence and separation. Experimentally, 

Adam et al. (1968) reported that the critical Weber 

number varies based on the drop size. They reported 

critical Weber numbers of 60 and 100 for water drops 

with diameters of 120 μm and 600 μm, respectively. 

Other experiments reported much smaller critical 

Weber numbers and no dependency on the droplet 

diameter.  

 

For example Ashgriz and Poo (1990) determined the 

critical Weber number for equal sized water drops 

colliding in atmospheric air to be approximately 19. 

This value has been verified by the work of Qian and 

Law (1997). Additionally, Jiang et al. (1992) reported 

various lower critical Weber numbers for different 

hydrocarbons, and therefore demonstrated its 

dependency on the fluid type. In their work the critical 

Weber number of tetradecane was found to be 34, 

which was subsequently confirmed by Qian and Law 

(1997).  

 

Table 2 Computed Critical Weber Numbers for 

Different Fluids and Drop Diameters 

Fluid Diameter [m] 
Velocity 

[m/s] 
Wecr Re 

Water 300 3.3 45.8 1002 

Water 500 2.4 41.0 1223 

Water 700 2.0 39.1 1414 

Water 2000 1.1 34.4 2240 

Mercury 300 2.0 33.6 5000 

 

In this investigation the numerically determined critical 

Weber number for different drop sizes and fluid types 

are shown in Table 2. The numerically determined 

critical We numbers are larger than those reported by 

Ashgriz and Poo 1990, but less than those reported by 

Adam et al. (1968). This may be attributed to the 

experimental technique used for determining the critical 

W e  number. In Ashgriz and Poo (1990) two streams of 

equally sized droplets are aimed at each other with 

collision angles ranging from 20 to 90 degrees. 

Therefore, droplets have a forward moving trajectory at 

the time of collision. Although, it is assumed that only 

the relative velocity governs the collision outcome, it 

appears that such experiments in the presence of air 

result in an internal flow field, which may enhance the 

onset of separation.   

On the other hand, Adam et al. (1968) aimed two 

droplets directly towards each other (180o angle). In 

addition, they used relatively large droplet spacings so 

that the collisions were not in the wake of the previous 

ones, as was the case in Ashgriz and Poo (1990). Our 

simulations are similar to experiments of Adam et al. 

(1968), however, ours is in a dynamically inert gas. 

Therefore, there is less resistance for the droplet 

motion, and thus the critical We numbers are slightly 

smaller. One important finding is that the droplet size 

has an influence on the critical We number. This 

confirms the results of    Adam et al. (1968), and 

indicates that the collision We number is not the only 

parameter that governs the collision process. 

 

For a wide range of Weber and Reynolds numbers 

tested here, no reflexive separation is observed for the 

tetradecane drops. Of the three fluids considered, 

tetradecane has the lowest surface tension coefficient, 

~0.37water and ~0.06mercury, and the largest kinematic 

viscosity, ~3 v water and ~25 v mercury. Both of these fluid 

properties have a prominent effect on either surface 

energy or energy dissipation, respectively. In addition, 

density is also important since for the same collision 

parameters, it changes the initial kinetic energy. The 

density of Tetradecane is again the smallest of the three:  

~0.76water and ~0.06mercury. Therefore,  tetradecane 

has the least surface energy, the highest energy 

dissipation and the least initial kinetic energy as 

compared to similar collisions of  water and mercury 

drops. 

3.3 Evaluation of Collision Models 

There are two very different types of models for the 

prediction of the onset of separation in a head-on 

collision of two drops. One is based on the capillary 

instability theory, according to Ashgriz and Poo (1990) 

and Brenn et al. (2001), and the other is based on 

energy dissipation, according to Jiang et al. (1992), 

Qian and Law (1997), and Willis and Orme (2004). In 

this section, we will assess the accuracy of the major 

assumptions made in these models. 

3.3.1 Capillary Instability Based Models 

Ashgriz and Poo (1990) proposed a capillary instability 

model to predict the boundary between coalescence and 

reflexive separation. The underlying principle in their 

model is the following. When the two drops collide, 

they first form a thin disk which will later contract into 

a round-ended cylinder with radius r and length l+2r, as 

shown in Fig. 7a.  
 

Based on Rayleigh's linear theory (1878), if the length-

to-diameter ratio of a liquid column is greater than or 

equal to , the column becomes unstable. Ashgriz and 

Poo used the whole length of the round ended drop, 

l+2r, as the length of the column. Then, by applying the 

Rayleigh criterion to the round-ended drop of Fig. 7a, 

they found the instability criterion as (l+2r)/2r =. The 

round ended cylinder is, however, different from a 

liquid column, which does not have surface forces 

pushing in from its two ends. For this drop, if the fluid 

inside is stagnant, the surface forces from the two ends 

will force the flow towards the center, preventing the 
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break-up. Therefore, this liquid cylinder can break only 

if the internal flow field stops the retraction of the two 

ends. If the round ended cylindrical drop is held 

stationary, and disturbances can grow and break the 

drop. Based on this model, Ashgriz and Poo postulated 

that (1) if length to diameter of the liquid column at the 

end of the reflex phase is equal to , and (2) if there is 

enough kinetic energy inside the drop to keep the 

column stationary, then the drop can break. 

 

 

 

 
Fig. 7. (a) A round ended liquid column formed after 

collision. Ashgriz and Poo (1990) postulated that this 

column will be unstable if its length (l+2r) is larger 

than its perimeter (2πr).  (b) and (c) Axial and radial 

deformation lengths defined as difference between 

maximum and minimum points in corresponding 

direction. Early evolution shapes from two 700 mm 

water drops colliding at We=50 and Re=1596. 

 

We will first determine the critical length of a combined 

drop beyond which it will breakup into two or more 

drops.  We will express the extent of deformation as 

follows: 

D

Lr  

(6) 

D

Lz  
(7) 

where Lr and Lz are computed by identifying the 

maximum and minimum points located on the fluid 

surface on the radial and the axial directions, 

respectively (Fig. 7b and 7c), and D is the initial drop 

diameter. Note that these values are not necessarily 

along the axes. For instance, the maximum deformation 

Lz can be at the edges of the torus and not at its center. 

We have chosen the actual maximum and minimum 

points in order to capture the diameter of the end points 

of the combined mass. 

 

Fig. 8. Extent of Deformation along the axial 

direction, DLz / , where Lz is the distance 

between the maximum and minimum points along 

the axial direction.  (a) Water,  (b) Mercury and (c) 

Tetradecane. D=300 m. 

 

Figures 8 and 9 show the time variations of 

dimensionless axial deformation,  , and dimensionless  

radial deformation,  , respectively, for 300 μm drop 

collisions for water, mercury and tetradecane. These 

figures show that during the collision phase,   reaches 

a minimum at Zmin, while  reaches a maximum. For 

fluids with low surface tension coefficients (i.e., 

tetradecane),   represents the thickness of a flat disk, 

while for larger surface tension coefficients (i.e., water 

and mercury),   corresponds to the diameter of a 

torus' outer rim.  
 

Figure 8 shows that once   reaches a minimum, it 

remains around that position for a short time and then it 

starts to increase. This can be understood by comparing 

Fig. 8a with Fig. 1 and 2. In Fig. 1, at t=0.15 ms the 

height of the drop along the z-axis has become almost 

the same as the drop thickness on the rim of the torus. 

In the following time steps, the height along the z-axis 

reduces, while the thickness of the rim increases 

slightly. Once the reflexive action takes over, the 

droplet height along the z-axis increases rapidly, 

bypassing the rim thickness. This plot allows one to 

compare the rim thickness for various conditions. A 

general conclusion is that the diameter of the rim of the 

torus for the water and mercury drops and for a wide 

range of conditions shown in Fig. 8 is approximately 

equal to the initial radius of the drops (i.e.,   ≈0.5). 
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Fig. 9. Extent of Deformation along the radial direction, 

DLr / , where Lr is the distance between the 

maximum and minimum points along the radial 

direction.  (a) Water,  (b) Mercury and (c) Tetradecane. 

D=300 m. 

 

During the reflexive phase, all three fluids exhibit very 

similar behavior in the way in which the radial 

deformation (i.e. contraction) varies with time. This 

similar behavior is noted due to the deformation curves 

overlapping one another for water and mercury 

collisions and is thus independent of Weber number. 

Similarly, while  does not explicitly overlap for 

tetradecane collisions (owing to the large range in 

initial fluid impact energy), the change in deformation 

(i.e. the slope) is relatively the same regardless of 

Weber number. This indicates that the surface tension 

forces in the reflexive phase dominate the fluid motion. 

 

Once  max is reached,  variations become similar and 

again independent of Weber number. However, the 

behavior of deformation in the axial direction is quite 

different depending upon the collisional outcome. For 

cases resulting in coalescence,   decreases rapidly, 

indicating the dominance of the inertia forces. As the 

Weber number increases, the final outcome changes 

from coalescence to separation and the corresponding 

  exhibits slower changes (smaller slopes) - an 

indication that inertia and surface forces are competing 

for control. If surface tension begins to dominate as the 

combined mass contracts, radial pinching develops and 

grows, resulting in separation. Conversely, if the axial 

fluid momentum dominates, radial pinching will not 

develop, resulting in permanent coalescence instead. 

Therefore, if the combined mass stretches to a critical 

maximum length, ( max)cr, the influence of surface 

tension compared to fluid momentum is now such that 

surface tension dominates the collisional evolution and 

the combined mass will separate. 

 

An important observation from Fig. 8 is that the 

demarcation point of the coalescence and separation is 

around   =3.1 for both water (Fig. 8a) and Mercury 

(Fig. 8b). However, for the tetradecane drops and for a 

wide range of Weber numbers tested here, even for 

much larger ,  droplet separation was not observed. 

Therefore, the axial length criterion by itself may not be 

sufficient to predict the onset of separation. A closer 

look at the difference between the water, mercury, and 

tetradecane plots (Figs. 8 and 9) reveals that the liquid 

column breaks only if a bulbous end at the rim of the 

collision phase is observed. Comparing Figs. 8a and 8b 

with Fig. 8c, shows that for water and mercury the 

minimum   stays at about 0.5 or half of the drop 

initial diameter, yet for tetradecane, it can continuously 

reduce. This indicates that for tetradecane collisions the 

collision phase results in the formation of a flat disk and 

not a torus. Therefore, the surface area at the tip of the 

rim of the combined drop is small as compared to the 

surface area of a torus. Therefore, it can be said that a 

torus-shape at the end of the collision phase with a rim 

diameter equal to the radius of the initial drops is the 

second requirement for the onset of separation.  

 

(a) 

 

(b) 

Fig. 10. Plots of max versus ln(We)  (a) Comparison of 

different fluids and D=300 µm.  (b) Comparison of 

different water drop sizes. 

 

A search for this critical deformation value was 

accomplished by plotting  max versus ln(We) for the 

three fluid types and different drop sizes. The results 

are plotted in Fig. 10, where Fig. 10a provides a 

comparison of fluid types and Fig. 10b gives a 
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comparison of drop sizes. Since the range of Weber 

numbers used in the simulation of tetradecane collisions 

was an order of magnitude larger than the values used 

for water and mercury drop collisions, the natural 

logarithmic scale was used. This scale allows the data 

to be represented on a single plot and it is useful for 

comparison purposes. 

 

Review of Fig.10 allows two observations to be made. 

First, the behavior of collisions composed of water or 

mercury are very different than the observed variation 

seen for tetradecane drops.  Second, for water and 

mercury collisions the lower critical Weber numbers of 

33.6 and 45.8 indicate that ( max)cr ~ .  Therefore, if 

the combined mass stretches in the axial direction to a 

value greater than , separation will always occur. 

However, for tetradecane drop collisions, ( max)cr does 

not exist since reflexive separation never occurs 

because of small rim surface areas during the collision 

phase. A similar review of Fig. 10b, which represents a 

comparison with respect to drop size, reveals that size 

has little impact on this parameter's variation. In all 

three drop size cases, at the lower critical Weber 

numbers of 41.0, 39.1 and 34.4, the critical length to 

drop diameter ratio is ( max)cr  ~  . 

 

(a) 

 

(b) 

Fig. 11. Ratio of maximum dimensionless deformations 

in the radial and axial direction, ζ max = max/max. (a) 

Comparison of different fluids.  (b) Comparison of 

different water sizes. The dashed line represents the 

boundary between coalescence and separation. 
 

Another criterion for the collision outcome was 

observed by plotting the ratio of the maximum 

dimensionless deformation in the radial and axial 

directions,  = max / max. A comparison of this ratio 

with ln(We) for (a) tetradecane, water and mercury and 

(b) for water drop diameters of 300 μm, 700 μm and 2 

mm is provided in Fig. 11. In all cases for water and 

mercury, a critical value of ()cr = 0.65 represents the 

demarcation value between permanent coalescence and 

separation. This ratio for tetradecane collisions always 

remained above 0.9 and is consistent with the fact that 

reflexive separation was never observed. 

 

We can now address the capillary instability based 

criterion for breakup proposed by Ashgriz and Poo 

(1990). As noted earlier, they assumed that breakup 

occurs when length to diameter of  a round ended drop 

is more than , i.e.,  rrl 2/)2( .  Based on our 

model, DlrlLz  2  where D  is the diameter of 

the liquid ligament formed after collision. Diameter of 

the droplet relates to the diameter of the liquid ligament 

at this critical condition as DD  28.1 . Therefore, the 

critical condition based on our parameters is 

 DLrrl z /2/)2(  or 45.2/ DLz .  This is 

different than our finding of   .  If the length of the 

column in Ashgriz and Poo’s model did not include the 

round ends, then their prediction of the critical 

conditions would have been   ≈2.9. In fact, the 

Rayleigh instability criterion is for an infinitely long 

column and not for a round ended column. Therefore, a 

modified criterion for breakup based on length l as 

shown in Fig. 7a, better matches the numerical results.  

This condition is only valid for collisions in which the 

liquid surface tension is large enough to produce a 

torus-shape drop during the collision phase. 

3.3.2 Dissipation Based Models 

Jiang et al. (1992) have used a dissipation based model 

to describe the onset of separation. They assumed that 

at the time when the combined drop has reached its 

maximum deformation along the radial axis (i.e., maxR ) 

there is no internal kinetic energy. All the initial kinetic 

and surface energies of two drops is transferred partly 

to the surface energy and the rest is dissipated. Equating 

the initial total energy to the surface energy plus 

dissipated energy at this time yields 

  SSEKE oo  

 

(8)
 

where S  is the surface area of the united spheroid and 

 is the dissipated energy at this instant in time. By non-

dimensionalizing with respect to the initial surface 

energy, they derived the following relationship, 

  *11ˆ WeS   
 

(9) 

where  is the dissipation coefficient. The limiting case 

is  = 0. By using their experimental data, they 

concluded that  = 0.5 which indicates that half of the 

initial energy is dissipated during this phase of the 

evolution and that its value is independent of the 

viscosity of the drop. We will show that the dissipation 

energy at the end of the collision phase is not half of the 

initial surface energy, and that the combined drop at 

this phase has a significant amount of kinetic energy 

stored in it. Qian and Law (1997) expanded this model 

to include dissipation losses associated with all phases 

of the evolution sequence. In particular, they assumed 

that in order for separation to occur, the initial kinetic 
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energy must be larger than all losses due to dissipation 

and any residual energy associated with the deformed 

shape of the combined mass. This relationship is 

represented as 

 SKEo  321  
 

(10) 

where 1 represents the dissipation losses associated 

with the collision phase, 2 those with the reflexive 

phase, and 3 those with separation or oscillation 

phases. 1 was estimated using the  = 0.5 as indicated 

by Jiang et al. (1992), while 2 and 3 were estimated 

by using both geometrical relations and estimates for 

the characteristic velocity during each phase. 

Substituting and simplifying, they obtained the 

following expression for the computation of the critical 

Weber number 

  *OhWecr  
(11) 

where  is a constant and a function of geometry and 

the dissipation coefficient, , and  ROh /16*   

is a modified Ohnesorge number. The parameter, , 

represents the additional surface energy needed for 

separation and is also a function of . Based upon their 

experimental work, they concluded that  = 24  3 and 

 =10  2, which correlated nicely with a fitted line 

represented by 1530  ZWecr . In their work, 

although viscosity was incorporated into expressions 

for 2 and 3, viscosity was still seen to have a 

negligible effect upon the outcome. 

 

The first issue, we would like to address is, whether the 

dissipation assumptions made in Jiang et al. (1992), as 

well as Qian and Law (1997) are plausible. In order to 

determine the energy dissipation, we will determine the 

evolution of the surface energy, the kinetic energy and 

the dissipation in the colliding drops. At the beginning 

of the collision, both drops have a known amount of 

surface and kinetic energy. These energies are 

computed as follows 

 22 io DSE   
(12) 

23

24
rio VDKE


  

(13) 

where the ratio of this kinetic energy to surface energy 

is defined to be We* = We/48 (Jiang et al. 1992). 

Numerically, at each time step, each of these energies 

are computed using the following definitions  
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(15) 

where pSA  is the polygon area and cellv  is the volume 

of the computational cell. Therefore, using these 

relationships each energy variation was computed at 

each time step during the collisional process. 

Additionally, by using these energies and the 

conservation of energy equation an estimation of the 

change in total energy or dissipation energy, , was 

obtained as follows 

nnoo SEKESEKE   
  (16) 

We will scale the kinetic and surface energies with the 

initial surface energy as 

o

n

SE

KE
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(17) 
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(18)

 The initial surface energy was chosen as the scaling 

energy since for a same size and same fluid drop 

collisions, this energy is independent of impact energy.  

Since the amount of dissipated energy is simply the 

combined transient kinetic and surface energies 

subtracted from the initial total energy, a 

nondimensional dissipation energy was defined as  
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(a) 

 
(b) 

Fig. 12. Dimensionless kinetic energy,  = KEn/SEo 

versus time.  (a) Water, 300 m and (b) Water, 500 m. 

3.3.3 Kinetic Energy  

Dimensionless kinetic energy variations for 300 μm 

tetradecane, 300 μm mercury and 300 μm, 500 μm, 700 

μm and 2 mm water drops collisions are provided in 

Fig. 12.  In these cases, as the drops come into contact 

with one another (i.e. time of collision = 0), initially 

there is a spike in the kinetic energy.  As an example, 

two 300 μm water drops colliding with a We/Re 

combination of 10/468 and 50/1044, respectively, 

resulted in a relative increase of 31% and 8%. Similar 

behavior was observed for other sizes and fluid types. 
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This increase occurs very quickly, usually in less than 

150 time steps (i.e., less than 0.04 ms) and decreases 

with increase of the We/Re combination. This increase 

is due to the high pressure region which results from the 

perpendicular and opposing flow of the two colliding 

drops. This high pressure area causes the fluid to 

accelerate radially away from the center thus causing 

the observed increase in kinetic energy. Immediately 

afterwards, the kinetic energy decreases transferring 

energy to the surface energy. At the end of the collision 

phase, the total kinetic energy is at its minimum value. 

A maximum kinetic energy is observed between t1 < tke 

< t2 as defined in Fig. 3, and its value is relatively 

independent of Weber number. For mercury drop 

collisions with a lower critical Weber number of 33.6, 

this maximum ratio of kinetic energy to initial surface 

energy max= 0.368. For water drop collisions with drop 

diameters of 300 μm, 500 μm, 700 μm and 2 mm, this 

ratio is 0.401, 0.396, 0.380 and 0.353, respectively. 

Therefore, for mercury and water drop collisions, the 

maximum amount of kinetic energy for separation can 

be approximated by computing 37% of the initial 

surface energy. It should be noted that at the end of the 

collision phase the kinetic energy is very small (but not 

zero), and therefore, Jiang et al. (1992) assumption that 

the flow comes to a stop at that point is a good 

approximation. 

 
(a) 

 
(b) 

Fig. 13. Dimensionless surface energy,  = SEn/SEo 

versus time. (a) Water, 300 m and (b) Water, 500 m. 

3.3.4 Surface Energy  

As with the previous discussion on kinetic energy, the 

dimensionless surface energy as a function of time is 

plotted in Fig. 13. As expected, the maximum surface 

energy occurs at the end of the collision phase where 

the combined fluid has spread along the radial axis to 

its maximum radius, maxR . For mercury drop 

collisions, the maximum dimensionless surface energy 

at the transition point between coalescence and 

separation is max = 1.43. For water drop collisions with 

drop diameters of 300 μm, 500 μm, 700 μm and 2 mm, 

this ratio is 1.46, 1.44, 1.43 and 1.40, respectively. 

Taking the averages yields 
max = 1.433, which is very 

close to mercury's value of 1.425. Therefore, the 

maximum amount of surface energy for separation can 

be computed by taking 1.43 times the initial surface 

energy. For collisions composed of tetradecane, this 

ratio varied from 1.03 to 3.20 for Weber numbers of 30 

to 1025, respectively. Although max = 1.45 occurs for a 

Weber number of 90, no separation is observed. It is 

concluded that models which are based only on the 

surface energy at a certain point are not by themselves 

appropriate to define the onset of separation. 

3.3.5 Dissipated Energy  

Two aspects of the Jiang et al. (1992) model are tested 

using the numerical results obtained in this 

investigation. First, the overall form of Eq. (11) is 

tested. This was done by computing the modified 

Ohnesorge number, Oh*,  for water drop collisions with 

diameters of 300 μm, 500 μm, 700 μm and 2 mm and 

using their corresponding lower critical Weber number. 

The results of this analysis along with the results 

provided by Qian and Law (1997) are plotted on       

Fig. 14a.  Mercury is also included since it was 

observed that reflexive separation occurred at        

crW e  = 33.6. A linear line fitted through the water data 

provides, crW e  = 116(Oh*)+ 28. This should be 

compared with that of Qian and Law’s empirical 

relation of crW e  = 30(Oh*) + 15. Therefore, in Eq. 11, 

num = 116 ~ 3.9exp and num = 28 ~ 1.9exp, where the 

subscripts exp and num refer to experimentally and 

numerically determined constants.  Both of these 

numerical constants indicate that in a vacuum 

environment, collisions result in more substantial 

changes in geometry (i.e. deformation) than for 

collisions occurring in a gaseous environment, and/or 

less dissipation occurs during the collision phase. This 

is, in fact, observed in the experiments of Willis and 

Orme (2000). 

 

The second aspect tested is related to the issue 

concerning the amount of dissipation occurring in the 

initial phase of the evolution. Jiang et al. (1992) define 

this dissipation coefficient to be  

*
1

W eSEo


   

 

(20) 

By substituting the amount of dissipation occurring 

during the collision phase and the initial surface energy 

and the modified Weber number for water drop 

collisions of 300 μm and 2 mm colliding at their 

corresponding critical Weber number, this coefficient is 

0.389 and 0.299, respectively. Qian and Law (1997) 

derived expressions for  and , which represent the 

product of two factors. Specifically, both are functions 

of the dissipation coefficient, while  is also a function 

of the geometry and  is also a function of excess 

surface energy.  In general, each of these constants can 

be written as follows:  
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geometryndissipatio CC  
  (21) 

surfacendissipatio CC    (22) 

Here Cdissipation = 1/(1-), Cgeometry = f(geometry) and 

Csurface = 6S/R2. Therefore, using the original Jiang et 

al. assertion that 50% of the energy is dissipated and 

Qian and Law's values of exp = 30 and exp  = 15, the 

factors associated with geometry and excess surface 

energy can be estimated. Doing so yields Cgeometry = 15 

and Csurface = 7.5. 

 

Now, using these constant values and an average 

dissipation coefficient based upon the results obtained 

in this investigation, 348.0 ,  and  are re-

computed to be ’ =23.0 and ’ =11.5.  Although these 

values more closely approximate Qian and Law's 

(1997) experimental determination of  = 24 3 and     

 =10  2, they do not agree with the plotted data of 

num = 116 and num = 28. This again supports the 

assertion that for collisions in a vacuum, more 

pronounced deformation will occur as compared to 

collisions occurring in the presence of a surrounding 

gaseous environment. 

 

Willis and Orme (2000) presented a model based upon 

their experimental observations of oil drop collisions in 

a vacuum. Using Jiang et al.'s (1992) equation for total 

energy at the instant of maximum spread along the 

radial axis, they proposed that the amount of surface 

energy can be bounded by two limiting shapes. Namely, 

these shapes are either a thin flat disk, or the minimum 

surface area, Sd, and a torus, representing the maximum 

surface area, St. Each of these areas are computed using 

analytical expressions and geometric values taken from 

their experimental data.  Non-dimensionalizing with 

respect to the initial surface area of two spherical drops, 

an average surface area is computed as follows 

2

ˆˆ
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ˆˆ
ˆ dtdt SSSS
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
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
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(23) 

Using data obtained during this investigation, this 

variable was computed and plotted versus the scaled 

Weber number, We* for tetradecane, water and 

mercury drop collisions. The results of which are 

provided in Fig. 14b. Additionally, Eq. (9) is provided 

for the case when there is no dissipation and when the 

dissipation coefficient is 50%. Willis and Orme 

provided a similar plot using their experimental data, 

which indicates that the amount of dissipation is 

dependent on the fluid viscosity contradicting the 

original assertion by Jiang et al. In particular, Willis 

and Orme demonstrated that the amount of dissipation 

increases as the viscosity of the fluid increases.  

 

Review of Fig. 14b supports this assertion, since 

tetradecane, water and mercury all exhibit independent 

behavior with regards to one another and as the 

viscosity of the fluid increases, more energy loss 

occurs. In fact, increased dissipation causes the overall 

behavior to become more nonlinear (i.e., tetradecane 

versus mercury and water). Additionally, for the three 

fluids investigated it is observed that as We* 0, the 

non-dimensional surface area also approaches a limit, 

namely 3/12ˆ S . At low Weber numbers, the final 

outcome of droplet collisions is permanent coalescence. 

This limiting value is computed by calculating the 

surface area of the final combined droplet divided by 

the total surface area of the two original drops.     

 

Fig. 14. Model Comparison. (a)  Qian and Law Model 

(b) Willis and Orme model compared with Jiang et al. 

Model 

3.4 Reynolds Number Effect 

There has been much speculation as to whether the 

Reynolds number has an effect or not on the overall 

collisional outcome. In this section, this aspect was 

tested by simulating collisions with a constant Weber 

number and various corresponding Reynolds numbers. 

The appropriate Weber/Reynolds number combination 

was obtained by either varying the drop diameter and 

keeping the fluid properties and relative velocity 

constant or by keeping the drop diameter, relative 

velocity, surface tension and density constant and 

varying the kinematic viscosity. In these two ways, the 

Weber number remains constant while the Reynolds 

number varies. For instance, an investigation for a 

constant Weber number of 40 was conducted. In order 

to simulate a variety of collisions with this Weber 

number, drops with water properties and diameters of 

300 μm, 500 μm, 700 μm and 2 mm were used.  These 

four cases resulted in corresponding Reynolds numbers 

of 936, 1210, 1428 and 2400, respectively. Two 

additional Reynolds numbers of 1040 and 1337 were 

simulated by defining water drops with the same 

relative velocity used for the case of Re=936, but values 

of 0.9 x 10-6 m2/s and 0.7 x 10-6 m2/s were used to 

represent the kinematic viscosity.  

Nobari et al. (1996) plotted the Weber number versus 

Reynolds number for ten different binary drop collision 
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simulations. Based upon their computational data and 

the experimental data provided by Jiang et al. (1992), 

they provided an extrapolation for low Reynolds 

number cases which represents the boundary between 

coalescence and separation. In their numerical 

technique the boundary between colliding drops had to 

be artificially ruptured before merging could take place. 

Although experimental data of this nature (i.e. rupture 

times) do not exist, which undermines the veracity of 

the data, this work is the first to indicate that a clear 

boundary or critical Reynolds number does exist. 

 

Fig. 15. Weber versus Reynolds Number. Results for 

Water, Mercury and Tetradecane. Boundary is a fitted 

spline and  represents the transition between 

coalescence and separation. 

 

Figure 15 shows the critical Reynolds number for the 

boundary between coalescence and separation obtained 

from the simulations conducted in this investigation. 

Review of this data indicates that, as the Weber number 

increases, a minimum Reynolds number of slightly less 

than 1000 is required before separation will occur. This 

value is an order of magnitude greater than the 

extrapolated value indicated by Nobari, et al. (1996). 

Additionally, they reported that, as the Reynolds 

number increases, the Weber number decreases until a 

limiting value of W e=24 is reached. This value of 24 

was based upon the work conducted by Ashgriz and 

Poo (1990) for high Reynolds numbers. In contrast, the 

results obtained in this investigation indicate a limiting 

Weber number of 35. 

4.    CONCLUSIONS 

Full three dimensional numerical simulations of head-

on binary drop collisions consisting of either water, 

mercury or tetradecane were conducted. In order to 

simulate the evolution of the surface deformation 

during collision, the volume-of-fluid technique was 

utilized in conjunction with the Continuum Surface 

Force method for surface tension effects. During the 

course of this investigation it is noted that for drops 

without the influence of the surrounding environment, 

the lower critical Weber number for water drops are 

somewhat larger than that observed experimentally.   

 

Additionally, the critical Weber number was seen to be 

a function of drop size. A critical Reynolds number of 

about 1000 was determined. For all cases simulated in 

this investigation, separation occurs if the stretching 

length is greater than  times the drop's initial diameter. 

This is close to the modified capillary based model of 

Ashgriz and Poo (1990), in which the liquid column 

length does not include the round ended parts of the 

combined drop. Our number is slightly larger than the 

critical number of 2.85 predicted by numerical 

simulation of Morozumi et al. (2005).  

 

This difference may be partially due to the different 

numerical techniques used and their numerical 

dissipation levels. It is also noted that a critical length 

model is not sufficient for the prediction of the 

separation point. For liquids with a small surface 

tension, a disk shape drop, rather than a torus-shape 

drop, is formed at the end of the collision or spread 

phase. The formation of the torus-shape drop was 

another condition that had to be satisfied to have 

separation.  

 

During the collision phase (radial expansion), 13-19% 

of the energy is dissipated for water drops, while only 

9% was dissipated for mercury drop collisions 

occurring at the critical Weber number. The dissipation 

energy for tetradecane was 36%-84% for collisions 

ranging from  30  We  1025. Therefore, the model of 

Jiang et al. (1992) which uses a 50% dissipation for all 

fluids, is a good assumption for most fuel drops with 

low surface tension, however, it overestimates the 

dissipation for water and mercury drops. The Jiang et 

al. (1992) dissipation coefficient was computed for 

each fluid type and was seen to vary with both fluid 

type and drop size.  Review of the model by Qian and 

Law (1997) and the one proposed by Willis and Orme 

(2000) indicates that the collision outcome is indeed 

dependent upon viscosity.  Finally, the assumption that 

the internal kinetic energy at the end of the collision 

phase (i.e., when the two drops collide and spread 

forming a disk or a torus drop) is approximately zero 

(Jiang et al. 1992; Willis and More 2000) is a good one 

for drops studies in this work.  
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