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ABSTRACT 

The effect of different forms of basic temperature gradients on the criterion for the onset of convection in a layer of 

an incompressible couple-stress fluid-saturated porous medium is investigated. It is shown that the principle of 

exchange of stability is valid, and the eigenvalue problem is solved numerically using the Galerkin technique. The 

parabolic and inverted parabolic basic temperature profiles have the same effect on the onset of convection and 

similar is the case between piecewise linear temperature profiles heating from below and above. Amongst the various 

basic temperature profiles, the linear temperature profile is found to be more stabilizing on the onset of instability.  In 

addition, the influence of thermal depth on the criterion for the onset of convection is assessed in the case of 

piecewise linear temperature profiles. Moreover, an increase in the value of couple-stress parameter is found to delay 

the onset of convection and to increase the width of convection cells. It is also noted that the critical wave numbers 

are slightly affected by the nature of basic temperature profiles.  
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NOMENCLATURE 

a            overall horizontal wave number 

hA          ratio of heat capacities 

D           differential operator 

 f z       non-dimensional temperature gradient  

K            permeability of the porous medium 

, m       horizontal wave numbers in the x and y    

               directions respectively 

M           non-dimensional group 

p            pressure 

DPr        modified Darcy- Prandtl number  

q            seepage velocity  

DR         Darcy- Rayleigh number 

t             time 

 T            temperature 

w          vertical component of perturbed velocity  

W           amplitude of perturbed vertical velocity 
 

Greek symbols 

            thermal expansion coefficient  

t           thermal depth 

          amplitude of the perturbed temperature  

           effective thermal diffusivity 

           fluid density 

0         density at reference temperature, 0T T  

c         couple-stress parameter 

           fluid viscosity 

c          couple-stress viscosity 

            porosity  

           growth rate 

1. INTRODUCTION 

Thermal convective instability in a layer of porous 

medium has merited extensive attention over the years 

and is now emerged as an important field of study in the 

general area of fluid dynamics and heat transfer. The 

growing volume of work pertaining to this field is well  

 

 

documented by Ingham and Pop (1998), Vafai (2000, 

2005) and Nield and Bejan (2006). In many of the heat 

transfer problems, suppress or augment of convection 

plays a vital role. There are several mechanisms that 

can be used effectively to either suppress or augment 

http://www.jafmonline.net/


I.S. Shivakumara et al. / JAFM, Vol. 5, No. 1, pp. 49-55, 2012.  

 

 50 

convectCion namely, by applying a magnetic/electric 

field externally or by Coriolis force due to rotation or 

by maintaining non-uniform temperature gradient 

across the porous layer. A non-uniform temperature 

gradient can arise in various ways, notably by (i) 

transient heating or cooling at a boundary, (ii) 

volumetric distribution of heat sources, (iii) radiative 

heat transfer, (iv) thermal modulation, and (v) vertical 

throughflow. A large cross section of the fundamental 

research carried out on these topics has been covered 

extensively in Nield and Bejan (2006). 

 

Although several studies have been undertaken in the 

past to understand convective instability using non-

uniform basic temperature gradients, all the 

investigations have been limited to Newtonian fluid- 

saturated porous media. Nevertheless, the growing 

importance of non-Newtonian fluids in modern 

technology has attracted researchers for the 

consideration of such fluids in the investigation of 

convective instability problems because the traditional 

Newtonian fluids cannot precisely describe the 

characteristics of the fluid flow encountered in many 

practical problems such as the extrusion of polymer 

fluids, solidification of liquid crystals, cooling of 

metallic plates in a bath, exotic lubricants and colloidal 

fluids to mention a few. These fluids deform and 

produce a spin field due to the microrotation of 

suspended particles forming a micropolar fluid. The 

theory of micropolar fluids was developed by Eringen 

(1966) which takes care of local effects arising from the 

microstructure and as well as the intrinsic motions of 

microfluidics. The spin field due to microrotation of 

freely suspended particles sets-up an antisymetric 

stress, known as couple stress, and thus forming couple 

stress fluid. Thus couple-stress fluid, according to 

Eringen (1966), is a particular case of micropolar fluid 

when microrotation balances with the natural vorticity 

of fluid. The couple-stress fluid has distinct features, 

such as polar effects and whose microstructure is 

mechanically significant. The constitutive equations for 

couple-stress fluids are given by Stokes (1966).  The 

theory proposed by Stokes is the simplest one for 

micro-fluids, which allows polar effects such as the 

presence of couple-stress, body couple, and non-

symmetric tensors. 

 

Based on this formulation, convective instability in 

either a couple-stress fluid layer or in a couple-stress 

fluid-saturated porous layer heated from below has been 

investigated in the recent past. Sharma and Thakur 

(2000) have investigated thermal instability of an 

electrically conducting couple-stress fluid-saturated 

porous layer in the presence of a uniform magnetic 

field. They have reported that the couple-stress delays 

the onset of stationary convection.  A layer of couple-

stress fluid saturating a porous medium heated from 

below in the presence of rotation has been studied by 

Sharma et al. (2000) and condition for the onset of 

convection is obtained. Sunil et al. (2002) have 

investigated the effect of magnetic field and rotation on 

a layer of couple-stress fluid heated from below in a  

porous medium, while Sunil et al. (2004) have 

considered the effect of suspended particles in a couple-

stress fluid layer heated and soluted from below in a 

porous medium. The linear and non-linear double 

diffusive convection with Soret effect in couple-stress 

liquids has been considered by Malashetty et al. (2006). 

Gaikwad et al. (2007) have studied linear and non-

linear double diffusive convection with Soret and 

Dufour effects in couple-stress liquids. Recently, 

Malashetty et al. (2009) have studied convective 

instability in a layer of couple-stress fluid-saturated 

porous medium heated from below using a thermal non-

equilibrium model. 

 

All these previous investigators have considered the 

effect of only uniform temperature gradient on the onset 

of convection in a couple-stress fluid-saturated porous 

medium. Nevertheless, the effect of non-uniform basic 

temperature gradients concerning this problem has not 

been given any attention in the literature despite its 

importance in understanding convective instability 

encountered in many scientific and technological 

problems. The novelty of the present work is to 

understand which basic temperature profile leads to the 

least critical Darcy-Rayleigh number. The answer is not 

trivial and it is not answered even in the case of 

Newtonian fluids for isothermal boundaries and the 

available results are restricted to only insulating 

boundaries since this case is amenable for analytical 

treatment (Shivakumara 2009). The intent of the present 

study is, therefore, to analyze the influence of different 

forms of nonuniform basic temperature profiles, namely 

(i) linear temperature profile, (ii) parabolic temperature 

profile, (iii) inverted parabolic temperature profile, (iv) 

piecewise linear temperature profile heating from below 

and (v) piecewise linear temperature profile cooling 

from above and make clear their effects on the onset of 

convection in a couple-stress fluid-saturated isotropic 

porous medium for isothermal boundaries. 

 

To achieve the above objectives, the paper is organized 

as follows. The mathematical formulation is given in 

section 2 and it is shown that the principle of exchange 

of stabilities is valid irrespective of the form of basic 

temperature profile. The method of solution to solve the 

eigenvalue problem is discussed in section 3. The 

results are discussed in section 4 and conclusions drawn 

are presented in section 5. 

 
Fig. 1. Physical configuration 

2. MATHEMATICAL FORMULATION 

We consider an infinite horizontal layer of an 

incompressible couple-stress fluid-saturated porous 

medium heated from below, where the vertical distance 

between the top and bottom boundaries is d  and a fixed 

temperature difference T  is maintained across the 

porous layer(see Fig.1). A Cartesian coordinate system 

(x, y, z) is used with the origin at the bottom of the 

porous layer and the z-axis vertically upward in the 

gravitational field. 
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Under the Boussinesq approximation, the equation of 

continuity and the equation of state are, respectively 

. 0q                                                                          (1) 

  0 01 T T     .                                               (2) 

The equation of motion of an incompressible couple-

stress fluid saturating a porous medium, following 

Malashetty et al. (2009), is given by  

 1 1 1 2

0 0 0

q ρ
p g μ μ qcφ t ρ ρ ρ K


      


               

(3) 

The time derivative term is taken into consideration in 

Eq. (3) in order to look into the possibility of oscillatory 

convection. When 0c  , Eq. (3) reduces to the usual 

modified Darcy equation which describes the flow of a 

Newtonian fluid saturating a porous medium and note 

that the presence of couple-stress is to alter the viscosity 

of the fluid.  
 

The temperature equation is given by   

  2.h

T
A q T T

t



   


                                             (4) 

Since the non-uniform basic temperature profile finds 

its origin in transient heating or cooling at a boundary, 

the temperature distribution in the basic state usually 

depends explicitly on position and time. Thus, the 

quiescent basic state is described by  

0bq  , ( , )bp p z t ,
2

2
b bT T

t z


 


 
                       (5a) 

where the subscript b denotes the basic state. As 

propounded by Nield (1975), it is also not our intention 

to treat here the full problem of temperature profiles 

depending explicitly on time. Instead, we introduce a 

simplification in the form of a quasi-static 

approximation which consists of freezing the basic 

temperature distribution ( , )bT z t at a given instant of 

time. This simplification is justified so long as the 

disturbances are growing faster than the basic profile is 

evolving (Nield and Bejan 2006).  Under the 

circumstances, the basic state temperature distribution 

admits a solution of the form  

( )bdTd
f z

T dz
 


                                                      (5b) 

 where ( )f z  is a non-dimensional basic temperature 

gradient satisfies the condition 

1

0

( ) 1f z dz  .                        (6)  

To study the stability of the basic state, we superimpose 

infinitesimally small perturbations ( ), , ,q p q r¢ ¢ ¢ ¢
r

 on the 

basic state in the form 

, , ,b b bq q p p p T T               .     (7) 

Following the standard linear stability analysis 

procedure, non-dimensionalizing the quantities by 

scaling (x, y, z) by d, t by
2 /d   , w  by / d ,   by 

T , and employing the normal mode analysis 

procedure in the form 

      , , expw W z i x my t                          (8)                                                         

we obtain the stability equations in the form 

   2 2 2 2 21 c D
D

D a D a W R a
Pr

 
       

 
 (9)                                                                 

   2 2M D a f z W    
  

.                              (10)  

In the above equations, /D d dz  is the differential 

operator, 
2 2a l m   is the overall horizontal wave 

number, 2/c c d    is the couple-stress parameter, 

νDR =αgΔTd K / κ  is the Darcy- Rayleigh number, 

2 2
DPr =νφ d / K κ  is the modified Darcy- Prandtl 

number, and /hM A   is a non-dimensional group. 

 

The boundaries of the porous layer are assumed to be 

impermeable with vanishing couple-stress and perfect 

conductors of heat. Accordingly, the boundary 

conditions are 

2 0W D W             at 0,1z  .                         (11) 

To prove the validity of principle of exchange of 

stability, the moment approach is used which does not 

suffer from the ambiguities of satisfying some of the 

higher boundary conditions (Khalili et al. 2002). To 

derive the moment equation, we multiply Eq. (9) by 
mW and Eq. (10) by m , where m is a non-negative 

integer,  and then integrate from z = 0 to 1. Many terms 

are integrated by parts and simplified using the 

boundary conditions, to get           

2 2 2

2 4 2

1

2 (12)

m m m
c

D

m m m
D

DW DW a W W D W D W
Pr

a DW DW a W W R a W

 
        

 

       

 

 2 ( )m m mM a D D f z W                  (13) 

Here m=0 gives the moment equation and m=1 gives 

the energy equation. For m=0, Eq. (12) and Eq. (13), 

respectively reduce to  

21 c D
D

a W R
Pr

 
        

 
            (14)   

 2 ( )M a f z W     .                                (15) 

Eliminating     from Eq. (14) by using Eq. (15) 

and rearranging the terms, we obtain 

   
2

2 2 2 21 1

( )
0

c c
D D

D

M a
M a a a

Pr Pr

f z W
R

W

 
  
 
  

    

 
 

 

               (16)                                                                                              
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Since we are interested in the occurrence of oscillatory 

convection, we set ii  , where i  is real, in Eq. 

(16) and obtain 

   
2

2 2 2 21 1

( )
0

i c i c
D D

D

M a
i M a a a

Pr Pr

f z W
R

W

 
  
 
  

    

 
 

 

             (17)     

Equating the real and imaginary parts of Eq. (17), we, 

respectively, note that 

 2 2 2 ( )
1 0i c D

D

M f z W
a a R

Pr W


 
    

 
                     (18)                                                                    

and  

 
2

21 0c i
D

a
M a

Pr


  
    

  

.                                 (19)   

Equation (19) implies that 0i  , and hence, the 

principle of exchange of stability is valid. Therefore, we 

confine the analysis to stationary convection and take 

0   in Eqs. (9) and (10) to arrive at the following 

system of ordinary differential equations:   

   2 2 2 2 21c DD a D a W R a      
  

                    (20)                                                     

    2 2D a f z W    .                                             

(21)                                                     

The following five different forms of  f z  are 

considered to investigate their effect on the criterion for 

the onset of convection:  
 

(i)    Linear temperature profile 

  1f z  .                                                                   (22) 

(ii)   Piecewise linear temperature profile heating from 

below     

 

1
, 0

0, 1

t
t

t

z
f z

z







 

 
  

 .                                   (23) 

(iii)   Piecewise linear temperature profile cooling from 

above 

 
t

t
t

0, 0 1

1
, 1 1

z

f z
z






  


 
  



                                    (24)  

(iv)  Inverted parabolic temperature profile 

   2 1f z z  .                                                        (25)                                                               

(v)   Parabolic temperature profile 

  2f z z .                                                                (26) 

3. METHOD OF SOLUTION 

Equations (20) and (21) together with boundary 

conditions (11) constitute an eigenvalue problem with 

DR  as the eigenvalue. The resulting eigenvalue 

problem is solved using the Galerkin technique. 

Accordingly, the unknown variables are written in a 

series of basis functions as 

1 1

,
N N

i i i i

i i

W A W B

 

                                         (27)  

where iA and iB  are constants and the basis functions 

iW  and  i will be represented by the power series 

satisfying the respective boundary conditions. 

Substituting Eq. (27) into Eqs. (20) and (21), 

multiplying the resulting momentum equation by 

( )jW z ,  energy equation by ( )j z ,  performing the 

integration by parts with respect to z between z = 0 and 

z = 1 and using the boundary conditions (11), we obtain 

the following system of linear homogeneous algebraic 

equations: 

0

0.

ji i ji i

ji i ji i

C A D B

E A F B

 

 
                                    (28) 

The coefficients jiC  to jiF  involve inner products of 

the base functions and are given by  

 
2 2 4 2 2

2

2

2

( )

ji c j i j i j i j i j i

ji D j i

ji j i

ji j i j i

C D W D W a W W a DW DW DW DW a W W

D R a W

E f z W

F D D a

         

    

  

        

                                                                                   (29) 

where the inner product is defined as 

1

0

( )        dz . 

The above set of homogeneous algebraic equations 

given by Eq. (29) will have a non-trivial solution if and 

only if 

0

ji ji

ji ji

C D

E F

 .                                                          (30)  

We select trial functions satisfying the appropriate 

boundary conditions. The following polynomial trial 

functions are chosen: 

1 2 3 *
1

1 *
1

( 2 )

( )

i i i
i i

i i
i i

W z z z T

z z T

  





  

  

                                 (31) 

where 
* 'iT s  are the modified Chebyshev polynomials. 

The inner products involved in Eq. (30) are evaluated 

analytically rather than numerically to avoid errors in 

the numerical integration. For a fixed value of cΛ , t  

and for chosen basic temperature profile ( )f z , Eq. (30) 

gives a relation between DR   and a  which enables us 

to plot a locus in the ( , )DR a - plane. The Darcy-

Rayleigh numbers for basic temperature profiles (i) to 

(v) are respectively denoted through 1DR  to 5DR . The 

minimum point of DR  as a function of a  as well as 

with respect to t  (in the case of piecewise linear 
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temperature profiles), gives the critical Darcy-Rayleigh 

number DicR  (i = 1 to 5) and the corresponding critical 

wave number ica , as well as critical thermal depth 

depending on the choice of basic temperature profile. 

4. RESULTS AND DISCUSSION 

The effect of different forms of basic temperature 

gradients on the criterion for the onset of convection in 

a layer of couple-stress fluid-saturated porous medium 

is investigated. The resulting eigenvalue problem is 

solved numerically using the Galerkin technique. The 

convergence of the results is achieved, in general, by 

considering six terms in the series expansion Eq. (27) 

and the results obtained for this order (i.e., 6N  ) are 

presented graphically in Figs. 2 to 5. However, for a 

linear temperature profile (i.e.,   1f z  ) the resulting 

eigenvalue problem can be solved exactly with the 

eigen functions   1sinW z A z  and   z   

2 sinA z , where 1A and 2A are constants. In this 

case, an analytic expression for the Rayleigh number, 

denoted by 1DR , is obtained in the form 

    
2

2 2 2 2

1 2

1c

D

a a
R

a

    
 .                             (32) 

It is noted that 1DR  attains its critical value, 1D cR  at   

2 2
1ca a  , where 

    2 2 2

2
1

1 1 9 1

4

c c c

c
c

a
         




.     (33)                    

When 0cΛ  , the critical Rayleigh number and the 

critical wave number are respectively found to be 
2

1 4D cR   and 1ca  which are the known exact 

values. From the above equations, it is also evident that 

an increase in the value of couple-stress parameter cΛ  

is to increase the Rayleigh number and to decrease the 

critical wave number. In fact, 1 / 2ca   as 

cΛ  . 

 

Figures 2a and 2b depict the neutral stability curves in 

the  ,DiR a - plane for different temperature profiles 

for 0cΛ   and 1, respectively with t =0.5. The 

coordinates of the minimum point on these curves 

correspond to the critical values DicR  and ica ( i = 1 to 

5). From these figures, it can be seen that the critical 

wave number is slightly affected by the nature of the 

basic temperature profiles. The numerical calculations 

of Darcy-Rayleigh numbers for different values of wave 

number revealed that 2 3D DR R  as well as 4 5D DR R

. That is, parabolic and inverted parabolic temperature 

profiles have the same effect on the onset of convection 

and similar is the case between piecewise linear 

temperature profiles heating from below and cooling 

from above. This may be due to the symmetric 

boundary conditions considered. Furthermore, 

increasing cΛ  increases the critical Rayleigh number 

and thus the presence of couple-stresses is to delay the 

onset of convection. 

 

 

 
Fig. 2. Neutral stability curves for different temperature 

profiles 

 

The critical Darcy-Rayleigh numbers obtained with 

respect to the wave number for three values of cΛ  (= 0, 

0.1 and 0.2) are represented graphically in Fig. 3 as a 

function of thermal depth t  for piecewise linear 

temperature profiles. From the figure it is seen that the 

critical Darcy-Rayleigh numbers decrease at first to 

some minimum value and then increase steadily with 

further increase in t . The critical value of t  is found 

to be 0.71 and it is independent of cΛ values 

considered.  Also, increasing cΛ  increases the critical 

Darcy-Rayleigh number and hence its effect is to 

reinforce stability of the system. 

 
 

Fig. 3. Variation of 
2D cR with  

t  for different values 

of 
cΛ  
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Fig. 4.  Variation of 
DicR ( i 1 to 5) as a function of

cΛ  

 
Fig. 5. Variation of 

ica  ( i 1 to 5) as a function of 
cΛ  

 

Figures 4 and 5, respectively show the variation of 

critical Darcy-Rayleigh numbers ( DicR , i=1to 5) and 

the corresponding critical wave numbers ( ica , i=1 to 5) 

as a function of cΛ . The critical Darcy-Rayleigh 

numbers presented here are obtained with respect to the 

wave number as well as t  (in the case of piecewise 

linear temperature profiles). From Figure 4, it is 

observed that the critical Darcy-Rayleigh numbers 

increase monotonically with cΛ , and it is further noted 

that 

2 3D c D cR R  4 5D c D cR R  1D cR .  

This indicates that, as compared to non-uniform 

temperature profiles, the linear temperature profile has a 

more stabilizing effect on the system. In particular, it 

may be noted that the system is more unstable for 

piecewise linear temperature profiles as compared to 

parabolic/inverted parabolic basic temperature profiles. 

However, the difference in the critical Darcy-Rayleigh 

numbers for different basic temperature profiles is seen 

to be marginal. 

 

The critical wave numbers for different temperature 

profiles decrease monotonically with an increase in cΛ  

as may be seen from the results plotted in Fig. 5. Thus 

an increase in cΛ  is seen to increase the size of 

convection cells. Further inspection of the figure reveals 

that the deviation in the critical wave numbers among 

different temperature profiles is not so significant and in 

fact ( )2c 3ca =a  values are almost same as ( )4c 5ca a .  

5. CONCLUSIONS 

From the foregoing discussions it can be concluded that 

(i) the effect of increasing the couple-stress parameter

cΛ  is to stabilize the onset of instability and also (ii) the 

difference between critical values at each cΛ  for the 

various chosen basic temperature profiles is minimal. In 

this sense, there is very little influence that one can 

assert on the instability of the system by the choice of 

various basic temperature profiles different from linear. 

Therefore, one can simply use the analytic solution for 

the linear temperature profile to assess the strong effect 

of couple-stress parameter cΛ  on the onset of 

convection in a couple-stress fluid saturated porous 

medium.  In addition, the parabolic or inverted 

parabolic temperature profiles and also piecewise linear 

temperature profiles heating from below or cooling 

from above have the same effect on the onset of 

convection in a couple-stress fluid-saturated porous 

medium. This may be attributed to symmetric boundary 

conditions. The critical thermal depth tc  is found to be 

same for piecewise linear temperature profiles and 

remains invariant with change in cΛ  values. The 

critical wave numbers are slightly affected by the nature 

of basic temperature profiles. Moreover, an increase in 

the value of cΛ  is to enlarge the size of convection 

cells. 
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