

High Performance Computing of Three-Dimensional Finite
Element Codes on a 64-bit Machine

M.P. Raju1† and S.K. Khaitan2

1 Department of Mechanical Engg., Case Western Reserve University, Cleveland, OH, 44106, USA
2 Department of Electrical Engg., Iowa State University, Ames, IA, 50014, USA

†Corresponding Author Email: raju192@gmail.com

(Received March 8, 2009; accepted March 28, 2009)

ABSTRACT

Three dimensional Navier-Stokes finite element formulations require huge computational power in terms of memory
and CPU time. Recent developments in sparse direct solvers have significantly reduced the memory and
computational time of direct solution methods. The objective of this study is twofold. First is to evaluate the
performance of various state-of-the-art sequential sparse direct solvers in the context of finite element formulation of
fluid flow problems. Second is to examine the merit in upgrading from 32 bit machine to a 64 bit machine with larger
RAM capacity in terms of its capacity to solve larger problems. The choice of a direct solver is dependent on its
computational time and its in-core memory requirements. Here four different solvers, UMFPACK, MUMPS,
HSL_MA78 and PARDISO are compared. The performances of these solvers with respect to the computational time
and memory requirements on a 64-bit windows server machine with 16GB RAM is evaluated.

Keywords: Multifrontal, UMFPACK, MUMPS, HSL MA78, PARDISO, 64-bit.

1. INTRODUCTION
Finite element discretization of Navier-Stokes equations
involves a large set of non-linear equations, which can
be converted into a set of linear algebraic equations
using Picard's or Newton's iterative method. The
resulting set of weak form (algebraic) equations in such
problems may be solved either using a direct solver or
an iterative solver. The direct solvers are known for
their generality and robustness. However, the use of
direct solution methods like the traditional frontal
algorithms (Irons 1970) is limited by its huge memory
requirements. The advent of multifrontal (Davis and
Duff 1999) solvers and the efficient ordering techniques
have increased the efficiency of direct solvers, in terms
of memory and computational speed, for sparse linear
systems. They make full use of the high computer
architecture by invoking level 3 Basic Linear Algebra
Subprograms (BLAS) library. Thus the memory
requirement is greatly reduced and the computing
speed is greatly enhanced. Multifrontal solvers have
been successfully used for two-dimensional simulations
both in the context of finite volume problems (Raju and
T’ien, 2008a,b,c), in finite element problems (Gupta
and Paglthivarthi 2007) and in power simulation
systems (Khaitan et al. 2008, 2010). Raju and T’ien
(2008a) implemented a finite volume formulation for
solving gas combustion in an axi-symmetric candle
flame. UMFPACK solver was used as a sparse direct
solver. It has been demonstrated that the use of
multifrontal solvers can significantly reduce the
computational time when compared to the traditional

iterative methods like SIMPLE algorithm used in finite
volume formulations. Gupta and Pagalthivarthi (2007)
implemented a finite element formulation for solving
multi-size particulate flow inside a rotating channel
and UMFPACK solver was used as a sparse direct
solver. The advantage of using multifrontal solver over
the traditional frontal solver in terms of both
computational time and memory is demonstrated.
However, the disadvantage of using sparse direct
solvers (even multifrontal and other similar direct
solvers) is that the memory size increases much more
rapidly than the problem size itself (Gupta and
Pagalthivarthi 2007) and the use of 64 bit machine with
larger RAM has been recommended. On a 32 bit
machine, the in-core memory is limited to 4 GB (3 GB
on a windows machine). Hence as the problem size
increase, memory becomes a limitation for direct
solvers. To circumvent this problem, out-of-core solvers
(Reid and Scott 2009; Raju and Khaitan 2009a) have
been developed which has the capability of storing the
factors on the disk during factorization but has
increased computational burden. Another alternative is
to use a larger RAM on a 64 bit machine to solve using
in-core memory. Out-of-core solvers increase the
computational burden due to the I/O operations to and
from the hard disk. By using a 64 bit machine with a
larger RAM, the factorization can be done in-core to
reduce the computational time.

Computational times of sparse direct solvers can be
significantly reduced by parallel implementation on

Journal of Applied Fluid Mechanics, Vol. 5, No. 2, pp. 123-132, 2012.
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI: 10.36884/jafm.5.02.12174

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

124

multiple processors. Parallel implementation can be
either shared memory implementation on a multiple
core machines (Raju and Khaitan 2010) or distributed
computing on multiple machines using MPI
programming (Raju 2009, Raju and Khaitan 2009b).

Iterative methods are known to be memory efficient. As
the size of the system increases, the iterative methods
outperform the performance of direct solvers and hence
are preferred for large three dimensional problems.
However, the matrices generated from the fully coupled
solution of Navier-Stokes formulations are saddle point
type matrices. These matrices are different from those
normally encountered in applied mathematics are not
easily amenable to the traditional iterative methods
(Habashi and Hafez 1995). The application of
traditional methods like SIMPLE iterations, pseudo
time stepping or multigrid methods based on block
gauss-seidal smoothers either fail or exhibit very slow
convergence for the solution of finite element Navier-
Stokes problems (Habashi and Hafez 1995). The choice
of a good preconditioner is extremely challenging.
Elman et al. (2005) discusses the development of
preconditioners for such matrices. The implementation
of these preconditioners is not straightforward and is
very application specific. Recent efforts (Rehman et al.
2008) have demonstrated the successful implementation
of classical ILU preconditioners with suitable
reordering techniques referred as SILU. However the
convergence of such preconditioners varies with the
grid size and Reynolds number. On the other hand,
direct solvers are preferred for their robustness.
However, direct solvers are limited by its memory
requirements. So it is up to the user to choose a direct
solver or an iterative solver based on their needs. A
comparison of the relative performance of direct
solvers and iterative solvers for such saddle point
matrices generated from three dimensional grids is not
yet available in the literature. Commercial finite
element based CFD package like FIDAP uses
segregated approach for solving large 3D problems.
However, the rate of convergence of segregated
approach is much slower compared to the fully coupled
Newton's approach. In addition, the application of
modified Newton (or modified Picard (Raju and T'ien
2008a) can significantly reduce the CPU time of direct
solvers. This is demonstrated in the later section of the
paper.

This paper specifically addresses the memory
requirement issues of direct solvers by upgrading from
a 32 bit machine to a 64 bit machine with 16 GB RAM.
Correlations are developed for the in-core memory
requirement as a function of the problem size. This will
give a fair idea of the size of the RAM required for
solving a given problem on a 64 bit machine. Based on
this, one could make an appropriate choice of whether
to go for a 64 bit machine or to use an out-of-core
solver. To the best of author's knowledge, this kind of
work has not been reported in the literature.

In this paper the in-core implementation of the solvers
is examined for the 3D finite element Navier-Stokes
equations on a 64 bit machine. The performances of
four state-of-art sparse direct solvers - UMFPACK,
MUMPS, HSL, and PARDISO are evaluated in this

paper. Highly optimized Intel® Math Kernel Library
BLAS is used to improve the computational efficiency of
the solvers. Flow through a three dimensional
rectangular channel is taken as a benchmark problem.
First the mathematical formulation for the primitive
variables u,v,w is presented. This is followed by the
description of the Newton's and modified Newton's
algorithm. A brief overview of the sparse direct solvers
used in this study is presented. This is followed by the
presentation of results and discussion.

2. MATHEMATICAL FORMULATION
The governing equations for laminar flow through a
three-dimensional rectangular duct are presented
below in the non-dimensional form. In three-
dimensional calculations, instead of the primitive u,v,w
formulation, penalty approach is used to reduce the
memory requirements.

0 ,u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (1)

() () ()2 2
Re

1 1 ,
Re Re

u v w uu uv uw
x y z x x y z x x

u v u w
y y x z z x

λ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 (2)

() () ()2 1
Re

2 1 ,
Re Re

u v w u vuv v vw
x y z y x y z x y x

v v w
y y z z y

λ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3)

and

() () ()2 1
Re

1 2 .
Re Re

u v w u wuw vw w
x y z z x y z x z x

v w w
y z y z z

λ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

(4)

where , ,u v w are the x, y and z components of velocity.
The bulk flow Reynolds number, Re /oU Lρ μ= ,

oU being
the inlet velocity, ρ the density, L the channel length,
μ is the dynamic viscosity and λ is the penalty
parameter. Velocities are non-dimensionalized with
respect to

oU .

The boundary conditions are prescribed as follows:

(1) Along the channel inlet:

1; 0; 0.u v w= = = (5)
(2) Along the channel exit :

0; 0; 0.u v w
x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

 (6)

(3) Along the walls:
0; 0; 0.u v w= = = (7)

3. NUMERICAL FORMULATION
Galerkin finite element method (GFEM) is used for the
discretization of the above penalty based Navier Stokes
equations. Three dimensional brick elements are used.
The nonlinear system of equations obtained from
GFEM is solved by Newton’s method. Let ()nX

%
 be the

available vector of field unknowns for the nth iteration.
Then the update for the ()1 stn+ iteration is obtained as

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

125

() () ()1n n nX X Xα δ+ = +
% % %

, (8)
where α is an under-relaxation factor, and ()nXδ

%
 is

the correction vector obtained by solving the linearized
system

(){ } { }()[] nn
XJ X Rδ = −

% %
. (9)

Here, [J] is the Jacobian matrix,

()

()[]
n

X
n

RJ
X
∂

=
∂
%

%

. (10)

and { }()n
XR
%

 is the residual vector. Newton’s iteration is

continued till the infinity norm of the correction vector
()nXδ

%
 converges to a prescribed tolerance of 10-6. In

modified Newton's algorithm, the Jacobian is
calculated only during the first iteration and is not
updated during the subsequent iterations.

We observe that the discretizations of the governing
partial differential Eqs. (7)-(10) by the GFEM scheme
results in a set of nonlinear equations. The core of the
resulting nonlinear equations is the solution of a sparse
linear system, which is the most computationally
intensive part of the solver. This is exploited in the work
described here, via implementation of the state-of-the-
art algorithms for ordering, preprocessing, and LU
factorization. Highly optimized Intel® Math Kernel
Library BLAS is used during the factorization and solve
phase. Here four different solvers, UMFPACK,
MUMPS, HSL-MA78 and PARDISO implemented and
are compared.

The numerical algorithm can be broadly classified into
three categories namely 1) numerical formulation with
finite element discretization, 2) solution strategy for
solving the resultant nonlinear equations and 3)
solution of linear equations. The solution of the linear
system of equations is the bottleneck both in term of
computational time and memory requirements. Good
non-linear solution strategy like modified Newton can
help reduce the number of times the system of linear
equations being solved. The latter section of the paper
deals with the reduction in CPU time offered by
modified Newton's method.

4. LINEAR SOLVERS
The core of any iterative solver like Newton iteration is
the solution of a system of equations represented by
Eq. (9). The Jacobian matrix is highly sparse and the
fill-in is very low. We use this fact to gain
computational efficiency by employing direct sparse
linear solvers which use multifrontal or supernodal
methods.

In general, the algorithms for sparse matrices are more
complicated than for dense matrices. The complexity is
mainly attributed to the need to efficiently handle fill-in
in the factor matrices. A typical sparse solver consists
of four distinct phases as opposed to two in the dense
case:

1. The ordering step minimizes the fill-in and
exploits special structures such as block
triangular form.

2. An analysis step or symbolic factorization
determines the nonzero structures of the
factors and creates suitable data structures
for the factors.

3. Numerical factorization computes the factor
matrices.

4. The solve step performs forward and/or
backward substitutions.

 The section below presents a brief overview of the
sparse direct solvers that are being used in this study.

4.1 Overview of the sparse direct solvers

UMFPACK
In the present study, UMFPACK v5.3.0 (Davis et al.
2004) is used. UMFPACK consists of a set of ANSI/ISO
C routines for solving unsymmetric sparse linear
systems using the unsymmetric multifrontal method. It
requires the unsymmetric, sparse matrix to be input in a
sparse triplet format. Multifrontal methods are a
generalization of the frontal methods developed
primarily for finite element problems (Amestoy and
Duff 1989) for symmetric positive definite systems
which were later extended to unsymmetric systems
(Davis and Duff 1999).

UMFPACK first performs a column pre-ordering to
reduce the fill-in. It automatically selects different
strategies for pre-ordering the rows and columns
depending on the symmetric nature of the matrix. The
solver has different built in fill reducing schemes-
COLAMD (Davis et al. 2004) and AMD (approximate
minimum degree) (Davis 2004). During the
factorization stage, a sequence of dense rectangular
frontal matrices is generated for factorization. A
supernodal column elimination tree is generated in
which each node in the tree represents a frontal matrix.
The chain of frontal matrices is factorized in a single
working array.

MUMPS
MUMPS 4.8.3 (“Multifrontal Massively Parallel
Solver”) written in Fortran 90, is a package, based on
multifrontal algorithms (Amestoy et al. 2000, 2002,
2006; Duff and Reid 1983, 1984; Guermouche and
L’Excellent 2006; Guermouche et al. 2003), for solving
systems of linear equations of the form in Eq. (9), where
A is a square sparse matrix that can be either
unsymmetric, symmetric positive definite, or general
symmetric. It performs a direct factorization A = LU or
A = LDLT depending on the symmetry of the matrix.
MUMPS is primarily a parallel solver designed for
computational efficiency and exploits both parallelism
arising from sparsity in the matrix A and from dense
factorizations kernels. The parallel version of MUMPS
requires MPI for message passing and makes use of the
BLAS, BLACS, and ScaLAPACK libraries. The
sequential version only relies on BLAS. MUMPS has
several built-in ordering algorithms, and provides a
tight interface to external ordering packages such as
PORD (Schulze 2001), METIS (Karypis and Kumar
1998) and also a possibility for the user to input a given
ordering. In this paper, only the sequential version of
the solver is evaluated.

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

126

HSL_MA78
HSL_MA78 solves one or more sets of sparse linear
equations, Ax = b or ATx = b, by the multifrontal
method, optionally using direct access files for the
matrix factors. The code has low in-core memory
requirements. HSL_MA78 is written using FORTRAN
95. The code implements multifrontal algorithm and
takes advantage of the dense linear algebra kernels.
These kernels are available as a separate package
HSL_MA74, which uses high level BLAS to perform the
partial factorization of frontal matrices. Ordering has
to be supplied by hooking external ordering packages
like METIS etc. HSL package HSL_MC68 offers
efficient implementation of minimum degree algorithm
(Tinney and walker 1967) and approximate minimum
degree algorithm (Amestoy et al. 1996, 2004). The code
is primarily designed as an efficient out-of-core solver,
although it is capable of solving it in-core. While
solving in-core, if the memory is not sufficient, the code
automatically shifts to out-of-core solution. In this
paper, only the in-core option of the solver is evaluated.

PARDISO
PARDISO solver is a part of the INTEL MKL Library.
The PARDISO package is high-performance, robust,
memory efficient and easy to use software for solving
large sparse symmetric and unsymmetric linear systems
of equations on shared memory multiprocessors. The
solver uses a combination of left- and right-looking
Level-3 BLAS supernode techniques (Schenk et al.
2000). To improve sequential and parallel sparse
numerical factorization performance, the algorithms
are based on a Level-3 BLAS update and pipelining is
used with a combination of left- and right-looking
supernode techniques (Schenk 2000, Schenk and
Gartner 2001, 2002, 2004). Unsymmetric permutation
of rows is used to place large matrix entries on the
diagonal. Complete block diagonal supernode pivoting
allows dynamical interchanges of columns and rows
during the factorization process. The level-3 BLAS
efficiency is retained and an advanced two-level left–
right looking scheduling scheme is used to achieve
higher efficiency. The goal is to preprocess the
coefficient matrix A so as to obtain an equivalent
system with a matrix that is better scaled and more
diagonally dominant. This preprocessing reduces the
need for partial pivoting, thereby speeding up the
factorization process. PARDISO also supports out-of-
core solution. In this paper PARDISO is evaluated for
the in-core sequential solver on a single processor.

5. COMPUTATIONAL CHALLENGES
It is to be noted that for three dimensional grids, the
matrices generated are less sparse compared to the
matrices generated from two-dimensional grid.
Typically an interior node in a three-dimensional finite
element grid is connected to 27 nodes including it.
Since there are 3 dof's at each node, a typical row
consists of 81 non-zero entries. In a two-dimensional
grid, a typical row consists of 27 non-zero entries. This
would increase the frontal size considerably. Hence
solving three-dimensional finite element problems using
direct solvers is quite challenging both in terms of
computational time and memory requirements. Large
problems cannot be solved on a 32-bit machine using

in-core techniques. Hence there is a need for
alternative strategies for handling large three-
dimensional problems. There are 3 different ways of
handling this problem.

(a) Using a 64 bit machine with larger RAM

(b) Using out-of-core solvers

(c) Using parallel solvers

This paper studies the performance of sequential in-
core direct solvers on a 64 bit machine with 16GB
RAM. All the computations are run a windows machine
with Intel Xeon processor.

6. IMPLEMENTIONAL CHALLENGES
The solvers used in this paper are either public domain
solvers or commercial solvers. The solvers are hooked
to the finite element code to solve the linear system of
equations. Although the codes are readily available, the
integration of the solvers with the finite element code
on a 64 bit windows machine is not straightforward.
UMFPACK, MUMPS are public domain solvers.
PARDISO is a commercial solver available within the
Intel MKL package. HSL_MA78 is part of the HSL
2007 package. An evaluation version of HSL_MA78 is
being used in this paper. Except for PARDISO, the
source code is available for the remaining solvers. The
following points will serve as guideline for future
researchers who would like to implement these solvers
on a 64 bit windows machine.

(1) MUMPS has both C and Fortran routines. Separate
libraries are built for the C and Fortran routines using
Intel Visual Fortran and Microsoft Visual Studio 2005.
Makefiles are supplied within the MUMPS package
only for Linux environments. The project workspaces
are appropriately built to include the preprocessing
directives to build libraries. UMFPACK is based on C
code. Library is also built for the UMFPACK solver on
the 64 bit machine. The main finite element code is
based on Fortran 90. Hence appropriate interfacing
routines are written to call routines from a C library.
METIS library is not available for 64 bit windows
machine. Hence a 64 bit library is built using the
METIS source code. While compiling the solvers on a
64 bit machine and integrating it to the finite element
code, precaution has to be taken to prevent mixing of
short integers and long integers. This could lead to
garbage values.

(2) The finite element code generates element entries
for each element. Except HSL_MA78 and MUMPS, all
the other solvers requires global assembly matrix as the
input. UMFPACK provides a matrix manipulation
routine (umfpack_triplet_to_col) which converts matrix
entries in coordinate format to compressed column
format. This routine automatically sums up the
duplicate entries arising from finite element matrix
entries. Hence it is a useful routine for handling finite
element entries. UMFPACK requires the assembled
matrix in compressed column format. PARDISO
requires the assembled matrix in compressed row
format. By suitably modifying the
umfpack_triplet_to_col routine, finite element entries
can be assembled to a compressed row format.

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

127

(3) METIS has to be externally linked to HSL_MA78 to
generate the reduced fill ordering. For this the finite
element entries have to be assembled without the
numerical values to generate the adjacency matrix. This
can be provided as an input to METIS_NODEND
routine to generate the reduced fill ordering.

7. RESULTS AND DISCUSSION
Before comparing the various solvers for their relative
performances, each individual solver is tuned for its
optimal performance, specifically the choice of the
ordering package. Each solver has inbuilt ordering
packages, whose choice can affect the performance of
the solver.

Mumps has different inbuilt ordering packages (AMD,
QAMD, AMF) and a strong coupling interface with
external orderings like METIS and PORD. Memory
relaxation is taken as 100%. It is commonly observed
that if we use values much lower than 100%, the solver
crashes for some problems due to insufficient memory.
The actual memory used by the solver does depend on
the choice of the memory relaxation parameter.
MUMPS in-core solver is used for all the cases. Table 1
shows the performance comparison of the various
ordering methods. All the cases are run for 30x30x30
mesh. The term “30x30x30” represents a grid with 30
elements in the x direction, 30 elements in the y
direction and 30 elements in the z directions. The CPU
time and memory for each of the solver are compared.
The CPU time reported is the CPU time for a single
Newton iteration. It includes analysis phase,
factorization phase and solve phase. Table 1 shows that
AMD and QAMD perform very poorly for the given
system of equations resulting from three dimensional
finite element simulations. Of all the ordering
packages, METIS gives best results. Compared to
AMD, METIS results in almost one-third of the floating
point operations. The computational time and memory
requirements are lower for the METIS ordering. Based
on this result, METIS ordering is used for all
subsequent runs using MUMPS solver.

UMFPACK by default chooses the CHOLAMD
ordering method for unsymmetric matrices. METIS
ordering is not provided within the solver. So the
default ordering CHOLMOD is retained for the
subsequent calculations for UMFPACK solver.
HSL_MA78 solver can be externally hooked to another
HSL routine which generates the ordering
(HSL_MC68) or it can be hooked to METIS ordering.
HSL_MC68 uses minimum degree algorithms to
generate the ordering of matrices generated from finite
element assembly. Table 2 shows that METIS ordering
gives very good performance compared to the
HSL_MC68 ordering. PARDISO has two ordering
methods within the solver itself - minimum degree (MD)
ordering and METIS ordering. Table 3 shows that
METIS ordering significantly improves the efficiency of
the solver. Table 4 shows the comparison of
computational time and memory requirement of
different solvers. The computational time is split into 4
stages. (a) time for matrix generation (b) time for

analysis phase or symbolic factorization, (c) time for
numeric factorization, (d) time for the solve phase.

Table 1 Performance of different orderings for
MUMPS solver

Ordering #dof's Cpu time (sec) Memory (GB)

AMD 89373 142.8 4.06

QAMD 89373 142.75 4.04

AMF 89373 105.7 3.48

PORD 89373 86.6 3.18

METIS 89373 59.01 3.02

Table 2 Performance of different orderings for HSL

solver

Ordering #dof's Cpu time (sec) Memory (GB)

HSL_MC68 89373 524 6.88

METIS 89373 318 4.63

Table 3 Performance of different orderings for

PARDISO solver

Ordering #dof's Cpu time (sec)
Memory
(GB)

MD 89373 162 2.78

METIS 89373 60 1.42

This table will give an idea of how much time the solver
is spending on each of the stages. The table shows that
factorization is the most time consuming step. Around
85-99% of the time is spent in numerical factorization
step. Note that for HSL solver, the time for numerical
factorization and solve phase are reported together as
the solver performs these both functions together. HSL-
MA78 takes the longest time for solving the linear
system of equations. It is around two times slower than
UMFPACK and around six times slower than MUMPS
or PARDISO solver. The memory requirement for HSL
is similar to that of MUMP solver. MUMPS and
PARDISO perform equally well in terms of
computational time. In terms of memory requirement,
UMFPACK requires largest memory and PARDISO
requires the least memory. UMFPACK requires around
4 times the memory required by PARDISO. In
summary, MUMPS and PARDISO perform equally well
in terms of computational time and PARDISO requires
the least memory compared to all the other solvers.

Tables 5-8 show the comparison of different solvers for
different mesh sizes. The general observation is that as
the number of degrees of freedom (dof's) increase, the
computational time and memory requirements increase,
which is expected. However, the increase is not linearly
proportional to the number of the dof's. For example, if
we compare the mesh sizes 100x20x10 and 50x20x20,
the number of dof's are the same for both meshes. But
the computational time and memory requirement are
quite different. This observation is valid for all the
solvers.

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

128

Table 4 Computational time and memory requirements for 30x30x30 grid

 Computational time (Seconds) Memory (MB)

Solver Matrix assembly Analysis phase
Numeric

factorization Solve phase
Total
time

UMFPACK 4 0.84 154.8 1.1 160.74 5520
MUMPS 4 1.51 53.3 0.58 59.39 3020

PARDISO 4 2.19 52.6 0.47 59.26 1420
HSL_MA78 4 0.64 313.14 317.78 4720

Table 5 Performance of UMFPACK solver for different mesh sizes

 UMFPACK

nex ney nez #dof's Cpu time (sec) Memory (MB) Gflops

50 10 10 18513 1.75 200 5.10E+09

100 10 10 36663 4.29 470 1.40E+10

200 10 10 72963 7.7 840 2.70E+10

50 20 10 35343 9.3 630 3.90E+10

100 20 10 69993 22.94 1220 1.00E+11

100 20 20 133623 188 7170 2.56E+12

100 50 20 324513 1505.6 15830 9.30E+12

100 50 50 788103 - insufficient -

50 20 20 67473 64.92 3580 3.50E+11

50 50 10 85833 65.28 1960 3.60E+11

50 50 20 163863 522 9170 3.10E+12

50 50 50 397953 - insufficient -

Table 6 Performance of MUMPS solver for different mesh sizes

 MUMPS

nex ney nez #dof's Cpu time (sec) Memory (MB) Gflops

50 10 10 18513 2.79 230 6.70E+09

100 10 10 36663 5.32 520 1.52E+10

200 10 10 72963 10.6 1100 3.00E+10

50 20 10 35343 8.4 650 2.73E+10

100 20 10 69993 16.7 1400 6.50E+10

100 20 20 133623 67.6 3870 3.34E+11

100 50 20 324513 384 134200 2.32E+12

100 50 50 788103 - insufficient -

50 20 20 67473 27 1810 1.30E+11

50 50 10 85833 29.7 2110 1.40E+11

50 50 20 163863 133.7 5930 7.60E+11

50 50 50 397953 - insufficient -

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

129

Table 7 Performance of HSL MA78 solver for different mesh sizes

 HSL_MA78

nex ney nez #dof's Cpu time (sec) Memory MB) Gflops

50 10 10 18513 11 240 4.40E+10

100 10 10 36663 20.9 500 8.40E+10

200 10 10 72963 35.4 790 1.48E+11

50 20 10 35343 46.7 650 1.95E+11

100 20 10 69993 63.4 1530 2.89E+11

100 20 20 133623 290 3910 1.3E+12

100 50 20 324513 1732 13940 7.9E+12

100 50 50 788103 - Insufficient -

50 20 20 67473 145 1980 6.28E+11

50 50 10 85833 159 2380 6.81E+11

50 50 20 163863 715 7120 3.1E+12

50 50 50 397953 - Insufficient -

Table 8 Performance of PARDISO solver for different mesh sizes

 PARDISO

nex ney nez #dof's cpu time (sec) Memory (MB) Gflops

50 10 10 18513 2.3 80 6.71E+09

100 10 10 36663 4.36 250 1.60E+10

200 10 10 72963 9.4 570 3.50E+10

50 20 10 35343 6.3 290 2.60E+10

100 20 10 69993 14.6 690 6.70E+10

100 20 20 133623 64.4 1920 3.48E+11

100 50 20 324513 391 6620 2.30E+12

100 50 50 788103 - insufficient -

200 50 20 645813 901 17200 6.00E+12

50 20 20 67473 25.9 850 1.35E+11

50 50 10 85833 27.4 1020 1.38E+11

50 50 20 163863 134 2860 7.63E+11

50 50 50 397953 1059 10670 6.30E+12

This kind of behavior is to be expected when using
direct solvers using frontal type methods. The size of
the frontal matrix or frontal width depends on the grid
structure and hence the performance will be dependent
on the grid distribution.

Both MUMPS and PARDISO perform well in terms of
computational time, especially for finer meshes. For
very coarse meshes, UMFPACK seems to perform
slightly better. However as the number of dof's
increase, MUMPS and PARDISO outperform
UMFPACK. Of the two, PARDISO perform slightly
better than MUMPS in most of the cases. HSL-MA78 is
the slowest solver amongst all of them. The numbers of
floating point operations (FLOPS) follow similar trends
as the computational time. In terms of memory
requirement, PARDISO outperforms all the other

solvers. UMFPACK seems to require largest memory
requirement for most of the cases. HSL and MUMPS
require similar amounts of memory.

Table 8 shows that on a 64 bit machine with 16 GB
memory, PARDISO was able to solve up to 200x50x20
grid size, which corresponds to approximately 0.65
million dof’s. This shows that even with the best solver
and using 64 bit machine and 16 GB RAM, the size of
the problems being handled is still moderate. For fair
comparison of the maximum capacity for 32 bit and 64
bit machines, grids of aspect ratio 1 are considered. On
a 32 bit machine, a maximum of 36x36x36 grid (151959
dof’s) can be solved. This grid requires around 3 GB of
RAM, which is the maximum capacity that windows 32
bit machine can handle. On a 64 bit machine with 16
GB RAM, a maximum of 54x54x54 grid (499125 dof’s)

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

130

can be solved, which requires 15.8 GB. An increase in
capacity of around 3.3 times (in terms of dof’s) by
upgrading from 3GB RAM to 16 GB RAM (an increase
by 5.33 times). By upgrading from 32 bit, 3GB machine
to 64 bit, 16 GB machine, moderately larger problems
can be solved. This paper can serve as a guideline to
decide if one would like to go a 64 bit machine to
enhance the computational capacity or to go for an out-
of-core solver, with a compromise in the computational
time. In essence, using a 64 bit machine with larger
RAM can help solve moderately larger problems than
with using a 32 bit machine but will eventually run out
of memory.

Correlations are generated for the computational time
and memory requirement of the four solvers as a
function of the number of grid nodes and grid aspect
ratios. Correlations will give an idea of how the solver
performs in terms of computational time and memory as
the size of problem increases. In addition to the results
shown in the Tables 3-6, the correlations are generated
from a set of 50 different grid sizes (not presented
here). The correlations are presented below. In the Eqs.
11-18, T represents the computational time in seconds,
n represents the number of degrees of freedom, ar1 and
ar2 are the grid aspect ratio’s nex/ney and nex/nez
respectively and M is the memory requirement in Mega
Bytes. The variables nex, ney and nez represent the
number of grid elements in the x,y and z respectively.
The exponent’s of ar1 and ar2 are purposely chosen to
be identical in the correlation.

UMFPACK:
9 2.1 0.356 0.356 2

1 28.54 10 ; 0.967T n ar ar R− − −= × = (11)

5 1.595 0.21 0.21 2
1 26.2 10 ; 0.85M n ar ar R− − −= × = (12)

MUMPS:
6 1.54 0.173 0.173 2

1 21.47 10 ; 0.934T n ar ar R− − −= × = (13)

4 1.37 0.114 0.114 2
1 24.76 10 ; 0.99M n ar ar R− − −= × = (14)

PARDISO:
7 1.656 0.21 0.21 2

1 24.42 10 ; 0.912T n ar ar R− − −= × = (15)

5 1.46 0.086 0.086 2
1 27.57 10 ; 0.99M n ar ar R− − −= × = (16)

HSL MA78:
6 1.71 0.218 0.218 2

1 21.22 10 ; 0.853T n ar ar R− − −= × = (17)

4 1.366 0.222 0.222 2
1 27.4 10 ; 0.87M n ar ar R− − −= × = (18)

The above correlations indicate that the computational
time and memory requirement for the solvers is not only
dependent on the dof's but is also dependent on the grid
aspect ratio's. The above correlations indicate that the
absolute values exponents of n and grid aspect ratio is
higher for UMPACK. This implies that as the dof’s
increase, the solver becomes inefficient. For MUMPS
and PARDISO, the exponent for n is around 1.5-1.7.
Hence the shoot up of computational time with the
number of dof’s is not quite high. Hence for solving
large problems, MUMPS or PARDISO solvers will be a
good option. It is also observed that the memory

requirement for MUMPS and PARDISO is almost
independent on the grid aspect ratio’s. The correlation
coefficients indicate that both MUMPS and PARDISO
behave almost similarly with respect to its sensitivity
towards changes in grid size and grid aspect ratio’s.

Iterations

C
P

U
tim

e
(s

ec
)

R
es

id
ua

ln
or

m

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

200

220

240

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

modified Newton
Newton

Fig. 1. Comparison of CPU time and convergence rates

of Newton and modified Newton algorithms.

The next section deals with the performance of Newton
and modified Newton algorithms. Figure 1 shows the
rate of convergence of Newton's algorithm for a
30x30x30 grid using PARDISO solver. For this simple
problem of flow through a rectangular channel, it is
observed that Newton gives full quadratic convergence
and the residual norm fall below 10-8 in 4 iterations.
For more complex problems, initial guess may not be
close enough for Newton iterations to converge.

In these cases, the first few iterations may have to be
performed with Picard iteration and then Newton
iterations could be applied subsequently to harness the
advantage of quadratic convergence. Modified Newton
takes 6 iterations to converge to a level of 10-7. The rate
of convergence is observed to be superlinear instead of
quadratic. However, it is observed that modified
Newton iterations (83 seconds) significantly much less
CPU time compared to the Newton iterations (240
seconds).The CPU time for first iteration is the same in
both the methods but in the subsequent iterations, the
CPU time for modified Newton is significantly lower.
This is because, the Jacobian is no longer updated and
consequently the LU factorization step is eliminated.
The LU factors from the first iteration are reused
repeatedly during the solve phase. By avoiding LU
factorization, a significant savings in computational
time is observed. The loss in quadratic convergence is
more than compensated by the significant savings in
CPU time. The memory requirement is exactly identical
for both the methods. This is one of the major
advantages of using a direct solver. Newton or Picard
can be modified in such a way that it can repeatedly
reuse the LU factors and thus obtain a significant
savings in the computational time.

The application of modified Picard (Raju and T'ien
2008a) has been successfully demonstrated in the
context of finite volume combustion application. The
major drawback of direct solvers is the memory
requirement. This paper demonstrates that moderately
larger problems can be solved using a 64 bit machine
with a larger RAM. On a 64 bit machine with 16 GB
RAM, three to four times larger problems can be solved
as compared to a 32 bit machine with 3 GB RAM.

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

131

8. CONCLUSION
The performance of sequential direct sparse solvers in
the context of three dimensional finite element
formulations for rectangular channel is evaluated on a
64 bit windows machine with 16 GB RAM. Four sparse
solvers UMFPACK, MUMPS, PARDISO, HSL-MA78
are evaluated in this paper. Based on the results, the
following conclusions are derived. Of all the ordering
methods, METIS gives good fill reduced ordering for
three dimensional problems. In terms of computational
time both MUMPS and PARDISO perform well. The
memory requirement PARDISO solver is the least and
hence larger problems can be solved using PARDISO.
Hence PARDISO (with METIS ordering) is a better
choice for selecting an in-core sparse direct solver for
three dimensional problems. By upgrading from 32 bit,
3 GB machine to a 64 bit, 16 GB machine, the size of
the problem could be roughly increased by a factor of
3.3 using PARDISO solver. While using a sparse direct
solver, advantage can be taken from modified Newton's
method to gain significant computational savings.

REFERENCES

Amestoy, P.R., A. Guermouche, J.Y. L’Excellent and S.
Pralet (2006). Hybrid scheduling for the parallel
solution of linear systems. Parallel Computing
32(2), 136–156.

Amestoy, P.R., T.A. Davis and I.S. Duff (2004).

Algorithm 837: AMD, an approximate minimum
degree ordering algorithm. ACM Trans.
Mathematical Software 30(3), 381-388.

Amestoy, P.R., I.S. Duff, J. Koster and J.Y. L’Excellent

(2002). A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM
Journal on Matrix Analysis and Applications
23(1), 15–41.

Amestoy, P.R., I.S. Duff, J. Koster and J.Y. L’Excellent

(2000). Multifrontal parallel distributed symmetric
and unsymmetric solvers. Comput. Methods Appl.
Mech. Eng. 184, 501–520.

Amestoy, P.R., T.A. Davis and I.S. Duff (1996). An

approximate minimum degree ordering algorithm.
SIAM: Matrix Analysis and Applications 17, 886-
905.

Amestoy, P.R. and I.S. Duff (1989). Vectorization of a

multiprocessor multifrontal code. Int. J.
Supercomputer Appl. 3(3), 41–59.

Davis, T., (2004). A column pre-ordering strategy for

the unsymmetric-pattern multi-frontal method.
ACM Trans. Math. Software 30(2), 165-195.

Davis, T., J. Gilbert and E. Larimore (2004). Algorithm

836: COLAMD, an approximate column minimum

degree ordering algorithm. ACM Trans. Math.
Software 30(3), 377-380.

Davis, T.A. and I.S. Duff (1999). A combined

unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Trans. Math. Soft. 25(1), 1–
20.

Duff, I.S. and J.K. Reid (1984). The multifrontal

solution of unsymmetric sets of linear systems.
SIAM Journal on Scientific and Statistical
Computing 5, 633–641.

Duff, I.S. and J.K. Reid (1983). The multifrontal

solution of indefinite sparse symmetric linear
systems. ACM Transactions on Mathematical
Software 9, 302–325.

Elman, H.C., D.J. Silvester and A.J. Wathen (2005).

Finite elements and fast iterative solvers: with
applications in Incompressible Fluid dynamics.
Oxford:Oxford University Press.

Guermouche, A. and J.Y. L’Excellent (2006).

Constructing memory-minimizing schedules for
multifrontal methods. ACM Transactions on
Mathematical Software 32(1), 17–32.

Guermouche, A., J.Y. L’Excellent and G. Utard (2003).

Impact of reordering on the memory of a
multifrontal solver. Parallel Computing 29(9),
1191–1218.

Gupta, P.K. and K.V. Pagalthivarthi (2007).

Application of Multifrontal and GMRES Solvers
for Multisize Particulate Flow in Rotating
Channels. Prog. Comput. Fluid Dynam. 7, 323–
336.

Habashi, W.G. and M.M. Hafez (1995). Computational

Fluid Dynamic Techniques. Amsterdam:Gordon
and Breach Science Publishers.

Irons, B.M. (1970). A frontal solution scheme for finite

element analysis. Numer. Meth. Engg. 2, 5-32.

Karypis, G., and V. Kumar (1998). METIS – A Software

Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices – Version
4.0. University of Minnesota.

Khaitan, S., J. McCalley and M.P. Raju (2010).

Numerical methods for on-line power system load
flow analysis, Energy systems 1(2), 273-288.

Khaitan, S., J. McCalley and Q. Chen (2008).

M.P. Raju and S.K. Khaitan / JAFM, Vol. 5, No. 2, pp. 123-132, 2012.

132

Multifrontal solver for online power system time-
domain simulation, Power Systems, IEEE
Transactions 23 (4), 1727–1737.

Raju, M.P. and S. Khaitan (2010). Implementation of

Shared Memory Sparse Direct Solvers for Three
Dimensional Finite Element Codes. Journal of
Computing, accepted for publication.

Raju, M.P. (2009). Parallel Computation of Finite

Element Navier-Stokes codes using MUMPS
Solver. International Journal of Computer Science
Issues 4(2), 20-24.

Raju, M.P. and S. Khaitan (2009). High Performance

Computing Using Out-of-Core Sparse Direct
Solvers. International Journal of Mathematical,
Physical and Engineering Sciences 3(2) 96-102.

Raju, M.P. and S. Khaitan (2009). Domain

Decomposition Based High Performance Parallel
Computing. International Journal of Computer
Science Issues 5, 27-32.

Raju, M.P. and J.S. T’ien (2008). Development of

Direct Multifrontal Solvers for Combustion
Problems. Numerical Heat Transfer, Part B 53, 1-
17.

Raju, M.P. and J.S. T’ien (2008). Modelling of Candle

Wick Burning with a Self-trimmed Wick. Comb.
Theory Modell. 12(2), 367-388.

Raju, M.P. and J.S. T’ien (2008). Two-phase flow

inside an externally heated axisymmetric porous
wick. J. Porous Media 11(8), 701-718.

Rehman, M., C. Vuik and G. Segal (2008). A

comparison of preconditioners for incompressible
Navier-Stokes solvers. Int. J. Num. Met. Fluid 57,
1731-1751.

Reid, J. and J. Scott (2009). An efficient out-of-core

multifrontal solver for large-scale unsymmetric
element problems. International Journal for
Numerical Methods in Engineering 77(7), 901-
921.

Schulze, J. (2001). Towards a tighter coupling of

bottom-up and top-down sparse matrix ordering
methods. BIT 41(4), 800–841.

Schenk, O. and K. Gartner (2004). Solving

Unsymmetric Sparse Systems of Linear Equations
with PARDISO. Journal of Future Generation
Computer Systems 20(3), 475-487.

Schenk, O. and K. Gartner (2002). Two-level
scheduling in PARDISO: Improved Scalability on
Shared Memory Multiprocessing Systems. Parallel
Computing 28, 187-197.

Schenk, O. and K. Gartner (2001). Sparse

Factorization with Two-Level Scheduling in
PARDISO. In Proceeding of the 10th SIAM
conference on Parallel Processing for Scientific
Computing, Portsmouth, Virginia, March 12-14.

Schenk, O., K. Gartner and W. Fichtner (2000).

Efficient Sparse LU Factorization with Left-right
Looking Strategy on Shared Memory
Multiprocessors. BIT 40(1), 158-176.

Schenk, O. (2000). Scalable Parallel Sparse LU

Factorization Methods on Shared Memory
Multiprocessors. Thesis (PhD). ETH Zurich.

Tinney, W.F. and J.W. Walker (1967). Direct solutions

of sparse network equations by optimally ordered
triangular factorization. Proc. IEEE 55, 1801-
1809.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

