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ABSTRACT 

Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with 
viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are 
transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are 
reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite 
difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented 
by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, 
namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic 
paramagnet and viscosity-variation parameter. 
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NOMENCLATURE 

a radius of the sphere 
Cp specific heat at constant pressure 
Cf skin-friction coefficient 
f dimensionless stream function 
g acceleration due to gravity 
Gr Grashof number 
k thermal conductivity of the fluid 
M MHD parameter  
Nu Nusselt Number 
Pr Prandtl Number 
qw heat flux at the surface 
T temperature of the fluid  
T temperature of the ambient fluid 
Tw temperature at the surface 
u, v dimensionless velocity components 

v̂,û  dimensional velocity components 
 

x, y     axis direction  
      volumetric coefficient of thermal   
           expansion  
        stream function 
w    shearing stress 

I      viscosity-variation parameter 
*    constant 

          density of the  fluid 
    reference kinematic  viscosity 
 (T)  viscosity of the fluid  
        dimensionless temperature function  
β0   strength of magnetic field 

I  σ0   electric conduction 
*   constant 
    

1. INTRODUCTION 

A study of the flow of electrically conducting fluid in 
presence of magnetic field is important from the 
technical point of view and such types of problems have 
received much attention by many researchers. Vajravelu 
and Hadjinolaou (1997) studied the convective heat 
transfer in an electrically conducting fluid at a 
stretching surface. As mentioned by Vajravelu and 

Hadjinolaou (1997), the rate of cooling and, therefore, 
the desired properties of the end product can be 
controlled by the use of electrically conducting fluids 
and the application of magnetic field. The use of 
magnetic field has been also used in the process of 
purification of molten metals from non-metallic 
inclusions. MHD free convection flow of visco-elastic 
fluid past an infinite porous plate was investigated by 
Chowdhury and Islam (2000). Raptis and Kafousian 
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(1982) have investigated the problem of 
magnetohydrodynamic free convection flow and mass 
transfer through a porous medium bounded by an 
infinite vertical porous plate with constant heat flux. 

2. FORMULATION OF PROBLEM 

A steady two-dimensional MHD laminar free 
convective flow from a uniformly heated sphere of 
radius a, which is immersed in a viscous and 
incompressible fluid having temperature dependent 
viscosity. Here viscosity is the linear function of the 
fluid temperature. It is assumed that the surface 
temperature of the sphere Tw>T where T is the 
ambient temperature of the fluid. The configuration 
considered is as shown in Fig. 1. 
 

 

Fig. 1. Physical model and coordinate system. 
 

The equations governing the flow are    
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 The boundary conditions of Eqs. (1) to (3) are  

0ˆ,,0ˆˆ  yTTu w atv  (4a) 

  yTTu ˆ,0ˆ as  (4b) 

where    axaxr /ˆsinˆ  ,  v̂,û  are velocity components 

along the  yx ˆ,ˆ axes, g is the acceleration due to 

gravity,  is the density, (T) is the viscosity of the 
fluid depending on the fluid temperature T,  is the 
coefficient of thermal expansion, k is the thermal 
conductivity of the fluid, 0 is the electrical conduction, 
β0 is the strength of magnetic field. 
 
Out of the many forms of viscosity variation, which are 
available in the literature, we will consider only 
following form proposed by Charraudeau (1975) 

    TT*1   (5a) 

where ∞ is the viscosity of the ambient fluid and * is 
defined as follows 
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here f denotes the film temperature of the fluid.      
We now introduce the following non-dimensional 
variables: 
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where  (=/) is the reference kinematic viscosity 
and Gr is the Grashof number and  is the non-
dimensional temperature. 
 
Substituting Eq. (6) into Eqs. (1)-(3) leads to the 
following non-dimensional equations 
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With the boundary conditions (4) become 

0atv  yu ,1,0   (10a) 

 yu as,0,0  (10b) 

where  is the viscosity-variation parameter, M is the 
magnetic parameter and Pr is the Prandtl number which 
are defined as in Eq. (11), respectively  
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3. SOLUTION  METHODOLOGY 

To solve the above non-linear differential equations we 
have employed two numerical methodologies: namely, 
implicit finite difference (IFD) method with the Keller 
box scheme and the direct numerical scheme (DNS), 
which are individually presented below. 

3.1 Implicit Finite Difference Method (IFD) 

Implicit finite difference (IFD) method was first 
introduced by Keller (1978) and elaborately described 
by Cebeci and Bradshaw (1984). To solve Eqs. (7)-(9) 
using IFD subject to the boundary conditions (10), we 
assume the following variables 

     yxyxfxxr ,,,    (12) 
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where  is the non-dimensional stream function defined 
in the usual way as  
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 Substituting Eqs. (12)-(13) into Eqs. (8)-(9) we get, 
after some algebra, the following transformed equations 
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Along with boundary conditions 

0at 



 y
y

f
f ,1,0   (16a) 





y
y

f
as,0,0   (16b) 

The physical qualities of principle interest are shearing 
stress in terms of the skin-friction coefficient and the 
rate of heat transfer in terms of the Nusselt number, 
which can be written, in non-dimensional form as 
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Using Eqs.  (6), (12) and (16), we get 
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3.2 Direct Numerical Scheme 

To incorporate the DNS method solving Eqs. (7)-(9) 
subject to the boundary conditions (10), we introduce 
the following new set of transformations.  
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Using  Eq. (21) into Eqs. (7)-(10), we get 
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The corresponding boundary conditions are 

 any      0at       1,0 YXVU               (25a) 

0     , 0at       1,0  XYVU   (25b) 

0    ,  as    0,0  XYU   (25c) 

Now Eqs. (22)-(24) subject to the boundary conditions 
(25) are discretised for direct numerical scheme (DNS) 
using central-difference for diffusion terms and the 
forward-difference for the convection terms, finally we 
get a system of tri-diagonal algebraic equations 
following as: 

iiiiiii DCBA   11   (26) 

where,  is the dependent variable, Ai , Bi , Ci are the tri-
diagonal matrix elements and Di are the non-
homogeneous terms of the associated matrix. The 
algebraic Eq. (26) have been solved by Gaussian 
elimination technique. In computation, the continuity 
equation has been solved directly for the normal 
velocity V by the following discretisation: 
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The computation is started from X = 0.0, and then 
marches up implicitly. Here x = /180 and y = 0.01 
are used for the X-and Y- grids respectively.  
 
Now we are at the position to measure of the physical 
quantities, namely the shearing stress and the rate of 
heat transfer from the following dimensionless 
relations: 
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4. RESULT AND DISCUSSION 

In this study we have investigated the problem of MHD 
laminar natural convection flow and heat transfer from 
an isothermal sphere with temperature dependent 
viscosity. Here we have considered the viscosity of the 
fluid is proportional to the linear function of 
temperature that means if the temperature of the fluid 
increases, the viscosity of the fluid also increases. This 
phenomenon generally occurs for small Prandtl number 
Pr. For example, the viscosity of air is 0.6924 105 
kg.m-1.s-1, 1.3289 kg.m-1.s-1, 2.286 kg.m-1.s-1 and 3.625 
kg.m-1.s-1at 1000K, 2000K, 4000K and 8000K 
temperature respectively. The viscosity of ammonia, 
NH3 is 7.255 106 kg.m-1.s-1, 12.886 kg.m-1.s-1, and 
16.49 kg.m-1.s-1at   2200K, 3730K and 4730K 
respectively (see Cebeci and Bradshaw, 1984). 
 
Equations (14)-(15) subject to the boundary conditions 
(16) are solved numerically using implicit finite-
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Table 1 The results of CfGr1/4 for different values of the viscosity variation parameter  while M =0.5 and Pr =0.73. 

x0 

 

CfGr1/4 
  = 0.0    = 1.0   = 3.0    = 5.0 

IFD DNS IFD DNS IFD DNS IFD DNS 
0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
30 0.34404 0.34476 0.21615 0.21665 0.13491 0.13524 0.10206 0.10232 
60 0.62442 0.62658 0.39306 0.39447 0.24578 0.24672 0.18612 0.18685 
90 0.78522 0.78929 0.49629 0.49895 0.31153 0.31326 0.23639 0.23774 
120 0.78033 0.78652 0.49734 0.50149 0.31470 0.31747 0.23983 0.24207 
150 0.56193 0.57009 0.36517 0.37063 0.23555 0.23924 0.18143 0.18448 
179 0.01463 0.03269 0.01034 0.02260 0.00730 0.01559 0.00603 0.01253 
 
Table 2 The results of NuGr1-/4 for different values of the viscosity variation parameter  while M =0.5 and Pr=0.73. 

x0 

 

NuGr1-/4 
  = 0.0    = 1.0   = 3.0    = 5.0 

IFD DNS IFD DNS IFD DNS IFD DNS 
0.0 0.43075 0.43029 0.39456 0.39414 0.35605 0.35565 0.33307 0.33270 
30 0.42046 0.42059 0.38527 0.38552 0.34779 0.34789 0.32541 0.32549 
60 0.38972 0.39021 0.35752 0.35796 0.32313 0.32350 0.30256 0.30290 
90 0.33658 0.33738 0.30957 0.31033 0.28055 0.28127 0.26311 0.26383 
120 0.25699 0.25790 0.23775 0.23861 0.21676 0.21759 0.20401 0.20483 
150 0.14451 0.14574 0.13570 0.13686 0.12563 0.12677 0.11927 0.12045 
179 0.00151 0.00499 0.00157 0.00494 0.00162 0.00485 0.00167 0.00478 
 
difference (IFD) together with Keller box scheme and 
the Eqs. (22)-(25) are solved by DNS. The numerical 
solutions start at the lower stagnation point of the 
sphere, x  0 and proceed round the sphere up to the 
upper stagnation point, x  . Solutions are obtained for 
MHD parameter M (= 0.0, 0.2, 0.5, 0.8, 1.0) and for a 
wide range of values of the variable viscosity parameter 
  (= 0.0, 1.0, 3.0, 5.0.). Since the values of f  (x,0) or 
(U/Y)Y=0 and  (x,0) or (/Y)Y=0  are known from 
the solutions of the coupled Eqs. (14)-(15) or (22)-(24), 
numerical values of the shearing stress in terms of skin-
friction coefficient CfGr1/4/2(1+) from Eq. (19) or Eq. 
(28) and the heat transfer rate in terms of  the Nusselt 
number Nu from Eq. (20) or Eq. (29) are calculated 
from lower stagnation point to upper stagnation point of 
the sphere.  
 
Numerical values of CfGr1/4/2(1+) and NuGr1/4

   are 
depicted in Tables 1-2 and Fig. 2. It should be noted 
that for constant viscosity we recover the problem that 
discussed by Huang and Chen (1987) considering Pr = 
1.0 which is not shown here. For the writing simplicity, 
we have used the symbol CfGr1/4 instead of 
CfGr1/4/2(1+). 
 
The effect of different values of magnetic parameter M 
(= 0.0, 0.2, 0.5, 0.8, 1.0) on local skin friction 
coefficient CfGr1/4 and the local Nusselt number NuGr
1/4 with the viscosity-variation parameter   = 1.0 and 
for Pr = 0.73 are illustrated in Fig 2. Here we notice that 
the agreement between the results obtained by using the 
Keller box method (IFD) and the direct numerical 
scheme (DNS) is excellent. It can easily be seen that 
with the effect of magnetic parameter M leads to 
decrease the local skin friction coefficient CfGr1/4 and 
the local Nusselt number NuGr1/4. This phenomenon 
can easily be understood from the fact that the 
increasing values of magnetic parameter M, the Lorentz 
force, which oppose the flow, that means, decrease the 

velocity and temperature gradient and hence the local 
skin-friction coefficient CfGr1/4 and the local Nusselt 
number NuGr1/. 
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Fig. 2. (a) Skin-friction coefficient (b) Rate of heat 
transfer for different values of   while Pr = 0.73 and     

  = 1.0 
 
Owing to increase the values of increase the fluid 
temperature within the boundary layer and the associate 
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thermal boundary layer becomes thicker. For increasing 
fluid temperature, the temperature difference between 
fluid and surface decreases and the corresponding rate 
of heat transfer NuGr1/4 decreases. Here it should be 
noted that the point of separation of the flow occurs at 
the upper stagnation point x  . 
 
The numerical values of the skin-friction coefficient 
CfGr1/4 and the local Nusselt number NuGr1/4, against 
the curvature parameter x for different values of 
viscosity-variation parameter  (= 0.0, 0.5, 1.0, 2.0, 5.0) 
while Pr = 0.73 (air at 200C and 1 atm pressure) are 
entered in Table 1 and 2 respectively. We further notice 
that, the agreement between the results obtained by the 
IFD method and the DNS is excellent. With the 
increasing values of the viscosity-variation parameter, it 
is seen that the values of skin-friction coefficient 
CfGr1/4 and the Nusselt number NuGr1/4

 decrease. For 
increasing values of , the viscosity of the fluid within 
the boundary layer increases which retards the fluid 
motion, as a results the corresponding skin-friction 
coefficient CfGr1/4 decreases. For increasing values of 
the viscosity-variation parameter, the temperature of the 
fluid increase which is shown in Fig. 4b. Since the 
temperature of the fluid increases and hence the 
corresponding temperature difference between the 
surface and the fluid enhances. Due to higher 
temperature of the fluid the rate of heat transfer that 
means the Nusselt number NuGr1/4

 decreases. It is 
important to calculate for the experimentalist that at x = 
/2, the skin friction coefficient CfGr1/4 and the local 
Nusselt number NuGr1/4 decrease by 69.43 % and 
21.38 % respectively as   increases from 0.0 to 5.0. 
 
Attention is now given to the effects of pertinent 
parameters on the dimensionless velocity and 
temperature in the flow field, computed only by the 
implicit finite difference (IFD) method, and these are 
presented graphically in Figs 3 and 4. Figure 3a-3b 
display results for the velocity and temperature profiles, 
based on Eqs. (14) and Eq. (15) with the boundary 
conditions (16), for different values of magnetic 
parameter M (= 0.0, 0.2, 0.5, 0.8, 1.0) plotted against y 
at x= /3 having Prandtl number Pr = 0.73 with   = 
1.0. From the Fig. 3 it is seen that, as the magnetic 
parameter M increases, the velocity profile decrease and 
the temperature profile increases slightly. The reason of 
this practical scenario is that the interaction of the 
magnetic field and the moving electric charge carried 
by the fluid induces a force which tends to oppose the 
fluid motion. But near the surface of the cylinder, 
velocity increases and then decreases slowly and finally 
approaches to zero according to outer boundary 
condition. This implies that there exists a local 
maximum of the velocity within the boundary layer. 
 
Figure 4a-4b illustrate the velocity and temperature 
distribution against the variable y for different values of 
the viscosity-variation parameter  (= 0.0, 1.0, 3.0, 5.0) 
at x = /3 while Pr =0.73 and M = 0.5. It can be 
observed that the velocity decreases and temperature 
distribution increases with the increasing values of the 
viscosity-variation parameter, . It should be noted that 
at each value of the viscosity-variation-parameter   , 
the velocity profile has a local maximum  
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Fig. 3. (a) Velocity and (b) Temperature distribution 
for different values of M while Pr = 0.73 at x = /3. 
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Fig. 4. (a) Velocity and (b) Temperature distribution 
for different values of  while Pr = 0.73 at x = /3. 
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value within the boundary layer. The maximum values 
of the velocity are 0.33777, 0.29494, 0.25200, 0.22745 
at y = 1.30254, 1.65930, 2.17434, 2.48059 for  = 0.0, 
1.0, 3.0, 5.0 respectively. The maximum velocity 
decreases by 32.66% as   increases from 0.0 to 5.0. It 
also be concluded that the velocity boundary layer and 
the thermal boundary layer thickness enhance for large 
values of . 
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Fig. 5. Streamlines for (a)  = 0.0 and (b)   = 5.0   
while Pr = 0.73, M = 0.5 and  = 0.06. 

 
Figures 5 and 6 illustrate the effect of the viscosity-
variation parameter,  on the development of 
streamlines and isotherms, which are plotted for Pr = 
0.73 and M = 0.5. From Fig. 5a, it is seen that without 
effect of viscosity-variation (i.e.  = 0.0) the non-
dimensional value of max within the computational 
domain is about 1.50 near at the upper stagnation point 
(x  ) of the sphere and when the boundary layer 
thickness is the highest, but max decreases with the 
increment of  and it attains about 1.20 for  = 5.0 (see 
Fig. 5b). This phenomenon fully coincides with the 
early discussion made on Fig. 4a, the fluid slow down 
as  increases and the thickness of the velocity 
boundary layer also decreases. 
 
The isotherm patterns for corresponding values of  are 
shown in Fig. 6. From these two frames, we can see that 
the growth of thermal boundary layer over the surface 
of the sphere in significant. As x increases from the 
lower stagnation point (x  0.0), the hot fluid raises due 
to the gravity hence the thickness of the thermal 
boundary layer, y, increases. This phenomenon is very 

straightforward as can be seen in this frame for  = 5.0 
in Fig. 5b and in this case the fluid temperature  
increases slightly which was also noticed in Fig. 3b and 
the surface heat transfer rate reduced (see in Table  2). 
 

0.0 2.0 4.0 6.00.0

1.0

2.0

3.0

0.
04

0.
080.1

20.2
0

0.96

0.9
2

0.8
4

0.5
2

y

(a)

x



 

0.0 2.0 4.0 6.00.0

1.0

2.0

3.0

0.
04

0.
080.

120.
160.

24

0.
84

0.920.9
6

y

(b)

x



 

Fig. 6. Isotherms for (a)   = 0.0 and (b)  = 5.0   while 
Pr = 0.73,  M = 0.5 and  = 0.04. 

5. CONCLUSION 

The effect of temperature-dependent viscosity on the 
MHD natural convection boundary layer flow from an 
isothermal sphere has been investigated theoretically. 
Numerical solutions of the equations governing the 
flow are obtained by using the very efficient implicit 
finite difference (IFD) method together with Keller box 
scheme and by a direct numerical scheme (DNS). From 
the present investigation the following conclusions may 
be drawn:  
 
 Increasing the values of the magnetic parameter M 

and viscosity-variation parameter  lead to 
decrease the local skin-friction coefficient CfGr1/4 

and the local Nusselt number, NuGr1/4. 
 

 It is seen the velocity distribution decrease as well 
as the temperature distribution increases with the 
increasing values of the magnetic parameter M and 
viscosity-variation parameter. 

 
 The results have demonstrated that the assumption 

of constant fluid properties may introduce severe 
errors in the prediction of the surface shearing 
stress and the rate of heat transfer. 
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