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ABSTRACT 

In this work, the effect of rotation on the evolution of kinematic and passive scalar fields in two dimensional 
homogeneous sheared turbulence is studied using two different approaches. The first one is analytical and it consists 
on the resolution of differential linear equations governing the turbulence at high shear when the non linear effects 
are neglected. The second one is numerical and it consists on the modeling of governing equations using the most 
known second order models of turbulence and their numerical integration using the fourth order Runge-kutta method. 
In this second approach, the classic Launder Reece Rodi model, the Speziale Sarkar Gatski and the Shih Lumley 
models are retained for the pressure-strain correlation, pressure-scalar gradient correlation and for the time evolution 
equations of the kinematic and scalar dissipations. The evolution of turbulence is studied according to the 
dimensionless rotation number R which is varied from -0.75 to 0.5. The obtained results are compared to the recent 
results of the DNS of Brethouwer. Both methods have confirmed the existence of asymptotic equilibrium states for 
dimensionless kinematic and scalar parameters. 
 
Keywords: Turbulence with the rotation, Passive scalar field, Second order modeling, Asymptotic behavior. 
 

1. INTROODUCTION 

During an important period, numerous theoretical 
works and laboratory experiments have been performed 
in order to understand and predict turbulent flow 
behavior. In the absence of exact predictive theory of 
turbulence, second order modeling remains one of the 
more important approaches used to describe and 
analyze turbulent flows.  Recently, second order models 
have served to study complex configurations of 
turbulent flows Khaleghi et al.  (2010). It is by second 
order closure models also that we have studied an 
homogeneous sheared turbulence submitted to a stably 
stratification (Bouzaiane et al. 2004; 2003) 
 
The last few years, some authors were interested to the 
study of the effect of rotation on turbulence. In fact, 
rotation is present in a larger domain of application in 
nature especially oceanic current and atmospheric 
boundary layers as well as in industrial mechanical like 
turbo machines. 
 
Modeling rotating turbulent flow received considerable 
attention, kinematic field of homogeneous sheared 
turbulence has been widely studied by authors Porosova 
(2002), Speziale et al. (1988) and (1989). The last paper 
is considered by many authors as one of the most 
interesting work during the last two decades dedicated 
to the study of rotation effects on the kinematic field. 
On the contrary, the effects of rotation on the passive 

scalar field are rare. In the absence of rotation effects, 
experimental results of Tavoularis and Corrsin (1981) 
constitute one of the principal results dedicated to the 
study of passive scalar field in homogeneous sheared 
turbulence. The lack of result for transport of passive 
scalar field forms the motivation of this work in which 
peculiar attention will be accorded to the asymptotic 
behavior at long time evolution of dimensionless 
scalars parameters in addition to kinematic ones. The 
three sophisticated second order closure models of 
Launder Reece Rodi (Launder et al. 1975), Speziale 
Sarkar Gatski (Speziale et al. 1990) and Shih Lumley 
(Shih et al. 1985-b) are retained here for the pressure-
strain correlation, the pressure-scalar gradient 
correlations and the transport equations of the kinematic 
and scalar dissipations of the turbulent kinetic energy 
and of the variance of scalar. The results of direct 
numerical simulation of Brethouwer (2005), which are, 
to our knowledge, the most interesting and recent works 
of the considered flow have been retained. The 
experimental results of Tavoularis and Corrsin (1981) 
are also retained in the present work.  This work 
devoted essentially to the prediction of asymptotic 
equilibrium states through theoretical and numerical 
approaches is presented as follows: in section 2 
equations of motion used in this study are introduced 
and the transports of second order moments are derived. 
In section 3, analytical solutions in the case of high 
shear when non linear effects are neglected are 
obtained. Solutions are investigated to study the 
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asymptotic behavior at long time evolution of non 
dimensional parameters. The second order modeling of 
transport equations of second moments makes the 
object of section 4 whereas their castling in non 
dimensional forms and numerical integration makes the 
object of section 5.  A peculiar attention will be 
accorded to in this section also to the prediction of the 
asymptotic equilibrium states at long time evolution. 
Principal obtained results in this work, are summarized 
in section 6. 

2. MATHEMATICAL CONSIDERATION 

 
Fig. 1. Sketch of the  mean velocity profile, coordinate 

system and the direction of rotation. 
 
In an orthonormal cartesian coordinate system  of 
components   (x1 , x2 , x3), the flow to be  considered  in 
the present work is  a two dimensional (2-D) 
homogeneous turbulent shear flow of a viscous 
incompressible fluid in a rotating frame. The mean 

velocity 1( ,0,0)U U


 is unidirectional according x1 

and has a constant vertical shear rate 1

2

U
S

x





,  

according x2. 


 is the rotating vector and 3x is the 

direction of rotation (Fig. 1). A passive scalar field with 

a constant mean scalar gradient 
2

dT
G

dx
  is 

superimposed.  The gradient G is small enough to have 
negligible effect on the velocity field of the turbulence. 
Hence only non buoyant flows are considered.  

2.1 Fundamental Equation 

The study of an incompressible turbulent shear flow is 
based on the continuity equation, the Navier Stokes 
equation and a transport equation for the passive scalar.  
Classically in turbulence, Reynolds decomposition 
(Cadiou, 1996) is introduced. The dependent variables 
velocity iU , scalar T and pressure P  are decomposed 

into mean parts, denoted by over bar, and  fluctuating 
parts noted iu , p and   respectively:  

i i iU U u  , P P p  , T T    

The evolution equations for the fluctuating parts are 
obtained by introducing the above decomposition of the 
dependent variables and then differencing the resulting 
equation with the evolution equations for the mean 
parts. For the considered rotating homogeneous 

turbulent shear flow, the evolution equations of the 
fluctuating parts take the following forms: 

0i

i

u

x





                                            (1)                                       

2i i i
k k i m p m p

k i k

u u p U
U u u

t x x x
   

     
   

                     

  ( )i
i k i k

k k

u
u u u u

x x
 

  
 

                                     (2)       

k k
k k

T
U u

t x x

   
  

  
 

  ( )k k
k k

u u
x x

   
  
 

                                      (3)                  

Here, ijk  are components of permutation tensor known 

also as Ricci tensor,   is the kinematic viscosity and 
  is the scalar diffusivity. At this step, transport 
equations of second order moments are derived. 

2.2 Transport Equation 

In this section transport equations for the components 

i ju u of the Reynolds stress, the components iu  of 

the turbulent scalar flux, the turbulent kinetic energy K 

and the variance of scalar 2  are written. The transport 

equation of the components i ju u of the Reynolds stress 

may be obtained by standard method. It can be derived 
from combination of the ith and the jth component of the 
momentum equation (Brethouwer 2005): 

i j ij ij ij

d
u u P

dt
                                             (4)                        

Here k

k

d
U

dt t x

 
 
 

 is the total time derivative.  

In an analogous manner an equation for the components 

iu  of the turbulent scalar flux is derived: 

i i i i

d
u P

dt                                      (5)                       

While considering the trace of Eq. (4), we get the time 
evolution equation of turbulent kinetic energy 

/ 2i iK u u  

dK
P

dt
                                        (6)                                

The equation of scalar variance is associated to Eqs. (4), 
(5) and (6). It is derived from the transport equation of 
scalar fluctuation (3) and it is written in the following 
form: 

2d
P

dt  
                                                                (7)          

In all these transport equations, terms denoted by P are 
terms of production due to mean kinematic and scalar 
gradients: 

ji
ij j k i k

k k

UU
P u u u u

x x


  

 
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         2( )imk j k jmk i k mu u u u                              (8)     

i i k
k

T
P u u

x


 


 

          1 2( 2 )i k imk m kS u                                   (9)        

2i
i k im k m i k

k

U
P u u u u

x


   


                   (10)     

2 i
i

T
P u

x  
 


                                                         (11)               

Terms denoted by   are terms of dissipation due to 
molecular effects: 

2 ji
i j

k k

uu

x x
 




 
                                    (12)            

( ) i
i

k k

u

x x
    

 
 

                                     (13)         

i i

k k

u u

x x
   


 

                                              (14)        

2
k kx x
    


 

                                              (15)        

Finally, ij and i are respectively terms of pressure-

strain correlation and pressure-scalar gradient 
correlations: 

( )ij j i
i j

p p
u u

x x
  

  
 

                                (16)        

i
i

p

x  
 


                                                      (17)         

In Cartesian notation, the evolution equations 
governing the considered flow are written as follows:  

2
1 1 22 (1 2 )

d
u S R u u

dt
     11

2

3
  

           (18)     
    

2
2 1 24

d
u RS u u

dt
  22

2

3
                            (19)            

1 2 2 2(1 2 )
d

u u S R u u
dt

   1 1 122RS u u  
 

                                                                                   (20)                                                                                                
 

1 2

dk
u u S

dt
                                          (21)                  

1 1 2 2

d
u u u G S u

dt
    2 12R u   

       (22)                 

2 2 2 1 22
d

u u u G R S u
d t      

          (23) 

2
22 2

d
u G

d t     
               

(24)  

Where R=Ω/S is the non dimensional rotation number. 
 
At this step of our work, we recall that the last general 
equations governing the flow will be integrated by two 
different methods. The first one is analytical and will be 
the object of the following section. The second one 
makes the object of sections 4 and 5 and consists on a 

numerical integration of time evolution equations when 
a second order modeling is retained. 

3. ANALYTICAL SOLUTION WHEN NON 

LINEAR EFFECTS ARE NEGLECTED 

In homogeneous sheared turbulence, Holt et al. (1992) 
pointed out in their results of direct numerical 
simulations that, at high shear, the effect of viscosity, 
pressure and non linear interactions are insignificant. If 
we take into account this hypothesis, we can 
considerably simplify the transport equations Eq. (8)-
Eq. (14) of turbulent parameters when non linear terms 
of pressure and viscosity are neglected. This leads to 
the following system of seven linear differential 
equations: 

2
1 1 22 (1 2 )

d
u S R u u

dt
                                      (25)                 

2
2 1 24

d
u RS u u

dt
                                                  (26)                             

2
3 0

d
u

dt
                                                                    (27)                                     

1 2 2 2 1 1(1 2 ) 2
d

u u S R u u RS u u
dt

               (28) 

1 2 2 2(2 1)
d

u u u G R S u
dt
                        (29)       

2 2 2 12
d

u u u G RS u
dt
                                  (30)              

2
22

d
u G

dt
                                                       (31)                 

It is a system of seven linear differential equations 
parameterized by the rotation number (R= / S ) the 
ratio of the rotation rate to the shear rate. Solutions of 
such equations, at high shear, can be obtained by a 
simple analytical method. Laplace transformation can 
be used for solving the above system of seven 
differential equations.  

   0
{ ( )} ( ) ptTL f t f t e dt

    

The application of Laplace transformation to the Eqs. 
(25)-(31) leads to the following solutions: 

42
1 11 11 11( ) iRu C A D e                              (32)              

42
2 22 22 22( ) iRu C A D e                              (33)          

2
3 33( )u C                                                                (34)                      

4
1 2 12 12( ) iRu u C D e                                          (35)                 

 2
1 1 1 1( )u C A B         

                4
1 1

ii
RRD e E e 

                              (36)           
2

2 2 2 1( )u C A B       
 

 
               4

1 1
ii

RRD e E e 
                                     (37)             

2 2( ) C A B         

             4 ii
RRD e E e 

                               (38)            

2 2 2 2
1 2 3q u u u                                                         (39)                
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Here , , ,C A B D and E  are functions of initial values 

of turbulent parameters and are parameterized by the 
Richardson number Ri=2R(1-2R) (see appendix A for 
the complete expressions of these coefficients). The non 
dimensional time is defined by St  .   
 
We point out that the same hypothesis has been retained 
in our previous work Bouzaiane et al. (2003), and 
analogous solutions are derived for the case of the 
stably stratified homogeneous turbulence. Solutions 
were parameterized by the analogous non dimensional 
Richardson number of gradient. Solutions (32)-(39) will 
be now investigated to confirm the existence of  
asymptotic behavior (when   ) of dimensionless 
kinematic and scalar  parameters. We can deduce firstly 
the expressions of the anisotropic components 

11 22 33 12, , ,b b b b  from the above solutions where 

2 3
i j ij

ij

u u
b

K


   are components of the anisotropic 

tensor b Schiestel (1997): 
                                                                     

2
1

11 2

4
11 11 11

4

1

3

1

3

i

i

R

R
q q q

u
b

q

C A D e

C A D e








 

 
 

 

                      (40) 

2
2

22 2

4
22 22 22

4

1

3

1

3

i

i

R

R
q q q

u
b

q

C A D e

C A D e








 

 
 

 

                       (41)     

 

2
3

33 2

33
4

1

3

1

3iR
q q q

u
b

q

C

C A D e 

 

 
 

                          (42)     

1 2
12 2

4
12 12

4

i

i

R

R
q q q

u u
b

q

C D e

C A D e










 

                                   (43)     

At long time evolution (while ( )St    ), we 
obtain: 

11
11

1
( )

3q

D
b

D                                                       (44)                        

22
22

1
( )

3q

D
b

D                                                      (45)                       

33

1
( )

3
b                                                                 (46)                 

12
12( )

q

D
b

D                                                            (47)                

In an analogous manner, we can deduce from solutions 
(34)-(37) the analytic expression of scalar non-

dimensional parameters 1 1

12

/
, ,

/

u u G

u q Su

  



  

 where 

2   is the root mean square of the scalar  

fluctuations and 2q q   where 2 2q K . 
4

1 1
4

22

i

i

R

R

u D e

D eu










                                                      (48)         

4

1 1
41/ 2 1/ 2

1 11

i

i

R

R

u D e

u D D e








  

                                            (49)      

2' 1/ 2

2' 1/ 2

/ 1

/

i

i

R

R
q

G D e

q S D e









                                            (50)      

When   , we obtain the asymptotic equilibrium 

states for 1 1

12

,
u u

uu

 
  

 and 
/

/

G

q S




 

1 1

22

( )
u D

Du





                                                           (51)                      

1 1
1/ 2 1/ 2

1 11

( )
u D

u D D





  
 

                                              (52)        

1/ 2

1/ 2

/ 1
( )

/ q

G D

q S D








                                              (53)       

The obtained expressions of 

11 22 33 12, , ,b b b b 1 1

12

/
, ,

/

u u G

u q Su

  



  

 are constants 

depending only on the Richardson number iR and 

initial values of turbulent parameters. These results 
confirm the existence of equilibrium states for these 
kinematic and scalars parameters, at long time 
evolution. This first approach is only a qualitative one 
and has confirmed at long time evolutions 
(when   ), the existence of an asymptotic 
equilibrium behavior   for kinematic and scalar 
dimensionless parameters. In the following section a 
quantitative study of the asymptotic equilibrium 
behavior of the above mentioned dimensionless 
parameters is conducted when a second order modeling 
is retained.  

4. SECOND ORDER MODELING 

In this part of our work, second order closure models 
are retained to close transport equations Eqs. (18)-(24). 
The pressure-strain correlation ij  and pressure-scalar 

gradient correlations are the principal terms to be 
modeled in evolution equations of Reynolds stress and 
turbulent scalar flux. These correlations ij and i are 

classically decomposed on two contributions      
(Cadiou 1996): 

1 2
ij ij ij                                                                 (54)                

1 2
i i i                                                                 (55)                

The first contributions are called slow terms or the 
return-to-the isotropy terms and they characterize the 
non linear mechanism of interaction between turbulent 
fluctuations. The second ones are usually called rapid 
terms and they represent the interaction between mean 
and turbulent flows. Since there is not a universal 
model that predict correctly all turbulent flows 
Hanjaclic (1994) and Sodja (2007), three of the most 
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used second order models are retained and will be 
presented in the following subsections.  

4.1 The Launder, Reece and Rodi Models 

The Launder, Reece and Rodi (LRR) (Launder et al. 
1975) models for the pressure-strain and pressure-scalar 
gradient correlations are the most popular models used 
by authors. These models submitted only to the general 
kinematic constraints take the following forms: 

1
1i j i jC b                                                   (56)                  

 2
, ,2 ( j k k jij i k i kC u u U u u U    

          
,2

2
)

3
m nm n ijC u u U                                      (57)    

Here  , ,k j k j kjm mU U                                       (58)    

(where ,i kU  is the derivative 
i

k

U

x




) 

where 1C =1.8 and C2=0.6. and ij  are components of 

identity tensor, 
For the pressure-scalar gradient  correlation, slow and 
rapid terms are written in the following form: 

1
1i iC u

k
  

                                       
(59)                       

and  
2

, ,0,8 0,2k i k k ii ku U u U   
                     

(60) 

           , ,( )k i k k iijkR u U U                     

Where  '
1C =3.2   

The Launder Reece Rodi model will be called in the 
present work model 1.  

4.2  The Speziale, Sarkar and Gatski Model 

The Speziale, Sarkar et Gatski (SSG) second order 
closure model has know a great success during the last 
two decades. It has been submitted in addition to the 
kinematics constraints to the strong form of 
realisability. Furthermore it predicts stable fixed points 
(Speziale et al. 1990). The final form of this model is 
the followed one:  

1
3.4 4.2( )

3ij ij ik kj kl kl ijb b b b b       

4.15 ijk S 1.25 ( jk ikik jkk b S b S 

 2
) 0.4 ( )

3
kl jk ikkl ij ik jkb S k b w b w              (61) 

ijS  are the components of the symmetric part of 

graU


: 

1
( )

2
ji

ij

j i

UU
S

x x


 

 
,                                          (62) 

ijW  are the components of its  ant symmetric part 
 

 

1
( )

2
ji

ij

j i

UU
W

x x


 

 
                                         (63)

  

And:  


, , 3j k j k kjW W   

                                             (64) 

We point out here that this model has not been, to our 
knowledge, extended to the   to the pressure scalar 
gradient correlation. However to obtain a closed system 
of equations, the SSG model will be coupled with the 
LRR model of pressure scalar gradient.  This coupling 
will be called model 2. 

4.3 The Shih and Lumley Models 

This model has been submitted also in addition to the 
general kinematics constraints to the strong form of 
realisability (Shih et al. 1985 and Ristrocelli et al.  
1988). This model constitutes a complete class of 
model for both kinematic and scalar effects.  The model 
of pressure-strain correlation of Shih and Lumley    
(Shih 1996) is written on the following form.  

5 5

4 2
( 8 ) (1 )
5 3

ijij ij ijb S          

 
, ,( )j k i kik jkU U  2

3
ijij ijS 

 
, ,5

2 2
(1 8 )( )

3 3
j k i k ijik jk ij ijU U S       

 6 4
( )

5 15
ij ij jiij ij ij jiS b W W    

5

K
  

 
, ,( 2 )j k i k lkil lk jl lk il jkU U S      

               
(65) 

Here ij i ju u     

The return-to-isotropy term, and linear terms of 
pressure scalar gradient correlation are written as  

1

2
ii u

q




                                                        (66)     

2
,2 j ki ijkU I                                                           (67)                   

Whereas detailed expressions of   and   Iijk (Shih et 

al. 1996) are presented in appendix B.  The Shih 
Lumley model will be called here model 3.  

5. MODELING EQUATIONS EQUILIBRIUM 

STATES 

5.1 Modeling Equations by Model 1 

The Launder Reece and Rodi models for pressure-strain 
and pressure-scalar correlations are introduced in 
evolution Eqs. (18)-(24) which are associated to 
modeled transport equations of the turbulent kinetic 
energy dissipation and scalar variance dissipation.  The 
following differential system of equations is thus 
obtained: 

2
1

1 2 1 112 (1 2 )
d u

S R u u C b
dt

   
    

 

        2 2 1 2

2 2
(1 )

3 3
C C u u S                              (68)      

2
2

1 2 1 224
d u

RS u u C b
dt

    

           2 2 1 2

2 2
(1 )

3 3
C C u u S                           (69)      
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2 21 2
2 1(1 2 ) 2

d u u
S R u RS u

dt
     

            2
1 12 2 1C b C u S                                        (70)        

1 2

dK
u u S

dt
                                                     (71) 

 
2

1 1 2 2

d
C u u S C

dt K K 
  
                             (72)           

1
1 2 2 21.8 3

d u
u u G S u RS u

dt

       

             '
1 1C u

K

                                                     (73)       

2
2 2 1 10.2 3

d u
u u G S u RS u

dt

       

              '
1 2C u

K

                                                   (74)      

2

22 2
d

u G
dt 
                                              (75)      

2

1 2 3 22
2d d d

d
C C C u G

dt K K
 


    


     

             4 1 22 dC u u S
K
                                          (76)       

Two others non linear differential systems are obtained 
when model 2 in one hand and model 3 in another hand 
are introduced in the general Eqs. (18)-(24). 

5.2 Non Dimensional Equations  

The previous differential equations are castled in non 
dimensional forms when non dimensional parameters 

b11, b22, b12 and 
KS


 are introduced for the kinematic 

field and  the ratio of scalar fluxes  1
1

2

u

u




 , the 

turbulent scalar  correlation coefficient 1
2

1

u

u





 

 

and the ratio 
'

3 '

/

/

G

q S

   introduced  for the scalar 

field. 
In this section, all non dimensional parameters 

substitute previous turbulent ones i ju u , iu  , K ,   

and 2 . 
 
Non dimensional equations modeled by the classic 
model 1 are given by:  

11 1
12 112(1 2 )

2

db C
R b b

d KS




     

     2 2 12 12 11

2 1 1
(1 ) 2 ( )

3 3 3
C C b b b

KS


     

       11

1
( )

3
b

KS


                                                    (80)       

22 1
12 22 2 2 12

2
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2 3
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d KS




      

       12 22
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3 3
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
  
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       22

1
( )

3
b
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
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12
22 11
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(2 1)( ) 2 ( )

3 3
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R b R b
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           1
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           2
12 122b b

KS


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1 12( ) 2(1 )
d

C b
d KS KS
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                 2
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2 12
1 2

0.53
11

1
1.8

1
( )

3

d b

d b

  
 

  


 

 ' 12
1 2 1 2 1

11

3 (1 2 )
1

3

b
R C R

KS b

      


 

1 11 2 12
2 2 2

11 11

2
(1 )

1 14 2 3
3 3

C b C b
C

KS b b

   
 

 

2
0.51 2

2 11
3

11

1 1 1
( )
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22
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0.53
1 2 11 3

1
( )

3 2
Cd r

b
d KS

   


     

            3 12 3

1

2
b

KS

                                        (86) 

In the Eqs. (85) and (86) cr  is the characteristic time 

rate  
2

2

/

/
c

q
r




 

  

5.3   Numerical integration and results 

5.3.1 Asymptotic Equilibrium States  
 
Since wealth of numerical simulations and experimental 
results has shown that at long time evolution, non 
dimensional parameters have a general tendency to 
asymptotic equilibrium states, peculiar attention will be 
accorded here to such behavior. The three non linear 
differential equations are submitted to the initial 
isotropic conditions of the Direct Numerical Simulation 
(DNS) of Brethouwer (2005) for the kinematic field. 
The initial condition 1 0 2 0( ) 1.86, ( ) 0.43,    and 

3 0( ) 0.74  ) of the experimental results of Tavoularis 

and Corrsin (1981), initially  isotropic also for the 
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kinematic field,  are retained for the scalar field. The 
fourth Runge-Kutta method is used to integrate the  
three non linear differential systems obtained after 
modeling. The numerical integration is advanced to 
long time evolution ( =St= 20) and is carried out 
separately for the values 0, 0.25, 0.5, -0.25, -0.5 and -
0.75 of the dimensionless rotation number R (the ratio 
of the rotation rate to the shear rate). At long time 
evolution a general tendency to asymptotic equilibrium 
states for the non dimensional parameters has been 
observed. Obtained asymptotic equilibrium states of 
kinematic parameters (the components b11, b22, b12 of 
anisotropic tensor and the non dimensional shear 
number / KS ) and scalar non dimensional 

parameters: the turbulent scalar flux rate 1
1

2

u

u




 , the 

correlation coefficient 1
2

1

u

u





 

 and the ratio 

'

3 '

/

/

G

q S

  are summarized on Tables 1 and 2.  

 
Table 1 Equilibrium values predicted by kinematic 

parameters 

 R=0 R=0.25 R=0.5 
 
 

Model 
1 

b11 0.192 -0.059 - 
b22 -0.095 0.155 - 
b12 -0.185 -0.207 - 
ε/KS 0.182 0.206 0.019 

 
 

Model 
2 

b11 0.220 0.537 1 
b22 -0.147 -0.201 -0.320 
b12 -0.164 -0.365 -0.689 
ε/KS 0.167 0.387 0.730 

 
 

Model 
3 

b11 0.114 -0.069 -0.123 
b22 -0.116 0.067 0.120 
b12 -0.121 -0.152 -0.004 
ε/KS 0.144 0.181 0.014 

 
 

DNS 

b11 0.353 0.200 - 
b22 -0.112 0.031 - 
b12 -0.125 0 - 
ε/KS - - - 

 
Table 2 Equilibrium values predicted for scalar 

parameters 

 R=0 R=0.25 R=0.5 
 

Model 
1 

1  -1.08 -0.283 - 

2  0.963 0.461 - 

3  1.41 1.64 - 

 
Model 

2 

1  -1.12 -1.46 -1.8 

2  0.297 0.621 - 

3  2.44 2.27 - 

 
Model 

3 

1  -0.865 -0.240 5.44 

2  0.616 0.311 -0.842 

3  0.834 0.930 - 

 
DNS 

1  - - - 

2  0.800 0.472 - 

3  0.846 1.230 - 

It is essential here to note that asymptotic equilibrium 
values obtained for the kinematic field are with a slight 
difference equal to  equilibrium state values obtained by 
Sarkar and Spezial (1989).  

 
Asymptotic equilibrium states have been obtained for 
different cases. An exception is observed for the LRR 
model for the value R=0.5 of the non dimensional 
rotation number where no tendency to equilibrium 
states has been observed. An improve in predicting 
equilibrium states is observed for model 2 where the 
SSG model is retained for the pressure strain 
correlation. In fact, the equilibrium values predicted by 
the model 2 have been found for non dimensional 
rotation rates in the larger interval  -0.75≤R≤0.5 
whereas the model 1 and model 3 predict equilibrium 
states for only positive values of non dimensional 
rotation number. The model 1 has predicted asymptotic 
equilibrium states only for R=0.25 for both kinematic 
and scalar fields. Model 3 has predicted an equilibrium 
states for the two values R=0.25 and R=0.5 of the 
rotation number R for both kinematic and scalar fields.  
 
In comparison to values of the DNS of Brethouwer for 
which asymptotic equilibrium states are obtained for the 
value 0.25 of the rotation number, model 1 and model 3 
show the best agreement for the dimensionless 
parameters ρ2 and ρ3. Whereas model 2 under estimates 
the values of the DNS of Brethouwer for the 
dimensionless ratio ρ2. Model 2 estimates to 20 ٪ the 
values of DNS whereas model 3 under estimates this 
last value to 25 ٪ approximately. For the ratio ρ3, model 
1 shows an under estimation of 25 ٪ values of DNS 
whereas the model 3 indicates an over estimation of 25 
٪ this last value. Model 2 shows an under estimation of 

50 ٪ the value obtained by DNS for ρ2 and an under 
estimation of 100 ٪for the ratio ρ3 compared to model 1 
.  A better agreement is observed by  both model 2 and 
model 3. The acceptable agreement results obtained by 
models 2 and 3, compared to model 1,  can be justified 
if we precise that these models are submitted to the 
strict conditions of realizability Shih et al. (1985a,b, 
1996), whereas model 1 has been submitted only to the 
known relations of kinematic constraints Lumley 
(1985). Rotation affects not only the kinematic fields by 
increasing the anisotropy but also the scalar field. It is 
the turbulent flux rate that is the most concerned by the 
effects rotation. 
 
5.4.2 Evolutions of Non Dimensional Parameters 
 
In this subsection time evolutions of non dimensional 
parameters versus non dimensional time for different 
rotation numbers are addressed. The kinematic field is 
firstly analyzed. Evolutions of the turbulent kinetic 
energy are discussed. Then the evolution of non 
dimensional rates for the scalar  field are explained. The 
time development of the turbulent kinetic energy is 
presented in Figs. 2, 3 and 4. All these evolutions  start 
from the  initial value (K)0=0.33m2s-2. Evolutions of the 
turbulent kinetic energy exhibit the same behavior. 
They show an exponential growth of the turbulent 
kinetic energy for different values of non dimensional 
rotation number. A strong influence of rotation on the 
stability of the flow is clearly observed on these figures.  
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In Fig. 2 time evolutions of turbulent kinetic energy 
according to the three models for the cases R=0 and 
R=0.25 of non dimensional rotation number R are 
displayed. 

 
 St 

     Fig. 2. Time evolutions of the   turbulent kinetic 
energy 

 

    
St 

Fig. 3. Time evolutions of the turbulent kinetic energy 
for various values of non dimensional rotation number 

according to the model 2. 
 
A weak growth of turbulent kinetic energy is observed 
by the model 1 for R=0 and R=0.25, a moderate growth 
is observed by the model 3 and the strongest growth is 
observed by the model 2. On Fig. 3 only the time 
evolutions of turbulent kinetic energy according to the 
model 2 are plotted for six different rotation number. 
The turbulent kinetic energy has a very fast exponential 
growth, at larger values of non dimensional time St, 
which is qualitatively in agreement with recent results 
of Brethouwer.  

 
St 

Fig. 4. Time evolutions of the turbulent kinetic energy 
for various cases of non dimensional rotation number 

according to the model 3. 
 

Figure 4 shows time evolution of the turbulent kinetic 
energy according to the model 3 for several values of 
non dimensional rotation number R. Both non rotating 
case and the case of R=0.25 show an exponential 
growth of turbulent kinetic energy. For all other cases 
R=0.5, R=0.75, R=-0.25, R=-0.5 and R=-0.75 the 
turbulent kinetic energy lead to a decay and this is also 
in agreement with previous results Brethouwer (2005), 
Jacobitz et al. (2008). 
 
Figures 5 and 6 show time evolution of the turbulent 
scalar fluxes ratio according to three models for the 
values R=0 and R=0.25 of non dimensional rotation 
number.  

 
                                St   

Fig. 5. Time evolutions of the turbulent scalar fluxes 
ratio for three models in the case R=0. 

 
      St 

Fig. 6. Time evolutions of the turbulent scalar fluxes 
ratio for three models in the case R=0.25. 

 
                                    St 
Fig. 7. Time evolutions of the correlation coefficient for 

three models in the case R=0. 
 

On these figures the asymptotic equilibrium behavior is 
observed for each of three models. In the case R=0, a 
perfect agreement of model 1 and model 2 with the 
recent results of Brethouwer are clearly observed for 

     K 
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St>10 but in the case R=0.25 the agreement with DNS 
results of Brethouwer is observed on the evolution of 
model 1 and model 3 only for St>5. 

 
St 

Fig. 8. Time evolutions of the correlation coefficient for 
three models in the case R=0.25. 

 
On Figs. 7 and 8, time evolutions of correlation 
coefficient are plotted according to three models for the 
values R=0 and R=0.25 of non dimensional rotation 
number. The agreement  of model 1 with recent results 
of Brethouwer is noted for St>4 in the case R=0 and for 
St>5 in the case R=0.25. An agreement between 
predictions of model 1 and model 2 is obtained in this 
last case. On Figs. 9 and 10, time evolutions of the ratio 

'

3 '

/

/

G

q S

  are shown. 

 
                                  St 

Fig.  9. Time evolutions of the ratio 
'

'

S

q G

  

for three models in the case R=0. 

 
                                   St 

Fig. 10. Time evolutions of the ratio '

'

S

q G

 for three 

models in the case R=0.25. 
 
On these figures, the asymptotic equilibrium behavior is 
clearly observed by the predictions of model 1 and 

model 3. On Fig. 9, the agreement of the model 3 with 
recent results of Brethouwer is clearly observed for 
St>4.whereas on Fig. 10 the concordance is noted 
between model 2 and DNS results of Brethouwer for 
3<St<7.   

6. CONCLUSIONS 

In this study, the effects of rotation on kinematic and 
scalar fields of two dimensional homogeneous sheared 
turbulence are studied through two different methods. 
On the first method, the asymptotic equilibrium 
behaviors are confirmed by analytical solutions of 
equations describing the considered flow. These 
analytical solutions, available at strong shear and when 
non linear effects are neglected and have been obtained 
by Laplace transformation applied to seven linear 
differential equations. The second method is numerical 
and based on a second order modeling of time evolution 
equations. Three different models between the most 
known ones have been retained for the problem of 
homogeneous turbulent shear flow submitted to the 
rotation and superimposed to a passive scalar field with 
a constant mean gradient. Retained models are denoted 
respectively here model 1, model 2 and model 3. We 
are interested essentially to the prediction of asymptotic 
equilibrium states of dimensionless parameters  
characterizing  the kinematic and scalar  fields. A non 
dimensional form of equations is obtained when non 
dimensional kinematic and scalar dimensionless 
parameters are introduced. The numerical integration 
has been conducted by the fourth order Runge-Kutta 
method for several values of rotation number R and is 
advanced to a sufficiently long time evolution. This 
second approach has shown, in the most cases, that the 
predictions of retained second order models confirm the 
existence of the asymptotic equilibrium states. The 
following definitive conclusions can be drawn: 
 
The model 1 has predicted equilibrium states whereas 
the model 3 has shown better predictions than the 
model 1 compared to DNS values. The model 2 has 
shown the acceptable prediction of equilibrium states. 
Furthermore, compared to model 1, the model 2 has 
been of a great contribution on predicting asymptotic 
equilibrium values of the scalar field. For the turbulent 
kinetic energy, an exponential growth with the non 
dimensional time is observed.  
 
Finally, and from the two approaches adopted here we 
can conclude that rotation affects not only the kinematic 
field of homogeneous turbulence but also the scalar 
field. After this work, we think that study of rotation 
effects remains also a difficult subject. Difficulties 
remaining in predicting kinematic and essentially scalar 
field We think that some inconsistency may exist in the 
formulation of modeled transport equations of 
dissipations rates of turbulent kinetics energy and scalar 
variance.  To improve its prediction, we think also that 
a correction of coefficients of model 1 (LRR), to take 
into account correctly of rotation effects, can make 
another extension to this work. 
 
A possible extension of the recent work is to  
homogeneous sheared turbulence submitted to both 
effects of rotation and stable stratification A second 

1
' '

1

u

u


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S
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order modeling of such turbulence seems to be an 
important direction of investigation.  

REFERENCES 

Bouzaiane, M., H. Ben Abdallah and T. Lili (2004). A 
second order modeling of a stably stratified 
sheared turbulence submitted to a non vertical 
shear.  Journal of turbulence 5. 

 
Bouzaiane, M., H. Ben Abdallah and T. Lili (2003). A 

stably on the asymptotic behaviors of 
dimensionneless parameters in a stably 
homogeneous sheared turbulence. Journal of 
turbulence. 

 
 Brethouwer, G. (2005). The effect of rotation on 

rapidly sheared homogeneous turbulence and 
passive scalar transport. J Fluid Mechanic 542, 
305-342. 

 
Cadiou, A. (1996). A Contribution to the Study of 

Second Order Turbulence Closure Models. Ph.D. 
thesis, Central school of Nantes France. 

 
Chebbi, B., M. Bouzaiane and T. Lili (2009).   

Prediction of equilibrium states of kinematic      
and thermal fields in homogeneous turbulence 
submitted to the rotation. International Symposium 
on Convective Heat and Mass Transfer in 
Sustainable Energy 200, 376- 379. 

 
Chebbi, B., M. Bouzaiane and T. Lili (2007). Second 

order closur modeling of homogeneous sheared  
turbulence in a rotating frame, 18th French 
congress of Mechanics 2007-0711, Grenoble – 
France. 

 
Frank ,G. Jacobitz., Lukas Liechtenstein, Kai Shneider 

and Marie Farge (2008). On the structure and 
dynamics of sheared and rotating   turbulence: 
Direct numerical simulation and wavelet-based 
coherent vortex extraction. Physics of Fluids 20,    

        045103-1. 
 
Holt, S.E., J.R. Koseff, J.H. Ferziger (1992). 

Anumerical study of the evolution and structure of 
homogeneous stably stratified sheared turbulence. 
Journal Fluid Mechanic 237, 499-539. 

 
Khaleghi, K., M.Pasandideh. Fard, M. Malek. Jafarian 

and Y.M Chung (2010).Assessment of Common 
Turbulence Models under Conditions of Temporal  
Acceleration in a Pipe.   Journal  of Applied Fluid 
Mechanics 3(1), 25-33. 

 
Hanjalic, K. (1994). Advanced turbulence closure 

models: a view of current status and future 
prospects.  Int. J. Heat and Fluid Flow 15(3). 

 
Launder, B.E., G. Reece and W. Rodi (1975). Progress 

in the development of a Reynolds stress closure. 
Journal Fluid Mechanic 68, 537-576. 

 
Poroseva, S. V., S.C. Kassinos, C.A. Langer, W.C. 

Reynolds (2002). Structure-based Turbulence 

model: application to a rotating pipe flow. Phys. 
Fluids 14, 1523–1532. 

 
Ristorcelli, J.R., J.L. Lumley and R. Abid (1998). 

Rapid–pressure correlation representation 
consistent with the Taylor-Proudman theorem 
materially-frame-indifferent in the 2D limit. 
Institute for computer applications in science and 
engineering (ICASE), VA23681, NASA Langley 
research center, Hampton. 

 
Schiestel, R. and L. Elena (1997). Modeling of 

anisotropic turbulence in rapid rotation.  
Aerospace Science and Thechnology 7(7), 
4416451. 

 
Shih, T., T.H . Constitutives (1996). Relations and 

Realisability of Single-Point Turbulence Closures, 
in TurbulenceTransition and Modeling. edited by 
Mr.Hallback D.S. Hennigson and A.V. Johansson  

        and P.H. Alfredsson, Dordrech. 
 
Shih, T., J. Chen and L.L. Lumley (1985a). Second 

order modeling of boundary-free turbulent shear 
flows with a new model form of pressure 
correlation. Rept. FDA-85-3, Sibley School of 
Mech. and Aerospace Eng., Cornell University. 

 
Shih, T., J. Chen and L. Lumley (1985b). Modeling of 

pressure correlation terms in Reynolds-stress and 
scalar flux equations. Rept.FDA-85-3, Sibley 
School of Mech. And Aerospace Eng., Cornell 
University. 

 
Sodja,  J., R. Podgornik  (2007). Turbulence models in 

CFD. University of Ljubljana Faculty for 
mathematics and physics. 

 
Speziale, C.G. and N.M.G. Mhuris (1988). Scaling laws 

for homogeneous turbulent shear flows in a 
rotating frame. NASA Report 23665, NASA 
Langley research center, Hampton, Virginia. 

 
Speziale, C.G. and T.B. Gatski (1997). Analysis and 

modeling of anisotropies in the dissipation rate of 
turbulence. Journal Fluid Mechanic 344, 15-180. 

 
Speziale, C.G., S. Sarkar and T.B. Gatski  (1990). 

Modeling the pressure strain correlation of 
turbulence an invariant dynamical systems 
approach. NASA Report 23665-5225, NASA 
Langley research center, Hampton, Virginia. 

 
Speziale, C.G. and N.M.G. Mhiris (1989). On the 

prediction of equilibrium states in homogeneous 
Turbulence. Journal Fluid Mechanic 209, 591-
615. 

 
Tavoularis, S. and S. Corrsin (1981). Experiments in 

nearly homogeneous turbulent shear flow with a 
uniform mean temperature gradient, Part1. Journal 
fluid mechanic 104, 311-347. 

 
Wang, Y., K. Nagata  and S. Komori (2000). Strongly 

stably stratified grid turbulence using second 
moment closure, A IAA J.  8, 31-38.  



B. Chebbi and M. Bouzaiane / JAFM, Vol. 5, No. 2, pp. 55-65, 2012. 

65 
 

Appendix A.  Derivation of Coefficients 
Associated to Analytical Solutions 

 

We give in this appendix expressions of coefficients 

associated to analytical solutions where effects of both 

viscosity and pressure are neglected. 
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Appendix B.  Coefficients of  the Shih and 
Lumley  Models 

B.1  Coefficients  of the Pressure-  Strain 
Correlation 
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B.2   Model of the Pressure-Temperature 
Correlation 
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In this expression   and ijb  are already given and dII  

and ijd  will be as 
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rc is the ratio of kinematic rate to scalar  rate, its 

expression is 
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is linear in iu  and its form is 
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