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ABSTRACT 

Unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid in a rotating system 
in the presence of an inclined magnetic field taking Hall current into account is studied. Fluid flow within the channel 
is induced due to impulsive movement of the lower plate of the channel. Exact solution of the governing equations is 
obtained by Laplace transform technique. The expression for the shear stress at the moving plate is also derived. 
Asymptotic behavior of the solution is analyzed for small and large values of time t  to highlight (i) the transient 
approach to the final steady state flow and (ii) the effects of Hall current, magnetic field, rotation and angle of 
inclination of magnetic field on the flow-field. It is found that Hall current and rotation tend to accelerate fluid 
velocity in both the primary and secondary flow directions. Magnetic field has retarding influence on the fluid 
velocity in both the primary and secondary flow directions. Angle of inclination of magnetic field has accelerating 
influence on the fluid velocity in both the primary and secondary flow directions. 
 
Keywords: MHD Couette flow, Hall current, Inclined magnetic field, Modified Ekman-Hartmann boundary layer, 
Rayleigh boundary layer, Spatial and inertial oscillations. 
 

1. INTRODUCTION 

The study of unsteady MHD Couette flow is of 
considerable importance from practical point of view 
because fluid transient may be expected at the start-up 
time of MHD devices viz. MHD generators, MHD 
pumps and accelerators, flow meters and nuclear 
reactors using liquid metal coolants. Taking into 
account this fact Katagiri (1962) investigated unsteady 
hydromagnetic Couette flow of a viscous 
incompressible electrically conducting fluid in the 
presence of a transverse magnetic field fixed relative to 
the fluid when the fluid flow within the channel is 
induced due to impulsive motion of one of the plates. In 
recent years, interest in the study of 
magnetohydrodynamic flow of rotating fluids is 
motivated by several important problems like 
maintenance and secular variation of earth’s magnetic 
field, the internal rotation rate of sun, the structure of 
rotating magnetic stars, the planetary and solar dynamo 
problems, rotating hydromagnetic generators, vortex 
type MHD power generators and other centrifugal 
machines. An order of magnitude analysis shows that, 
in the basic field equations, the Coriolis force is 
predominant over inertial and viscous forces. 
Furthermore, it may be noted that the Coriolis and 
magnetohydrodynamic forces are comparable in 
magnitude. Taking into account these facts, unsteady 
hydromagnetic Couette flow of a viscous 

incompressible electrically conducting fluid in a 
rotating system is investigated by Seth et al. (1982, 
2010), Chandran et al. (1993), Hayat et al. (2004 a, 
2004 b) and Das et al. (2009) to analyze the various 
aspects of the problem. In all these investigations 
magnetic field is applied parallel to the axis of rotation. 
However, in actual situations of interest, it may not be 
possible to have magnetic field always acting parallel to 
the axis of rotation. In many applications including 
astrophysics, MHD power generation and magnetic 
material processing flow control magnetic fields may 
act obliquely to the flow. Keeping in view this fact, 
Seth and Ghosh (1986) initiated the study of oscillatory 
Hartmann flow in a rotating channel in the presence of 
an inclined magnetic field whereas Guria et al. (2009) 
considered oscillatory MHD Couette flow in a rotating 
system in the presence of an inclined magnetic field 
when the upper plate is kept fixed and the lower plate 
oscillates non-torsionally. Unsteady hydromagnetic 
Hartmann or Couette flow in a rotating system in the 
presence of an inclined magnetic field considering 
different aspects of the problem are considered by 
Ghosh (1991, 1996, 2001). Steady MHD Couette flow 
in a rotating system in the presence of an inclined 
magnetic field taking induced magnetic field into 
account is investigated by Seth et al. (2009 a). In all 
these investigations the effects of Hall current is not 
taken into account. It is well known that, in an ionized 
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fluid where the density is low and/or the magnetic field 
is strong, the effects of Hall current become significant. 
Taking into account this fact, Jana and Datta (1980), 
Mandal et al. (1982), Ghosh and Pop (2004), Hayat et 
al. (2004 c) and Seth et al. (2009 b) studied the effects 
of Hall current on MHD Couette flow of a viscous 
incompressible electrically conducting fluid in a 
rotating system considering different aspects of the 
problem. 

The present paper deals with the study of the effects of 
Hall current on unsteady hydromagnetic Couette flow 
of a viscous incompressible electrically conducting 
fluid in a rotating system in the presence of a uniform 
magnetic field applied in a direction which makes an 
angle   with the positive direction of axis of rotation. 
The fluid flow within the channel is induced due to the 
impulsive movement of the lower plate of the channel. 
The present model has applications in astrophysical 
fluid dynamics where this flow regime is sometimes 
referred to as magnetic mirror regime and in hybrid 
MHD energy generator exploiting variable orientation 
magnetic field. In fact, the problem is formulated for 
the general case of moving plate with velocity ( )F t  ( t  
being time variable). Exact solution of the governing 
equations is obtained when ( ) ( )F t H t   (   and 

( )H t
 
are, respectively, a constant and Heaviside unit 

step function) by Laplace transform technique. The 
expression for the shear stress at the moving plate is 
also derived. The solution, in dimensionless form, 
contains three pertinent flow parameters viz. 

2M (square of Hartmann number), 2K  (rotation 
parameter which is reciprocal of Ekman number) and 
m  (Hall current parameter) and one geometric 

parameter, namely,   (angle of inclination of magnetic 
field). Asymptotic behavior of the solution is analyzed 
for both small and large values of time t  to highlight 
(i) the transient approach to the final steady state flow 
and (ii) the effects of Hall current, magnetic field, 
rotation and angle of inclination of magnetic field on 
the flow-field. It is found that, for small values of time 
t , the primary flow is independent of rotation whereas 
secondary flow has considerable effects of Hall current, 
magnetic field and rotation. The fluid flow in both the 
directions has significant effects of angle of inclination 
of magnetic field. However, in the absence of Hall 
current, the secondary flow is unaffected by magnetic 
field and angle of inclination of magnetic field whereas 
primary flow has considerable effects of angle of 
inclination of magnetic field. For large values of time 
t , the fluid flow is in quasi-steady state. The steady 
state flow is confined within a modified Ekman-
Hartmann boundary layer of thickness of 1

1( )O   

which becomes thinner with the increase in either 2M  
or 2K  or both and has considerable effects of Hall 
current and angle of inclination of magnetic field. Also 
steady state flow exhibits spatial oscillations in the 
flow-field affected by Hall current, magnetic field, 
rotation and angle of inclination of magnetic field. The 
unsteady state flow presents inertial oscillations in the 
flow-field excited by Hall current and rotation which 
have considerable effects of magnetic field and angle of 
inclination of magnetic field due to the presence of Hall 
current. The inertial oscillations in the flow-field damp 

out effectively in dimensionless time of 1
2( )O   when 

the final steady state is developed. In the absence of 
Hall current, the inertial oscillations in the flow-field is 
generated by rotation and it damp out effectively in 

dimensionless time of  2 2 1( cos )O M    when the 

final steady state is developed. The time of decay of 
inertial oscillations in this case is less than that when 
Hall current and rotation both are present. It is noticed 
that, even in the absence of rotation, the inertial 
oscillations in the flow-field exist which is excited by 
Hall current. This is due to the established fact that 
either Hall current or rotation or both induce secondary 
flow. In the absence of Hall current ( 0m  ) and 

rotation ( 2 0K  ) there exist no inertial oscillations in 
the flow-field. To study the effects of Hall current, 
rotation, magnetic field and angle of inclination of 
magnetic field on the flow-field the numerical values of 
fluid velocity are depicted graphically versus channel 
width variable   and the numerical values of the shear 

stress at the moving plate due to the primary and 
secondary flows are presented in figures, for various 
values of  m , 2K , 2M  and   taking 1  . 

2. FORMULATION OF THE PROBLEM AND 

ITS SOLUTION 

Consider unsteady flow of a viscous incompressible 
electrically conducting fluid between two parallel plates 

0y   and y h  of infinite length in x  and z  
directions. The fluid and channel rotate in unison with 
uniform angular velocity   about y  axis. The fluid is 

permeated by a uniform magnetic field 0B  applied in a 

direction which makes an angle   with the positive 

direction of y  axis in xy  plane. At time 0t  , 
both the fluid and plates are assumed to be at rest. At 
time 0t   the lower plate ( 0y  ), which coincides 
with the xz  plane, starts moving with time dependent 

velocity  U t   in x  direction while the upper plate 

( y h ) is kept fixed. It is assumed that no applied or 

polarization voltages exist (i.e., 0E 


, E


 being 
electric field). This corresponds to the case where no 
energy is being added or extracted from the fluid by 
electrical means. Since magnetic Reynolds number is 
very small for liquid metals and partially ionized fluids 
so the induced magnetic field can be neglected in 
comparison to the applied one. Therefore, the fluid 

velocity q
  and magnetic field B


 are given by  

   0 0,0, ,  sin , cos ,0q u w B B B   


          (1) 

which are compatible with the fundamental equations of 
Magnetohydrodynamics in a rotating frame of eference. 

Under the above assumptions the governing equations 
for the flow of a viscous incompressible electrically 
conducting fluid, taking Hall current into account, in a 
rotating frame of reference (Seth et al. 2009 b) are 

   
2 2 2

0
2 2 2

cos
2 cos ,

1 cos

u u B
w u mw

t y m

  
 

        
  

   (2) 
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   
2
0

2 2

1 sin 2
0 cos

2 1 cos

p B
u mw

y m

  
  

     
 

, (3) 

   
2 2 2

0
2 2 2

cos
2 cos ,

1 cos

w w B
u w mu

t y m

  
 

        
  

  (4) 
where  ,  ,  , p   and e em   ( e  and e  being 

cyclotron frequency and electron collision time) are, 
respectively, kinematic coefficient of viscosity, fluid 
electrical conductivity, fluid density, fluid pressure 
including centrifugal force and Hall current parameter. 
Since the fluid motion is induced by the movement of 
the lower plate 0y   in x  direction so the pressure 
gradient term is not taken into account in Eq. (2). The 
absence of pressure gradient term in Eq. (4) implies that 
there is a net cross flow in z  direction. 
The initial and boundary conditions for the problem are 

0 ;  0  at 0,u w y h t           (5) 

 ; 0 at 0;  0,
.

0 at ;  0.

u U t w y t

u w y h t

       


      
  (6) 

Introducing non-dimensional variables y h  , 

   , ,u w u w h   , 2t t h , 2 2 ,p p h   in 

Eqs. (2) to (4), we obtain 

   
2 2 2

2
2 2 2

cos
2 cos ,

1 cos

u u M
K w u mw

t m

 
 

 
   

  
 

    (7) 

   
2

2 2

sin 2
0 cos ,

2 1 cos

p M
u mw

m

 
 


   
 

 (8) 

    
2 2 2

2
2 2 2

cos
2 cos ,

1 cos

w w M
K u w mu

t m

 
 

 
   

  
 

       (9) 
where 2 2K h    is rotation parameter which is 

reciprocal of Ekman number and 2 2 2
0M B h   is 

magnetic parameter which is square of Hartmann 
number. 

The initial and boundary conditions (5) and (6), in 
dimensionless form, become 

0 ;  0 1 at 0,u w t       (10) 

 ; 0 at 0;  0,
,

0 at =1; 0.

u F t w t

u w t




    


   
  (11) 

where    F t U t h  . 

Combining Eqs. (7) and (9), we obtain 

 
 

2 22
2

2 2 2

cos 1 cos
2

1 cos

M imf f
iK f f

t m

 
 

 
  

  
, 

  (12) 

where      , , ,f t u t iw t     and 1i   . 

The initial and boundary conditions, in combined form, 
are 

0 ;  0 1 at 0,f t             (13) 

  at 0 ; 0,
,

0 at =1 ; 0.

f F t t

f t




   


  
          (14) 

Taking Laplace transform of Eqs. (12) and (14) and 
using (13), we obtain 

 
2

2
0,

d f
g s f

d
  
                          (15) 

  at 0,
.

0 at 1,

f F s

f





  


  

 


                        (16) 

where    
0

, ,stf s e f t dt 
    and 

   
0

stF s e F t dt
    are Laplace transforms of 

 ,f t  and  F t  respectively, 

 
 

2 2
2

2 2

cos 1 cos
2

1 cos

M im
g iK

m

 


    
  

 and 0s   is the 

Laplace transform parameter. 
 
The solution of Eq. (15) subject to the boundary 
conditions (16) may be expressed in the form 

     
0

, ,a g s b g s

r

f s F s e e


   



              (17) 

where 2a r    and 2 2b r    . 
Taking inverse Laplace transform of (17), we obtain the 
solution of the problem after simplification, as 

     2 43/ 2

0
0

,
2

t g a

r

a
f t F t e d

    



 



  


   

    2 43/ 2

02

t g bb
F t e d

   


    
 .    (18) 

We shall now discuss a particular case of interest of the 
solution (18) considering impulsive movement of the 
lower plate 0  . 

Setting    F t H t  , where   is a constant and 

 H t  is unit step function defined by 

 
0 for 0;

1 for 0,

t
H t

t


  

                         (19) 

we obtain the solution, in this case, from the general 
solution (18) as  

     , , ,f t u t iw t     

  
0

1

2 2
a g a g

r

a
H t e erfc gt e

t






        
 

  

       
2 2

b ga b
erfc gt e erfc gt

t t

          
   

 

          ,
2

b g b
e erfc gt

t
    

 
    (20) 

where 
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 

   

1
1 2

2 2 2
1 1 1 1 2 2 2

2 2 2 3
2

2 22 2 2 2

1
,  , ,

2

cos cos
,  2 .

1 cos 1 cos

g i

M mM
K

m m

      

  
 


          


  
    

     

 

  (21) 

The solution (20) exhibits a unified representation of 
the initial MHD Couette flow induced due to impulsive 
movement of the lower plate, the final modified steady 
Ekman-Hartmann boundary layer affected by Hall 
current and angle of inclination of magnetic field, and 
decaying oscillations excited by the interaction of 
magnetic field, Coriolis force, Hall current, angle of 
inclination of magnetic field and initial impulsive 
motion. In the absence of Hall current ( 0m  ) and 

angle of inclination of magnetic field ( 0  ), the 
solution (20) is in agreement with the solution obtained 
by Seth et al. (1982). On the other hand, in the absence 
of Hall current ( 0m  ), rotation ( 2 0K  ) and angle of 

inclination of magnetic field ( 0  ) it agrees with the 
solution obtained by Katagiri (1962). 
 
In order to gain further insight into the flow pattern, we 
shall examine the solution (20) for small and large 
values of time t . When t  is small i.e. 1t  , we 
obtain from solution (20) as 

  2

0

,
22 2r

a b
u t erfc erfc

t t






            
   

  

 

1

2
2 2 2

2 2

a b t
a erfc b erfc

t t 
               

    
 

  2 24 4a t b tae be    
,  (22) 

   2 2

1

2
4 4

2
0

, 2
2

a t b t

r

t
w t ae be 




 



       


  

 2 2 ,
2 2

a b
a erfc b erfc

t t

        
   

 (23) 

It is evident from the Eqs. (22) and (23) that the initial 
impulsive movement of the lower plate ( 0  ) 

develops Rayleigh layer near the plates unaffected by 
Hall current, magnetic field, rotation and angle of 
inclination of magnetic field. It is noticed from (22) and 

(23) that the primary velocity  ,u t  upto ( )O t  is 

independent of rotation while secondary velocity 

 ,w t  has considerable effects of Hall current, 

magnetic field and rotation. This is due to the fact that 
the Hall current as well as rotation induces secondary 
flow. The fluid flow in both the directions has 
significant effects of angle of inclination of magnetic 
field. Upto this stage there are no inertial oscillations in 
the flow field. 
 

In the absence of Hall current ( 0m  ), the Eqs. (22) 
and (23) reduce to 

  
2 2

0

cos
,

22 2r

a b M
u t erfc erfc

t t






            
   

  

 2 2

2 2

a b
a erfc b erfc

t t

          
   

 

  2 2

1

2
4 42 ,a t b tt

ae be


 

        

         (24) 

   2 2

1

2
2 4 4

0

, 2 a t b t

r

t
w t K ae be




 




       


  

 2 2

2 2

a b
a erfc b erfc

t t

        
   

.    (25) 

Equations (24) and (25) reveal that, in the absence of 
Hall current, the secondary velocity  ,w t  is 

unaffected by magnetic field and angle of inclination of 
magnetic field whereas primary velocity  ,u t  has 

considerable effects of angle of inclination of magnetic 
field.  
 
When t  is large i.e. 1t  , using the asymptotic 
behavior of the complimentary error function, we 
obtain from (20) as 

   1 1
1 1

0

, 2 cos cos
2

a b

r

u t e a e b   


 



     

 

2
2 4 2

2 2 2 2cos sin
4

t a te ae a
t t t t

tt



   


                
 

 

2
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  (27) 
where 
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2 2
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2 2
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,
4

.
4

a
t t

t

b
t t

t

  

  
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   
 

 

     
  

     (28) 

The expressions (26) and (27) reveal that, for large 
values of time t , the fluid flow is in quasi-steady state. 
The first term in the expressions (26) and (27) 
represents the final steady state flow. The steady state 
flow is confined within a modified Ekman-Hartmann 
boundary layer of thickness of  1

1O  . The modified 
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Ekman-Hartmann boundary layer may be viewed as 
classical Ekman-Hartmann boundary layer modified by 
Hall current and angle of inclination of magnetic field. 
It may be noted from Eq. (21) that 1  increases with 

the increase in either magnetic parameter 2M  or 
rotation parameter 2K  or both. Thus we conclude that 
the thickness of the boundary layer decreases with the 
increase in either 2M  or 2K  or both. It is also 
observed from (26) and (27) that the steady state flow 
exhibits spatial oscillations in the flow field. The 
unsteady part in (26) and (27) presents inertial 
oscillations in the flow-field excited by Hall current and 
rotation which are affected by magnetic field and angle 
of inclination of magnetic field due to the presence of 
Hall current. The inertial oscillations in the flow-field 
damp out effectively in a dimensionless time of 1

2( )O   

when the final steady state flow is developed. In the 
absence of Hall current ( 0m  ) the inertial oscillations 
in the flow-field is excited by rotation only and it damp 
out effectively in dimensionless time of 

 2 2 1( cos )O M    when the final steady state is 

developed. It is interesting to note from (26) and (27) 
that, even in the absence of rotation, the inertial 
oscillations in the flow-field excited by Hall current 
damp out effectively in dimensionless time of 1

2( )O   

when the final steady state flow is developed. This 
implies that, in the presence of Hall current, the time of 
decay of inertial oscillations in the flow-field are same 
in rotating and non-rotating systems and the inertial 
oscillations in the flow-field damp out quickly in the 
absence of Hall current. 

3. SHEAR STRESS AT THE MOVING PLATE 

The non-dimensional shear stress components 
x  and 

z  at the moving plate 0  , due to primary and 

secondary flow respectively, are given by 

  2
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02
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 2 12 1r gr g r r
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e e
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 



 
 


  


 (29) 

4. RESULT AND DISCUSSION 

To study the effects of Hall current, rotation, magnetic 
field and angle of inclination of magnetic field on the 
flow-field the numerical values of the fluid velocity are 
depicted graphically versus channel width variable   

for various values of Hall current parameter m , 

rotation parameter 2K , magnetic parameter 2M and 

angle of inclination of magnetic field   in Figs. 1 to 4 
considering 1   and 0.5t   and profiles of the shear 
stress components at the lower plate 0   due to the 

primary and secondary flows (i.e. x  and z ) are 

drawn for different values of m , 2K , 2M  and   in 
Figs. 7 and 8 taking 1   and 0.5t  . To compare our 
results with already existing results of Seth et al. (1982) 
we have plotted the profiles of primary and secondary 
velocities and that of shear stress components at the 
lower plate 0   due to primary and secondary flows 

in Figs. 5, 6 and 9 for various values of 2M  and 2K  
taking 0m  , 0  , 1   and 2t  . These results 
are in agreement with the results obtained by Seth et al. 
(1982). 
 

 
Fig. 1. Primary and secondary velocity profiles when 

M2=6, K2=3 and / 4   

 
Fig. 2. Primary and secondary velocity profiles when 

M2=6, m=0.5 and / 4   

It is evident from Figs. 1 and 2 that the primary velocity 
u and secondary velocity w increase on increasing 
either m or 2K  which implies that Hall current and 
rotation tend to accelerate fluid velocity in both the 
primary and secondary flow directions.  
 
Figure 3 reveals that primary and secondary velocities 
decrease on increasing 2M  which implies that 
magnetic field has retarding influence on the fluid 
velocity in both the primary and secondary flow 
directions. This is due to the established fact that the 
application of a magnetic field to an electrically 
conducting fluid gives rise to a force, known as Lorentz 
force, which tends to resist the fluid motion.  
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Fig. 3. Primary and secondary velocity profiles when 
K2=3, m=0.5 and / 4   
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Fig. 4. Primary and secondary velocity profiles when 
M2=6, K2=3 and m=0.5 

It is noticed from Fig. 4 that an increase in angle of 
inclination   leads to an increase in both the primary 
and secondary velocities which implies that the angle of 
inclination of magnetic field has an accelerating 
influence on the fluid velocity in both the primary and 
secondary flow directions.  
 

 

Fig. 5. Primary and secondary velocity profiles when 
M2=4. 

 

Fig. 6. Primary and secondary velocity profiles when 
K2=4. 

 
Fig. 7. Primary and secondary shear stress components 

when M2=6 and / 4   

 
Fig. 8. Primary and secondary shear stress components 

when m=0.5 and K2 = 4. 

It is evident from Figs. 7 and 8 that, with an increase in 
either m or  , primary shear stress x  at the lower 

plate decreases in magnitude whereas secondary shear 
stress z  at the lower plate increases. Primary and 

secondary shear stress components at the lower plate 
decrease on increasing 2M . Secondary shear stress z  

at the lower plate increases on increasing 2K  and 
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primary shear stress x  at the lower plate increases in 

magnitude, attains a maximum and then decreases in 
magnitude with the increase in 2K .  

 

 
Fig. 9. Primary and secondary shear stress components. 

This implies that Hall current and angle of inclination 
of magnetic field tend to reduce primary shear stress at 
the lower plate whereas these have reverse effect on the 
secondary shear stress at the lower plate. Magnetic field 
has tendency to enhance primary shear stress at the 
lower plate whereas it has reverse effect on the 
secondary shear stress at the lower plate. Rotation tends 
to increase secondary shear stress at the lower plate. 

5. CONCLUSION 

The effects of Hall current and rotation on unsteady 
MHD Couette flow of a viscous incompressible 
electrically conducting fluid in the presence of an 
inclined magnetic field is investigated. It is found that, 
for small values of time t , primary flow is independent 
of rotation whereas secondary flow has considerable 
effects of Hall current, magnetic field and rotation. The 
fluid flow in both the directions has significant effects 
of angle of inclination of magnetic field. For large 
values of time t , the fluid flow is in quasi-steady state. 
The steady state flow is confined within a modified 
Ekman-Hartmann boundary layer which becomes 
thinner with the increase in either magnetic parameter 

2M  or rotation parameter 2K  or both and has 
considerable effects of Hall current and angle of 
inclination of magnetic field. Unsteady flow presents 
inertial oscillations in the flow-field excited by Hall 
current and rotation which have considerable effects of 
magnetic field and angle of inclination of magnetic 
field due to the presence of Hall current. Hall current 
and rotation tend to accelerate fluid velocity in both the 
primary and secondary flow directions. Magnetic field 
has retarding influence on the fluid velocity in both the 
primary and secondary flow directions. Angle of 
inclination of magnetic field has accelerating influence 
on the fluid velocity in both the primary and secondary 
flow directions. 
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